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Abstract—Policy-based Autonomic Management monitors a
system and its applications and tweaks performance param-
eters in real-time based on a set of governing policies. A
policy specifies a set of conditions under which one or more
of a set of actions are to be performed. It is very common
that multiple policies’ conditions are met simultaneously, each
advocating many actions. Deciding which action to perform
is a non-trivial task. We propose a method of diagnosing
the system to try to determine the best action or actions to
perform in a given situation using Abductive Inference. We
develop an original method of building a causality graph to
facilitate diagnosis directly from a set of policies. We propose
two alternate methods of ranking diagnosis hypotheses based
on their likelihood of success. Performance of the diagnosis
method is evaluated within an autonomic management system
monitoring the performance of a LAMP (Linux, Apache,
MySQL, PHP) server being governed by the manager. The
performance of the diagnosis method is compared against
previous methods used by an existing autonomic manager. The
results are favourable when compared to previous methods
of action selection and to the server running without the
autonomic manager. A walkthrough of an example experiment
using diagnosis is presented to gain additional insight into the
method.

Keywords-Autonomic Computing; Policy; Policy-based Man-
agement; Diagnosis; Adbuction

I. INTRODUCTION

Autonomic Computing represents an effort to make dis-
tributed, highly interconnected and interdependent systems
into self-reliant systems, capable of configuring, optimizing,
healing and protecting themselves [1]. Taking a naming cue
from the human autonomic nervous system, the motivation
behind autonomic computing is to relieve the massive strain
on human Information Technology workers from managing
and configuring large systems. The task of installing, config-
uring, and micro-managing these systems needs to be passed
on to the system itself, leaving only high level goals and
objectives to be specified by human operators.

Policy-based Autonomic Management aims to fill one
piece of the Autonomic Computing vision, by automating
the configuration and optimization of several applications
running together, in real-time. Performance metrics are mon-
itored for running applications, and configuration parameters
are tweaked in real-time to match the current environment
and workload [2]. The goal is to achieve some Quality of

Service (QoS) objectives [2]. The knowledge used to decide
what to change and when to change it is stored within a
set of policies. The primary type of policy in use in current
autonomic management systems is the action policy (also
called obligation or expectation policies) [3]. An action
policy specifies actions for a manager to perform given that a
specific set of events or conditions are present [2]. When the
conditions of a policy are true and action should be taken,
the policy is said to be violated.

In a system containing multiple policies governing the be-
haviour of the autonomic manager, multiple policy violations
advocating many different actions are not only inevitable but
are in fact commonplace. The violation of multiple policies
may be the result of several discrete problems, or a single
problem manifesting itself in several locations. Determining
which action to perform out of the set of all actions available
is a non-trivial decision [4]. Current work on selecting an
action in such a situation has attempted to assign weights
to actions based on a number of factors, and then execute
the action with the highest weight. We propose to use
abductive diagnosis [5] to try and determine the best action
to perform. Abductive diagnosis uses knowledge of causal
relationships between problems and causes to hypothesize
about the specific cause or causes of a given set of problems
[6]. This knowledge can be modeled in a bipartite graph.
We introduce a method of building such a graph using the
policies themselves, with no modifications or other input
required. We then test this method by implementing it in an
existing Autonomic Management tool.

The remainder of this paper is organized as follows:
In Section II we examine related work in Policy-based
Autonomic Management and Diagnosis. In Section III, we
discuss an Autonomic Management tool, called BEAT, in
which we have implemented our diagnosis work. Section
IV describes the current method of policy action selection.
In Section V, we introduce Abductive Reasoning and Di-
agnosis. In Section VI, we propose a method of applying
Abductive Diagnosis to Policy-based Autonomic Manage-
ment. In Section VII we describe the implementation of
the method as well as our experiments, and present some
results in Section VIII. Section IX presents an illustrative
example of the diagnosis method in action. Finally, Section
X provides conclusions and some thoughts on future work.
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II. RELATED WORK

Work in Policy-based Autonomic Management focuses on
both the manager and the policy language itself. One such
language is Ponder [7], an object-oriented, declarative policy
language. It is designed as a generic language that can be
used in a number of different implementations [7]. AGILE
[8] is another policy language, designed for flexibility and
to provide run-time adaptation of policies. It has been devel-
oped as part of a larger policy-based autonomic management
system. Lymberopoulos et al [2] have developed a policy-
based framework in which policy adaptation is the key focus.
The authors construct a framework for network services
management, with policies capable of being dynamically
adapted to meet a changing workload and environment [2].
Other policy languages include PDL (Policy Description
Language) from Bell Labs [9] and CIM-SPL (Common
Information Model Simplified Policy Language), which is
from the DMTF (Distributed Management Task Force) and
is part of their larger CIM [10].

Abductive logic has been used in policy conflict detection
by Bandara et al [11]. In this method, conflict detection
is done prior to execution on a formalized version of the
policies. Other work on diagnosis in autonomic computing
has developed outside of policies, and has focused on
determining the component that is the root cause of a given
problem using machine learning methods. Duan and Babu
[12] developed a system called Fa which monitors a large
number of system metrics and performs diagnosis using a
learned classifier. The classifier is learned via supervised
learning by annotating sets of system metric values with
failure states. Ghanbari and Amza [13] combine models for
anomaly detection on individual components together into
a single belief network, modelling the structure and causal
relationships of components. Learning based on observing
injected faults is performed to refine the model and the
probabilities associated with the causal relationships. Also,
the individual models used to detect component anomalies
must be trained.

Previous work on diagnosis has not considered the use of
policies. Our approach to diagnosis therefore differs from
previous work in that it focuses specifically on diagnosis in
policy-based autonomic management. We make use of the
structure and content of the policies themselves, thus making
our approach domain independent.

