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Abstract—In this paper, we consider the problem of monitor-
ing an intruder in a setting where the number of opportunities
to conduct surveillance is budgeted. Specifically, we study
a problem in which we model the state of an intruder in
our system with a Markov chain of finite state space. These
problems are considered in a setting in which we have a hard
limit on the number of times we may view the state. We
consider the Markov chain together with an associated metric
that measures the distance between any two states. We develop
a policy to optimally (with respect to the specified metric) keep
track of the state of the chain at each time step over a finite
horizon when we may only observe the chain a limited number
of times. The tradeoff captured is the budget for surveillance
versus having a more accurate estimate of the state; the decision
at each time step is whether or not to use an opportunity
to observe the process. We also examine a scenario in which
there is a budget constraint as described as well as a cost
on observation. Finally, theoretical properties of the solution
are presented. Hence, we present the problem of monitoring
the state of an intruder using a Markov chain approach and
present an optimal policy for estimating the intruder’s state.

Keywords-monitoring; surveillance; budget; resource alloca-
tion; dynamic programming; convexity; optimal estimation.

I. INTRODUCTION
The importance of monitoring technologies in today’s

world can hardly be overstated. Indeed, there are volumes
dedicated to this field [2] [3]. In recent years, the need for
effective security measures has become especially evident.
Indeed, at present, Microsoft announces almost one hundred
new vulnerabilities each week [4]. Perhaps more alarming
is the fact that government agencies routinely must manage
defenses for network security and are hardly equipped to do
so. This is evidenced by the fact that 10 agencies accounting
for 98% of the Federal budget have been attacked with as
high of a success rate as 64% [5].
This paper is concerned with a mathematical treatment

of these important problems, as initially proposed in [1].
Specifically, we consider a scenario in which we model
the activities of an intruder as a state in a Markov chain.
We develop the problem of monitoring the state in a finite-
horizon discrete-time setting where we are only able to make
observations a limited number of times. Such a budget arises
naturally in wireless settings, for example, where power is
at a premium. We present an algorithm for deciding when to
use opportunities to view the process in order to minimize

the surveillance error. This error is accrued at each time
step according to a metric indicating how far from the true
state the estimate was. We also consider problems in which
additional cost is accrued for each observation that is made.
In this way a hard constraint as well as a soft constraint are
considered together.
Section II describes some state-of-the-art research in this

field as well as our contribution to it. In Section III, we begin
by introducing the monitoring problem mathematically. We
continue with a derivation of the optimal policy using
dynamic programming and then present the implementation
of the optimal policy. Section IV gives an adjusted policy
in an extended scenario where observations accrue cost
in addition to being budgeted. Section V contains a brief
note about dealing with large state spaces and in Section
VI, we demonstrate performance using numerical results
and examine theoretical properties of the solution structure.
Finally, in Section VII, we conclude the paper and offer
directions for future work in this vein.

II. STATE-OF-THE-ART
A growing literature addresses security from a mathe-

matical perspective, with a range of theoretical tools being
employed for managing threats. In [6], a network dynam-
ically allocates defenses to make the system secure in the
appropriate areas as time progresses. Parallels between the
security problem and queuing theory are drawn upon, where
vulnerabilities are treated as jobs in a backlog. The model
of [7] uses ideas from game theory for intrusion detection
where an attacker and the network administrator are playing
a non-cooperative game. A related problem is addressed in
[8] as well.
More generally, theoretical work in signal estimation

has also been greatly developed [9]. Related works have
considered aspects of decision making with limitations on
the available information. In [10], an estimation problem
is considered in which the received signal may or may
not contain information. Similar issues are studied in [11]
and [12] but in a control theoretic context in which the
actuator has a non-zero probability of dropping estimation
and control packets.
Approaches in the sensor network literature also attempt

to mitigate power usage while tracking an object, as in [13]



58

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where ‘smart sleeping policies’ are considered. Algorithms
for GPS as studied by the mobile device community also
draw on techniques to minimize estimation error in the
presence of noise and power limitations [14]. The approach
presented here focuses on a hard constraint on energy usage,
while [15] approaches a related problem with a constraint
on the expected energy usage.
The unique aspect of our formulation is the nature of

the power limitation. This non-standard constraint was in-
troduced in [16] and developed in other works such as [17].
All of these problems consider finite horizon frameworks in
which decisions are usage limited and hence the ability to
make actions is a resource to be appropriately allocated.
In this paper, we aim to describe a model for intrusion

detection with a notion of a power budget for observations,
and continue by seeking an optimal policy for this problem
formulation and proving some properties about the solution.

III. MONITORING

Let us now examine the monitoring/surveillance problem
in greater detail. In what follows, we shall consider the
states of a Markov chain as an abstraction for the position
of an intruder in our system. Such a model is able to
capture several scenarios. In one, we may wish to spatially
monitor the location of an adversary using equipment that
has usage constraints. Another situation is that we can
consider the state of the intruder to be a location in a
data network. Although many interpretations are possible,
our goal is to be able to track this state with as little
error as possible. We begin by presenting the model in a
mathematical state estimation framework, and then present
the solution structure.