III. BEAT AUTONOMIC MANAGER

The diagnosis algorithm has been implemented in a
previously developed Autonomic Management tool, called
BEAT (Best Effort Autonomic Tool). BEAT is a policy-
based autonomic management framework, described in [3],
[4]. Policies are used to specify how the management is
performed as well as how the manager itself operates.
The BEAT management system knows how to monitor
and manipulate the system, and the policies provide the

necessary rules to dictate how such manipulations should be
carried out. These are low-level policies specifying specific
actions to be taken under specific circumstances. Individual
monitored system and application metrics are used to de-
termine the situation (conditions) and actions consist of the
modification of specific tuning parameters.

expectation policy RESPONSETIMEViolation
if (APACHE:responseTime > 2000.0) &
(APACHE:responseTimeTREND > 0.0) then

AdjustMaxClients(+25)
test MaxClients + 25 < 501 |

AdjustMaxKeepAliveRequests(-30)
test MaxKeepAliveRequests - 30 > 1 |

AdjustMaxBandwidth(-128)
test MaxBandwidth - 128 > 128

end if

Figure 1: Pseudo-code Response Time Policy

A single policy, or policy rule, consists of two main
components: A set of conditions, and a set of actions. Figure
1 shows a pseudo-code version of a typical policy in BEAT.
This policy describes what should occur when the response
time of a web server exceeds a certain threshold. Note that
this is only a representation of a policy. Actual policies in
BEAT are not written in this way, and are instead built in
a GUI and stored within a relational database. The policy
essentially states that given that these conditions hold true,
one of these actions should be performed (if CONDITIONS
then ACTIONS).

Policy conditions compare some system metric to a
value using a specified operator, and can be com-
bined using standard logical operators. A single condi-
tion is not unique to one policy, but can be contained
within several policies within the system. In Figure 1,
the conditions are APACHE:responseTime > 2000.0 and
APACHE:responseTimeTREND > 0.0. In these cases, the
metrics being monitored are the response time of the Apache
web server and the recent trend of the response time.

Policy actions specify some system or application pa-
rameter to be modified in response to the violation of the
policy. For example, in Figure 1, AdjustMaxClients(+25) is
an action modifying the Max Clients parameter of Apache
by increasing it by 25. The action may also contain a
test that must be performed and passed before execution.
This could be used, for example, to prevent modifying
a value beyond some hard upper and lower bounds. The
AdjustMaxClients(+25) action is associated with the test
MaxClients + 25 < 501, thus enforcing an upper bound
of 500 on the Max Clients parameter. Again, a single action
may be advocated by multiple policies. In addition, a policy
will specify a list of actions, with the implication that only
one should be executed, but not all. The decision as to which
action to execute falls on the Autonomic Manager itself.

The BEAT Autonomic Manager consists of several com-
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Figure 2: BEAT Autonomic Manager Architecture [3]

ponents which interact with each other to provide the full
management functionality. Figure 2 [3] shows the general
architecture of the system. Monitor components (labelled
M) monitor the state of the system and running applications
being managed, and forward this information to the Monitor
Manager. The Monitor Manager aggregates and processes
this information, and generates events which are sent to the
Event Handler. This component then determines if the events
are of interest (if they represent a violation of a policy), and
forwards events to the Policy Decision Point (PDP). The
PDP uses the policy information to determine what, if any,
action should be taken. Actions to be executed are then sent
to the Policy Enforcement Point (PEP), which is responsible
for executing the action. The PEP determines if the action
can be performed, and if so, forwards it to an appropriate
Effector component (labelled E), which performs the actual
modification to system and application parameters. Policies
and other information are stored in the Knowledge Base
and manipulated via a Policy Tool. The Event Log records
previous events.

IV. POLICY ACTION SELECTION

In a system containing multiple policies governing the be-
haviour of the autonomic manager, multiple policy violations
advocating many different actions are not only inevitable but
are in fact commonplace. The violation of multiple policies
may be the result of several discrete problems, or a single
problem manifesting itself in several locations. Determining
which action to perform out of the set of all actions available
is a non-trivial decision [4]. There are a few ways in which
an action can be selected. One possibility is to simply select
the first action that arises, which is essentially an arbitrary
selection. This method takes nothing into account in its
decision making, leaning heavily on the expertise of the
policy designer, and therefore seems to be a poor choice.

Another option is to weight policies and actions based on
some criteria. Possible criteria include [4]:

• The severity of the violation, which refers to how far a
threshold value on a metric has been exceeded.

• Manually assigned weights on policy conditions.
• The advocacy of the action, which refers to the number

of violated policies advocating the same action.
• The specificity of the policy, which refers to the number

of conditions used to trigger the policy, assuming that
policies containing more conditions should be dealt
with first.

These criteria and others can be used separately or in
combination to provide some guidance in the action selection
process. These criteria are based on intuition, and it is
unclear how well they choose the best action to execute. An-
other possibility is to employ machine learning techniques
to learn the “best” action to select in a given circumstance,
based on previous experience [14], [15]. Again, this could
be used in conjunction with other techniques to improve the
action selection mechanism.

If an incorrect action is selected and taken, not only is
time wasted before the correct action can be selected, but
the modification of application tuning parameters that should
not have been modified may cause further problems. This
makes action selection a key problem in the performance of
an autonomic manager.

V. ABDUCTION AND DIAGNOSIS

Abductive reasoning is an alternative to deductive and
inductive reasoning. This form of reasoning most closely
resembles how a human diagnoses problems. Let us say that
a problem consists of a set of rules, a specific case, and a
result that occurs given the two. In abductive reasoning, we
have the set of rules and the result, and we hypothesize
about the specific case that is causing the result [6]. For
example, if a doctor is diagnosing a patient, the set of
symptoms experienced by the patient would be analogous to
the result and the doctor’s medical knowledge would be the
set of rules. The doctor’s diagnosis as to what the potential
ailments the patient could have would be the set of specific
case hypotheses. Note that unlike deduction and induction,
we do not arrive at a definitive decision or conclusion; we
can only build hypotheses representing what the specific case
might be [6].

Peng and Reggia [6] present a formal method of rep-
resenting and diagnosing an abductive reasoning problem.
Given a set of disorders representing underlying problems,
a set of manifestations representing observable symptoms,
and knowledge of the causal relationship between the two,
adbuctive methods can be used to build a diagnosis. This
can be represented by a graph, which we will call a Causal
Network, containing both the disorder and manifestation
sets. An edge from a disorder to a manifestation indicates
that the disorder may cause the manifestation, although
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Figure 3: Causal Network Example (based on example from Peng
and Reggia [6])

it is important to note that it may not. A disorder can
cause multiple manifestations, and a manifestation may be
caused by many different disorders. Given a set of currently
present manifestations and the causal network, diagnosis
can be performed to build a set of hypothesis disorder sets
that could explain the manifestations. It is impossible to
guarantee that a definitive diagnosis can be obtained. The
best that can be achieved is the construction of a set of
hypotheses. Each hypothesis contains a set of disorders that
fully explain the present manifestations, but determining
which hypothesis is correct or even which hypotheses are
more likely to be correct is a non-trivial task.

A simple example is given in Peng and Reggia [6]
describing a causal network for the diagnosis of automotive
problems. It uses a small set of disorders and manifestations
and presents the causal associations between them that form
the causal network graph. The disorders include battery
dead, left headlight burned out, right headlight burned out,
and fuel line blocked. The manifestations are engine does not
start, left headlight does not come on, and right headlight
does not come on. Figure 3 shows the causal network
for these disorders and manifestations, including the causal
associations between them.

A cover of a given set of present manifestations is a
set of disorders such that each present manifestation can
be caused by at least one disorder in the set. Each cover
represents a single hypothesis solution, giving one potential
explanation for the manifestations. Peng and Reggia [16]
suggest that simpler covers are more likely to be true than
complex ones. It is then these simple covers that we wish to
find when diagnosing a problem. There are several different
suggested criteria for judging the simplicity of a cover. A
single-disorder cover is a cover that consists of only a single
disorder. An minimal cover contains the minimal number of
disorders required to cover all present manifestations. An
irredundant cover is a cover where each disorder causes at
least one manifestation that no other disorder in the cover
causes. A relevant cover is a cover that contains no disorders
that are not a cause of at least one present manifestation.
These criteria create increasingly broad sets of covers as
we move from single-disorder to relevant covers. The set of

single-disorder covers for a set of manifestations is a subset
of the set of minimal covers, which is a subset of the set
of irredundant covers, which is finally a subset of the set of
relevant covers.

Of these criteria, irredundancy seems intuitively to be the
best choice. Single-disorder covers are unnecessarily restric-
tive, and clearly insufficient in situations where more than
one problem (disorder) can occur simultaneously. Minimal
covers are also too restrictive, as it is easy to imagine
a case where a minimal cover is clearly not the most
likely explanation of the manifestations. For example, in
medical diagnosis, a minimal cover may consist of a single
rare disease, where another cover may exist containing two
common diseases. Clearly the minimal cover is less likely
in this case. Relevant covers, on the other hand, represent
the other extreme in which far too many covers are accepted
as plausible. Irredundant covers will therefore be used for
diagnosis.

An algorithm has been developed by Peng and Reggia
in [6] to diagnose the problem by constructing the set of
all irredundant covers of the present manifestations. The
actual diagnosis algorithm, presented in Figure 4 is quite
simple. The algorithm starts with a set of hypotheses, and
is given the set of current manifestations. It then iterates
through each manifestation (in no particular order), revising
the hypothesis set each time to represent all irredundant
covers of the new manifestation as well as previously added
manifestations. Once all manifestations have been accounted
for, the algorithm is complete.

1: hypothesisSet = {∅}
2: while moreManifestations do
3: mnew = nextManifestation;
4: hypothesisSet = revise(hypothesisSet, causes(mnew))
5: end while
6: return hypothesisSet

Figure 4: Diagnosis Algorithm

The heart of the algorithm is the revise method. The
method, which accepts the current set of hypotheses as
well as the set of causes for the manifestation being added,
results in a new hypothesis set that contains all irredundant
covers of the set of manifestations that have been processed,
including the new one. It does this by first finding all
hypotheses in hypothesisSet that are also irredundant covers
of the new manifestation, and leaving them unchanged. It
then modifies any remaining covers so that they also cover
the new manifestation by adding new disorders to them.
Finally, any duplicate or irredundant covers created in the
last step are removed. Details of the algorithm and revise
method can be found in [6].

Let us return to our basic example of automotive diagnosis
from [6], illustrated in Figure 3, and take a high level look
at the diagnosis algorithm in action. Let us say that we
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are currently observing all of the possible manifestations,
that is, engine does not start, left headlight does not come
on, and right headlight does not come on. We start with
an empty hypothesis set in line 1 of the algorithm, and
lines 2 to 5 proceed to loop through each presently observed
manifestation, one at a time. The first manifestation, engine
does not start, is retrieved in line 3. Line 4 revises our
current hypothesis set, which is empty, by including the
causes of engine does not start, which are battery dead and
fuel line blocked. This results in a set of two hypotheses,
namely, either battery is dead or fuel line is blocked.

Next we add the left headlight does not come on manifes-
tation, and revise the hypothesis set with its causes (battery
dead and left headlight burned out). The revise method first
picks out battery is dead as a cover of both the original
manifestation and the new one, and decides to leave it in
the hypothesis set. Next, it modifies the second cover, fuel
line is blocked, so that it covers the new manifestation. This
is done by adding the disorder left headlight burned out.
Other covers are possible, but would not be irredundant. This
results in a new set of hypotheses, where either battery is
dead is true (which would cover both manifestations itself),
or fuel line is blocked and left headlight burned out are both
true.