A. Model

Consider a Markov chain M with finite state space S,
transition matrix P and associated measure d : S × S → R

as in Figure 1. The metric gives a sense of how close states
are so that we can measure the effectiveness of an estimate
of the true state. We assume that the process is known to start
at initial state x0 and we are interested in having an accurate
estimate of the process over a finite horizon k = 1, ..., N−1.
The decision space is simply u ∈ {0, 1} where 0 corresponds
to no observation being made and 1 corresponds to an
observation being made. When an observation is made, the
state xk of M is perfectly known. Without an observation,
on the other hand, we must form an estimate x̂k for the
state given all observed information thus far. The number of
times observations may be made is limited to M < N .
The cost of making estimate x̂k at time k when the true

state is actually xk is d(xk, x̂k). If d is a metric, we have

the important properties

1. d(x, y) ≥ 0 ∀x, y ∈ S

2. d(x, x) = 0 ∀x ∈ S

3. d(x, y) = d(y, x) ∀x, y ∈ S

4. d(x, z) ≤ d(x, y) + d(x, z) ∀x, y, z ∈ S


















Figure 1. Markov chain with transitions P (·, ·) and measure d(·, ·). Self
loops are captured by outgoing edge probabilities summing to less than
one.

At each time k, the state of our system can be represented
by {(r, s, t); xN−t−r; xN−t} where r is the number of time
slots that have passed since the last observation, s is the
number of opportunities remaining to make an observation,
t is the number of time slots remaining in the problem,
xN−t−r is the last observed state of M and xN−t is the
current state. We seek a policy π = {µk}N−1

k=1 such that the
actions uk = µk((r, s, t), xN−t−r) ∈ {0, 1} are chosen to
minimize the cumulative estimation error. The policy π is
admissible if it abides by the additional constraint that the
number of times observations are made is no greater than
M . Denote the class of admissible policies by Π.
We want to find a policy π∗ ∈ Π to minimize

E

{

N−1
∑

k=1

d(xk, x̂k)

}

It should be noted that the estimate x̂k depends on the
action uk because if uk = 1 then x̂k = xk and there is
no estimation error, while if uk = 0 then we must make
the best guess of the state that is possible with the known
information.
Deciding on the distance metric is an issue of modeling

and may be specific to the application at hand. We consider
a few alternatives here:
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1) Probability of Error: To recover a cost structure that
results in the same penalty regardless of which state is
chosen in error (probability of error criterion), we simply
set the distance metric as

d(x, y) =

{

0 if x = y
1 otherwise

Such a choice maximizes the likelihood of estimating the
correct state.
2) Euclidean distance: We may suppose that states corre-

spond to physical locations - in this case, we may choose to
let the distance d(·, ·) correspond to the Euclidean distance
between states so that best estimates minimize the error as
measured spatially.
Several other choices could also be made for a distance

metric, such as the well known Metropolis distance or
Chebyshev distance. In this paper, we are most interested
in keeping track of an intruder, so we shall concern our-
selves primarily with the probability of error and Euclidean
distances.

B. Dynamic Programming
We use a dynamic programming approach to obtain an

optimal policy [18]. Before presenting our algorithm for
determining π∗, however, we first develop some important
notation. In order to proceed, we must begin by determining
several quantities offline. Let d(w) be the vector of distances
of each state from w. Then we proceed by cataloging the
quantities

w∗

r (x) = arg min
w∈S







∑

y∈S

P[xr = y|x0 = x]d(y, w)







= arg min
w∈S

{(P r
d(w))(x)}

e∗r(x) = (P r
d(w∗

r (x)))(x)

for r = 1, ..., N . The values w∗
r (x) and e∗r(x) correspond

to the optimal estimate and estimation error, respectively,
when we must determine the current state given that r time
steps ago we observed that the state was x. There may, in
some cases, be an efficient way to determine these quantities,
but in general we must do this by simply cataloging these
quantities offline through brute force. This may be done with
relative ease if the state space is of tractable size or if the
specific application displays certain sparsity (if our intruder
is moving at a bounded rate then we may narrow down his
location to a sparse set of states).
Now we proceed to construct the solution using back-

wards induction. We begin with t = 1, which corresponds to
one unit of time remaining in the problem, and then continue
for t = 2, 3, ... until we are able to determine a recursion.
As we build backwards in time (and forward in t), we let s
vary and keep track of the cost Jr,s,t(x) where x is a state
of the Markov chain. This is depicted graphically in Figure

2, where the index r has been omitted. A given state (s, t)
can transition to (s − 1, t − 1) or (s, t − 1). The transition
represents whether an observation was made or not - if so,
then s is decremented, otherwise it remains the same. In
the special case of s = t, the only sensible policy is to
always use an observation, and in the case of s = 0, the
only admissible policy is not to make an observation. This
is also shown in Figure 2.