Finally, we add the last manifestation, right headlight
does not come on, using its causes (battery dead and
right headlight burned out). This brings us to our final set
of hypotheses, which explains (covers) all three presently
observed manifestations. We still have only two hypotheses.
Either the disorder battery dead is true, which itself explains
all three manifestations, or fuel line blocked, left headlight
burned out and right headlight burned out are all true simul-
taneously. Both of these hypotheses are irredunant covers of
the set of presently observed manifestations. Logically, it
makes sense that given the manifestations, either the battery
is dead or the fuel line is blocked and both headlights are
burned out.

VI. MAPPING POLICIES TO A CAUSAL NETWORK

In order to perform diagnosis, a Causal Network contain-
ing potential disorders, manifestations, and their relation-
ships must be constructed. We do this based on existing
information contained within the set of policies governing
the Autonomic Manager, at run-time. In this way, diagnosis
can be used for action selection without requiring any extra
diagnosis-specific information to be added. This method of
bridging the gap between policies and abductive diagnosis
constitutes our main original contribution.

Each policy contains a set of conditions and a set of
actions. These conditions and actions are not unique, and
the same conditions and actions will be used by many
different policies. The manifestations can be derived from
the conditions, in that each condition is directly mapped
to a single manifestation. If the condition is true, then

the equivalent manifestation is considered present. Disor-
ders are derived from the policy actions, with each action
being used to build a single disorder. Since an action is
intended to correct some parameter that is thought to be set
incorrectly for the current environment and workload, then
that parameter being incorrectly set can be considered the
underlying disorder causing the manifestations. For example,
if an action specifies that the Max Clients parameter of the
Apache server should be increased by 25, then the disorder
derived from such an action would be Apache Max Clients
too low.

Associations between the generated manifestations and
disorders can be easily derived from the policies as well. If
a policy containing the condition used to derive a certain
manifestation also advocates the action used to derive a
certain disorder, then that manifestation could potentially
be caused by the disorder and should be associated with
it. Since conditions and actions are replicated across many
different policies, this method results in a fairly well con-
nected Causal Network. Diagnosis can then be performed
using this Causal Network, essentially finding the action or
actions that can potentially cause all present conditions to no
longer be true, thus eliminating all policy violations. Figure
5 gives a psuedo-code version of the algorithm.

1: disorderSet = {∅}
2: manifestationSet = {∅}
3: causalRelationships = {∅}
4: for all policies p do
5: for all conditions c in p do
6: m = Manifestation(c)
7: if m not in manifestationsSet then
8: manifestationSet += m
9: end if

10: for all actions a in p do
11: d = Disorder(a)
12: if d not in disorderSet then
13: disorderSet += d
14: end if
15: causalRelationships += (d, m)
16: end for
17: end for
18: end for
19: return hypothesisSet

Figure 5: Policy Mapping Algorithm

The size of the Causal Network depends on the number of
policies deployed in the system, and the level of redundancy
in the policy conditions and actions. To look at one extreme,
if each policy contains completely unique conditions and
actions, it will result in a graph with many nodes and very
few connections. If, on the other hand, the conditions and
actions are replicated throughout many different policies
(which is the usual case), the graph will have fewer nodes
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and be well connected. Even with a large number of policies,
the Causal Network will remain a simple bipartite graph, and
should scale well as the number of policies increases.

expectation policy RESPONSETIMEViolation
if (APACHE:responseTime > 2000.0) &
(APACHE:responseTimeTREND > 0.0) then

AdjustMaxClients(+25)
test MaxClients + 25 < 501 |

AdjustMaxKeepAliveRequests(-30)
test MaxKeepAliveRequests - 30 > 1 |

AdjustMaxBandwidth(-128)
test MaxBandwidth - 128 > 128

end if

expectation policy CPUViolation
if (CPU:utilization > 85.0) &
(CPU:utilizationTREND > 0.0) then

AdjustMaxKeepAliveRequests(-30)
test MaxKeepAliveRequests - 30 > 1 |

AdjustMaxBandwidth(-128)
test MaxBandwidth - 128 > 128

end if

Figure 6: Pseudo-code CPU Policy

Figure 7 shows an example Causal Network derived from
example policies in Figure 6. The CPUViolation specifies
actions to be taken to lower CPU utilization in the event that
it exceeds a threshold value of 85%. For simplicity in the
diagram, the Manifestation nodes that would be generated
for the trend conditions (APACHE:responseTimeTREND
and CPU:utilizationTREND in Figure 6) are omitted,
as they would be identical to the nodes derived from
APACHE:responseTime and CPU:utilization, respectively.
In the actual causal network, they would be present.

Since each action must pass an associated test before it
can be executed, diagnosis must generate a list of hypothe-
ses, with the first one that passes its associated tests being
executed. The set of all hypotheses obtained from diagnosis
must therefore be ordered from most likely to be effective
to least likely to be effective. The only ranking method
currently implemented is to sort the hypotheses based on
the number of disorders they contain. This can either be
done in ascending or descending order, causing the system to
favour either hypotheses containing fewer disorders or more
disorders, respectively. This translates to the system either
preferring to execute fewer actions when using ascending or

Figure 7: Policy derived Causal Network

preferring to execute many actions with descending.
Let us see how this causal network could be used for some

very basic diagnosis. Say that we observe the manifestation
Response Time > 2000ms. We can see that any of the
disorders could be the cause, that is, our set of hypotheses
includes three single disorder hypotheses (Max Clients Too
Low, Max Keep Alive Requests Too High, and Max Band-
width Too High). Now, let us say that we also observe the
manisfestation CPU Utilization > 85%, and update our set
of hypotheses using the causes of this manifestation. This
reduces our set of hypotheses to two, namely, Max Keep
Alive Requests Too High and Max Bandwidth Too High. You
may note that a hypothesis containing both Max Bandwidth
Too High and Max Clients Too Low, or both Max Keep Alive
Requests Too High and Max Clients Too Low would also
be a potential cover of the present manifestations. In both
cases, however, the disorder Max Clients Too Low would be
redundant, and we only wish to look for irredundant covers,
as discussed in Section V.

Hypotheses containing disorders must then be translated
back into something useful to the autonomic manager, that
is, a list of actions or sets of actions to perform. For each
hypothesis, each disorder contained within it is used to
look up the original action used to build the disorder. The
actions for a single hypothesis are grouped together, and if
executed, the entire group must be executed together, since
all disorders contained in the hypothesis are required to
cover the present manifestations. Using our example, the
two single disorder hypotheses of Max Keep Alive Requests
Too High and Max Bandwidth Too High would be translated
back into the actions AdjustMaxKeepAliveRequests(-30)
and AdjustMaxBandwidth(-128), as seen in Figure 6.

VII. EXPERIMENTS

The diagnosis action selection method was implemented
in the BEAT Autonomic Manager discussed in Section III.
Modifications to BEAT were made in the Policy Decision
Point (PDP) component, inserting diagnosis in place of the
existing method. We compared the diagnosis method to other
methods of selecting policy actions by configuring BEAT to
manage a web server, and measuring its performance under a
stressful workload. Performance is measured with the auto-
nomic manager using the action selection method previously
used in BEAT (describe in Section IV), with two variations
of the newly developed diagnosis algorithm, and with the
server running without intervention by the manager. Policies
are specified with the goal of maintaining specific response
time, CPU utilization, and memory utilization ranges, and
the methods of action selection can be compared on how
well they achieve these objectives. Service differentiation
will be used and controlled by the autonomic manager.
Incoming requests to the server are divided into three service
classes, namely, gold, silver and bronze, with gold being
given highest priority and bronze lowest.
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Figure 8: Experimental Setup

A. Test Environment

Figure 8 shows the basic setup of our experiments.
Server: The server machine hosts a web server running a

PHP bulletin board application [17]. The application makes
use of a database, also running on the server machine. The
server is a LAMP stack (Linux, Apache, MySQL, and PHP),
with the BEAT Autonomic Manager installed.

Clients: There are three client machines responsible for
generating the workload for the server. Each machine rep-
resents one service class, namely, gold, silver and bronze.
Requests sent by the gold machine are to be given highest
priority, and requests sent by the bronze machine are to be
given the lowest. In a real world implementation, requests
could be divided into classes based on a pricing plan,
importance as a part of a larger system, or some other
prioritization scheme. Load was generated using Apache
JMeter 2.3.4 Load Generator [18].

B. Systems Under Test

Four configurations will be contrasted with each other
to evaluate the performance of the diagnosis algorithm.
These include the system without the aide of BEAT, with
BEAT enabled and using the previously developed action
selection method, and finally with two different versions of
the diagnosis algorithm.

Policies Disabled: A base configuration with the BEAT
autonomic manager disabled, and with differentiated ser-
vices disabled (all requests are treated equally). This will
provide a frame of reference for judging the performance
improvement offered by the autonomic manager with each
form of action selection.

Weighted Actions: Section IV outlines a set of criteria
that can be used to guide action selection. These criteria,
(severity, specificity, weight and advocacy), are implemented
in BEAT [15] and combined together to determine a total
weight for each action, with higher weighted actions being
given priority. Details of this can be found in Bahati et al.
[15]. For the purposes of this experiment, we will refer to
this as the Weighted Actions method.

Diagnosis with Fewer Disorder Priority (Diagnosis -
Fewer): The first of the two forms of the diagnosis algorithm
is Diagnosis with Fewer Disorder Priority. The algorithm
itself for both forms is identical. The difference is in the
ordering of hypotheses. In this form, hypotheses containing
fewer disorders are ranked higher than hypotheses with more
disorders. Essentially, this makes the assumption that the
simplest hypothesis is most likely the correct one. In many
cases this will result in a single action being taken, but it is
not necessarily always the case.

Diagnosis with Many Disorder Priority (Diagnosis -
Many): This second form of the diagnosis algorithm re-
verses the ordering of the first. It makes the assumption that
taking multiple actions will be more likely to be successful
than taking a single action. As such, hypotheses containing
more disorders will be given priority over those containing
fewer. The diagnosis algorithm is otherwise unchanged from
Diagnosis with Fewer Disorder Priority. This will often
result in multiple actions being taken.

C. Measures of Performance

Four metrics will be measured to determine the relative
performance of each version of the Autonomic Manager.

• Apache Response Time (Server) - This is the response
time of the Apache web server as measured from the
server itself. This value is extremely important, as
it is the measure by which the autonomic manager
itself determines how well the server is performing.
It measures response time by continuously requesting
a single page from the web server and measuring the
time it takes to receive it. It does not use the KeepAlive
option, meaning that a new connection must be opened
for each request. It is also independent of the service
differentiation mechanism used for requests received
from external machines.

• CPU Utilization - This is the percentage of the CPU
currently in use on the server machine. This does not
refer to the amount of CPU being used by the web
server only, but rather the total CPU usage.

• Memory Utilization - This is the percentage of the total
memory that is in use on the server. Like the CPU
Utilization metric, this represents total memory usage
for the entire server machine.

• Client-side Response Time - This is the response time
as measured by the client machines. The time taken
to complete each request (from the time the request is
sent until the entire page has been received) is recorded.
These requests make use of the KeepAlive option,
meaning that requests sent by a single ‘user’ attempt
to re-use the same existing connection. The set of all
client-side request response times can be divided into
the three service classes (gold, silver and bronze) to
analyze the effects of service differentiation.
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D. Workload

All three client machines ran identical workloads, and
were started and stopped simultaneously. The workload was
designed to overload the system to a point where without
the aid of the autonomic manager, the CPU is running at
100% and server-measured response times are over the 2
second threshold. The workload started with a single thread
(or user), and ramped up linearly to a total of 25 threads (or
users) over a period of 8 minutes. Each thread continuously
performed a small loop consisting of a “think-time” delay
of 750-1250ms, and a request to a page randomly chosen
from 24 dynamic (PHP generated) pages offered by the
PHP Bulletin Board application running on the server. A
request included retrieving the HTML page as well as all
other resources (images, etc.) contained on the page. This
continued for one hour, at which point the test was halted.
Each thread used the KeepAlive option, thus attempting
to reuse its existing connection to the server as much as
possible to avoid reconnecting.

E. Policy Goals

The policies are designed in such a way as to maintain
certain performance objectives, or goals. These typically
consist of a threshold value on a measured metric within the
system. The duty of the autonomic manager is to achieve
these goals as best it can. These goals roughly translate
to the conditions of the policies. When the conditions are
violated, the policy actions are intended to attempt to push
the metric back under the threshold. Without going into
detail as to the specific policies and policy actions, the
following are the general goals of the set of policies used
in this experimentation:

• Apache HTTP server response time, as measured from
the server should be below 2 seconds.

• The CPU Utilization should be below 90%. If utiliza-
tion falls below 85%, then more CPU resources should
be used, if needed. Essentially, the system should make
use of as much CPU as it can up to the 90% threshold.

• Memory Utilization should be below 50%.
• Priority should be given to the gold, and then the silver

and finally the bronze service classes in that order.

VIII. RESULTS

The experiment was performed identically with each of
the four systems under test (Policies Disabled, Weighted
Actions, Diagnosis - Fewer, and Diagnosis - Many). Each
test was run for exactly one hour, and repeated a total of 5
times. Averages and standard deviations were calculated for
each run and averaged over the 5 repeats of the experiment.

Table I shows the metrics measured on both the server
and client machines. These include the response time of
the Apache web server (as measured by the mechanism
described in Section VII-C), CPU Utilization and Memory
Utilization. The values shown are the average values for an

Disabled Weighted Diag. Fewer Diag. Many
Apache Resp. 3336ms 1195ms 1031ms 1163ms

CPU Util. 98.3% 74.4% 82.5% 82.4%
Memory Util. 22.3% 24.6% 24.0% 24.1%

Gold Avg. 2182ms 1798ms 1389ms 1465ms
Silver Avg. 2228ms 4021ms 3920ms 3827ms

Bronze Avg. 2192ms 4742ms 5543ms 5239ms

Table I: Average Results

Figure 9: Apache Response Time Box Plot

entire run. The metric averages are then averaged across all
5 replications of the experiment. Figure 9 shows the Apache
Response Time data for all experiment replications as a box
plot, and figure 10 is a box plot the CPU Utilization for all
experiments replications.

Judging by the measured response times of the Apache
web server, we can easily see that the three tests performed
with the autonomic manager outperform the system with the
manager disabled. CPU utilization also comes down under
the threshold value, while memory utilization increases by
a trivial amount and stays well below threshold levels. The
response times for the three action selection methods are

Figure 10: CPU Utilization Box Plot

320

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 11: Gold Response Time Box Plot

similar, with Diagnosis Fewer (favouring hypotheses with
fewer disorders, or fewer actions to take) beating out the
other two, which match up fairly evenly. Both variations of
the diagnosis algorithm also make better use of the CPU, as
outlined in the goals of our set of policies in Section VII-E,
without going over the 90% threshold.

The Gold, Silver, and Bronze response times in table
I are the client-side response times of the gold, silver,
and bronze client machines, respectively. Response times
experienced by the client machines show a different side
to the performance of the web server than those measured
by the server-side response time monitor. As mentioned in
Section VII-C, the server-side response time metric does not
use KeepAlive, while the client machines do. This means
that the server monitor needs to open a new connection
for each request, and as such potentially wait in a queue
again. Another difference comes from the effect of service
differentiation on the client requests. The most important
of the client response time measures is that of the gold
service class, as the silver and bronze classes should be
sacrificed to maintain its performance. The test is designed
to put the server under stress, and as such we should see
response times of the silver and bronze classes sacrificed
to maintain the performance of the gold class. Figure 11 is
a box plot of the Gold Class Response Time data for all
experiment replications. Both diagnosis algorithms perform
better than weighted action selection on gold response time,
as well as silver response time, with diagnosis favouring
fewer actions having the edge. Figure 12 shows the gold,
silver, and bronze response times for the system using the
diagnosis algorithm favouring fewer actions, for a single
repetition of the experiment. Service differentiation is clearly
visible in this graph, as the system keeps the gold class
consistent at the expense of silver and bronze.

Figure 13 compares the Apache response times for
weighted action selection and diagnosis favouring fewer

Figure 12: Client Response Times for Diagnosis Fewer

Figure 13: Apache Response Time

actions, for a single repetition of the experiment. The
graphed curves are Bezier curve approximations of the actual
data, in order to more clearly show the difference between
the performance of the two methods. A Bezier curve is a
parametric curve approximation of the data used to smooth
the data. The data shown is from a single experiment,
not averaged over all 5 repetitions, and represents results
consistent with all experiments.

Table II shows the same metrics as table I, except only
for the overload period of the experiment. That is, the ramp
up time to the maximum load of 25 clients per machine
(for a total of 75 clients) is excluded, leaving only the time

Disabled Weighted Diag. Fewer Diag. Many
Apache Resp. 3722ms 1300ms 1095ms 1247ms

CPU Util. 99.9% 78.0% 86.8% 87.2%
Gold Avg. 2333ms 1872ms 1398ms 1463ms

Silver Avg. 2365ms 4442ms 4387ms 4257ms
Bronze Avg. 2336ms 5404ms 6657ms 6233ms

Table II: Average Results - Max Load Only
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Figure 14: Apache Response Time Over Threshold

Disabled Weighted Diag. Fewer Diag. Many
Apache Resp. 290.30 14.94 11.19 16.19

CPU Util. 3.65 0.04 0.13 0.15

Table III: Server Metrics Area Over Threshold

period when the server was operating under maximum load
(75 clients total). The results are slightly different in value
to those of the entire run, but values in comparison with
each other remain consistent.

Another way to look at the data is to examine not the av-
erages but the amount of time the value is over the specified
threshold, and by how much. This can be done by calculating
the area of the curve over the threshold. Figure 14 shows
the measured response time of the Apache web server with
the manager disabled and with weighted action selection,
compared to the threshold value of 2000ms, for a single
repition of the experiment. The area between the threshold
value and the response time curve above it provides a useful
measure of how well the goals of the policies are being
achieved. Table III contains these values. The values shown
are averaged over the 5 experiment repetitions. The system
with the manager disabled exceeds the thresholds of both
Apache response time and CPU utilization far more than
with the manager enabled. Diagnosis favouring fewer actions
comes out on top yet again, with weighted actions and
diagnosis features multiple actions coming in second and
third, respectively. Note that since the units of response time
and CPU utilization are not the same, we cannot compare
directly between the response time and CPU utilization area
over threshold values.

IX. EXAMPLE RUN WITH DIAGNOSIS

To help illustrate how the autonomic manager behaves,
particularly when using the diagnosis algorithm for action
selection, we will take a look at an example experiment
run and go into some detail at a few points of interest. The
information examined is from a single experiment repetition,

Figure 15: Example Run with Diagnosis - Response Time

Figure 16: Example Run with Diagnosis - CPU Utilization

but is typical of all of the experiments. We will look at the
diagnosis algorithm favouring hypotheses with fewer disor-
ders (fewer actions to take). It is difficult to tell the direct
consequences of each decision made and action executed,
since a very large number of actions are executed throughout
the experiment and the workload is dynamic. Nevertheless,
some thoughts as to why the diagnosis algorithm performs
slightly better than weighted action selection can be derived
from such an analysis.

Figures 15 and 16 show the response time and CPU
utilization metrics for an example run of the system using
diagnosis favouring fewer actions. Four points of interest are
marked on each graph and explained in some detail, in order
from left to right (sequential order in time).

Point 1: The first violations occur at around the three
minute mark (180 seconds).

1) Apache Response Time Violation
2) Apache CPU without Response Time Violation
3) PHP Response Time Violation
4) MySQL Response Time Violation
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To begin with, this is an interesting combination of violation
events. The first, third and fourth violations are all triggered
by the same conditions, namely, the response time of the web
server exceeding 2000ms and having an increasing trend.
The difference lies in the set of advocated actions by each
violation. Each policy advocates actions related to a different
component of the system, namely, the Apache web server,
the PHP cache, and the MySQL database. What makes this
particular set of violations interesting is the second violation,
namely, the Apache CPU without Response Time Violation.
The conditions for this violation are CPU utilization above
90% and rising, and the response time of the web server
being below 200ms, a contradiction with the conditions of
the other policy violations. Clearly the response time cannot
be both above 2000ms and below 200ms. What probably
has occurred is that both states were present at some point
in the interval between the last time the policies were
checked for violations and this time. This interval during
these experiments was 10 seconds.

The diagnosis algorithm then attempts to build hypotheses
that can explain the situation we are seeing, even though
we know that these particular violations do not represent
a single snapshot of the state of the system, but rather
what has occurred over the last 10 seconds. This is not
necessarily a bad thing, as such seemingly contradictory
information may in fact lead the diagnosis algorithm to
finding a better solution by eliminating some extraneous
actions or even including actions that may not have been
considered otherwise. Whereas the weighted action selection
will select an action based on applying some importance to
each policy and each action independent of each other, the
diagnosis algorithm takes into account the entire situation
in its decision making. This may account for some of why
the diagnosis algorithm performs better than weighted action
selection.

The diagnosis algorithm builds the set of all possible
actions or sets of actions that can cover the given policy
violations. In this case, the first three are single actions that
cover every condition in each policy. Since in this example
the algorithm is favouring hypotheses with fewer disorders
(fewer actions to take), these single actions are ranked first.

1) Decrease the maximum number of clients in Apache
2) Decrease the maximum number of KeepAlive requests

in Apache
3) Decrease the maximum bandwidth, which compro-

mises the performance of lesser service classes to
maintain the performance of higher classes, with gold
being the highest and bronze the lowest.

Hypotheses indicating that more than one action should be
performed are ranked lower. An example of such a hypoth-
esis is one that advocates both decreasing the MySQL Key
Buffer size and increasing the cache memory available for
PHP at the same time. The ordering of hypotheses containing

the same number of actions is arbitrary, and is based on the
order in which the violations are given to the algorithm and
how the algorithm operates. It can be considered essentially
random. Nevertheless, actions are attempted in the order
they are sent to the PEP. In this particular case, the first
action (decrease the maximum number of clients) was not
performed because its associated test failed (the parameter
was already at its lowest possible value). The second action,
decreasing the maximum number of KeepAlive requests, was
performed.

Point 2: After the first set of violations, a large number
of the policy violation situations consist simply of the three
Response Time Violations.

1) Apache Response Time Violation
2) PHP Response Time Violation
3) MySQL Response Time Violation

Since all three of these violations share the same conditions,
the resulting diagnosis is simply a list of all actions advo-
cated by the three policies, because any of these actions will
cover all of the conditions of all three. Since the diagnosis
algorithm performs no ordering of the actions within itself,
it will build the same set of potential actions as the weighted
action selection method, except it will make no attempt to
determine which is more likely. As such, it will probably
make a similar, if not slightly worse decision. The tests
attached to the actions also make a difference in which
action is selected, as all tests for an action must pass before
the action can be executed. This means that several higher
ranked actions may be skipped before reaching an action
that can be performed, potentially neutralizing some of the
effect of ordering.

Point 3: Another common policy violation situation oc-
curs at the 417 second mark. At this point, we see a
combination of both response time related violations and
CPU utilization violations.

1) Apache Response Time Violation
2) PHP Response Time Violation
3) MySQL Response Time Violation
4) Apache CPU Utilization Violation
5) PHP CPU Utilization Violation
6) MySQL CPU Utilization Violation
7) Apache CPU and Response Time Violation

We have already seen the response time violations. All three
contain the same conditions but advocate actions related
to different components of the system. The three CPU
Utilization violations (4, 5 and 6) are similarly related.
All three have CPU utilization above 90% and an upward
CPU utilization trend as their conditions, but they each
advocate different actions. The Apache CPU and Response
Time policy violation is triggered by a combination of both
web server response time conditions and CPU utilization
conditions, and advocates actions to be taken in the case
that both the response time is above 2 seconds and CPU
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utilization is above 90%. This policy attempts to dictate
what should occur when more than one type of violation
exists, and the set of actions advocated by it is actually a
subset of the actions already advocated by the other policies.
Such a policy is essentially trying to simulate some sort of
diagnosis, and is likely rendered obsolete by the diagnosis
algorithm. Nevertheless, it is in use at the moment and taken
into consideration in diagnosis. The following is the list of
actions or sets of actions returned by the diagnosis algorithm.

1) Decrease the maximum number of KeepAlive requests
in Apache

2) Increase the cache size used for PHP pages
3) Decrease the maximum bandwidth
4) Increase the MySQL thread cache size and increase

the number of Apache clients
5) Decrease the maximum number of clients in Apache

and increase the MySQL key buffer size
6) Increase the MySQL thread cache size and key buffer

size
7) Decrease the maximum number of clients in Apache

and increase the MySQL query cache size
8) Increase the MySQL query cache size and thread

cache size
As before, hypotheses containing fewer actions to perform
are preferred. Only one of these will be executed, and they
will be attempted in the order listed. Again, the ordering
within hypotheses containing the same number of actions is
essentially random.

Point 4: At around the 59 minute mark another interesting
policy violation situation occurs.

1) Apache CPU Utilization Violation
2) PHP CPU Utilization Violation
3) MySQL CPU Utilization Violation
4) Apache without both CPU and Response Time Viola-

tion
We have already seen the three CPU Utilization policy
violations. The fourth, Apache without both CPU and Re-
sponse Time, indicates that response time is within normal
constraints (below 2 seconds), and that CPU utilization is
also below the violation threshold of 90%. Clearly, as we
saw earlier with response times, this contradicts the other
three policy violations, again most likely due to the 10
second window in which violations can occur before they are
processed. The question then becomes, how should this be
interpreted? This is by no means a trivial question. Should
the violations indicating that the CPU utilization is over 90%
be trusted or the one indicating that it is below be trusted?
In weighted action selection, one of these two options will
be chosen. With diagnosis, however, both options will be
combined to find some solution that satisfies both, thus
taking into account all of the information received. Such a
difference in approach may be at least partially responsible
for the improved performance of the diagnosis algorithm.

In this case, a set of four hypotheses is generated, each
containing two actions to perform.

1) Decrease the maximum number of clients in Apache
and increase the maximum bandwidth

2) Decrease the maximum number of KeepAlive requests
in Apache and increase the maximum bandwidth

3) Increase the cache size used for PHP pages and
increase the maximum bandwidth

4) Increase the MySQL thread cache size and increase
the maximum bandwidth

As before, the actions were attempted by the PEP in the
order shown, and in this case, the very first set of actions
passed its tests and was performed.

X. CONCLUSIONS AND FUTURE WORK

A diagnosis approach using adbuction has been proposed
to help the autonomic manager decide which action to take
in the case of multiple policy violations. The approach uses
the policies themselves to build a Causal Network, which
is then used to perform diagnosis. The diagnosis algorithm
was implemented in the BEAT Autonomic Manager [3] for
testing.

We examined the performance of a web server without
the aid of the autonomic manager, with the manager using
weighted action selection, and using diagnosis. From the
results presented here, we can conclude that the diagnosis
algorithm performs at least as well as the previous method of
action selection (weighted action selection). CPU utilization
for all three action selection methods stays below the thresh-
old, but the two diagnosis methods make use of more CPU
resources than weighted action selection, keeping closer to
the threshold. Diagnosis favouring multiple actions performs
similarly to weighted action selection, except on the actual
measured client response times, where it has an edge on gold
and silver service class response times. Diagnosis favouring
fewer actions beats out the other methods across the board,
although not by a significant margin. This indicates that the
use of the diagnosis algorithm to select an action in the
case of multiple policy violations makes better decisions
than the previously developed weighted action selection
methods, more closely achieving the overall goals of the
policies, that is, keeping metrics such as CPU and Response
Time within specified thresholds. Although the improvement
offered by diagnosis was minor, in a larger scale experiment
it may become more pronounced. Further experimentation
is required to fully evaluate the method.

The advantage that diagnosis favouring fewer actions has
over diagnosis favouring multiple actions seems to indicate
that simpler explanations of the given set of policy violations
(hypotheses containing fewer disorders) are more likely to
be correct, an example of Occam’s Razor [19]. The deci-
sion making advantage enjoyed by diagnosis over weighted
action selection may be due to the fact that diagnosis
essentially attempts to use all available information together
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to make a decision, while weighted action selection pits each
option against each other. This is a subtle yet potentially
interesting distinction.

The diagnosis method is not a strict alternative to
weighted action selection, and future work could investigate
the combination of these methods. The criteria for policy
and action weighting could be used to build probabilities
into the causal network. The policies themselves should also
be examined, as a simpler set of policies may be possible
when using diagnosis. Finally, in order to fully evaluate and
drive development of these techniques forward, some larger
scale implementation and testing is likely necessary.
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