 

 





  

 

Figure 2. Admissible transitions for backwards induction. The pair
(s,t) represents the number of observations and remaining time steps,
respectively.

For t = 1, we can either have s = 0 or s = 1. These
costs, respectively, are (in vector form)

J(r,0,1) = e∗r

J(r,1,1) = 0

since not having an observation means we need to make a
best estimate, and having an observation leads to zero cost.
Moving on to t = 2, the values of s can range from s = 0,

s = 1 or s = 2. For s = 0 we have

J(r,0,2) = e∗r + e∗r+1

since we would need to make an optimal estimate with no
further information for the next two time slots. If s = 1,
there are two choices: use an opportunity to make an
observation so that u = 1, or do not observe, in which
case u = 0. These choices can be denoted with superscripts
above the cost function for each stage:

J
(0)
(r,1,2)(x) = e∗r(x) + J(r+1,1,1)(x) = e∗r(x)

J
(1)
(r,1,2)(x) = 0 +

∑

y∈S

P [xN−2 = y|xN−2−r = x]e∗1(y)

For u = 0, we accrue error for the current time slot and no
error afterwards. When an observation is made, no error is
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accrued for the current time slot N − 2, but there is error in
the next time slot, which depends on the current observation.
In vector form, we may write

J
(0)
(r,1,2) = e∗r + J(r+1,1,1) = e∗r

J
(1)
(r,1,2) = P re∗1

We now introduce some new notation:

∆(r,1,2) = J
(0)
(r,1,2) − J

(1)
(r,1,2)

= e∗r − P re∗1

so that if ∆(r,1,2)(x) ≤ 0, then we should not make an
observation, whereas we should make an observation if
∆(r,1,2)(x) > 0. We proceed now by defining sets τ(r,1,2)

and τc
(r,1,2) such that

x ∈ τc
(r,1,2) ⇔ ∆(r,1,2)(x) ≤ 0

x ∈ τ(r,1,2) ⇔ ∆(r,1,2)(x) > 0

and we also define an associated vector 1(r,1,2) ∈ {0, 1}S

1(r,1,2)(x) =

{

1 if x ∈ τc
(r,1,2)

0 otherwise
Moving on to s = 2, we have J(r,2,2) = 0, since there are

as many opportunities to observe the process as there are
remaining time slots. We continue with t = 3:

J(r,0,3) = e∗r + e∗r+1 + e∗r+2

since there are three time slots to make estimates for with
no new information arriving. For s = 1, we again have a
choice of u = 0 and u = 1. For u = 0, we accrue a cost for
the current stage, and then count the future cost depending
on the current state:

J
(0)
(r,1,3)(x) = e∗r(x) + 1(r+1,1,2)(x)J (0)

(r+1,1,2)(x)

+ (1 − 1(r+1,1,2)(x))J (1)
(r+1,1,2)(x)

and combining terms gives us

J
(0)
(r,1,3)(x) = e∗r(x) + J

(1)
(r+1,1,2)(x)

+ 1(r+1,1,2)(x)∆(r+1,1,2)(x)

which after substituting the value of J
(1)
(r+1,1,2)(x) and

putting things in vector form gives us:

J
(0)
(r,1,3) = e∗r + P r+1e∗1 + diag(1(r+1,1,2))∆(r+1,1,2)

Now we consider the u = 1 case:

J
(1)
(r,1,3)(x) = 0 +

∑

y∈S

P [xN−3 = y|xN−3−r = x]J(1,0,2)(y)

=
∑

y∈S

P [xN−3 = y|xN−3−r = x](e∗1(y) + e∗2(y))

which can be put in vector form:

J
(1)
(r,1,3) = P r(e∗1 + e∗2)

We now write the expression for∆(r,1,3) = J
(0)
(r,1,3)−J

(1)
(r,1,3):

∆(r,1,3) = e∗r + P r+1e∗1 + diag(1(r+1,1,2))∆(r+1,1,2)

− P r(e∗1 + e∗2)

Continuing with s = 2,

J
(0)
(r,2,3)(x) = e∗r(x) + 0

whereas for u = 1,

J (1)
(r,2,3)(x) = 0 +

∑

y∈S

P [xN−3 = y|xN−3−r = x]

(

1(1,1,2)(y)J (0)
(1,1,2)(y) + (1 − 1(1,1,2)(y))J (1)

(1,1,2)(y)
)

where we have accounted for the cost stage by stage: in
the current stage, no error is accrued since an observation
is made but future costs depend on the observation that is
made. That is, future costs depend on whether the current
state xN−3 is observed to be in the set τ(1,1,2). Averaging
over these, we obtain the expression above. Combining like
terms as above, we arrive at:

J
(1)
(r,2,3)(x) = 0 +

∑

y∈S

P [xN−3 = y|xN−3−r = x]

(

J
(1)
(1,1,2)(y) + 1(1,1,2)(y)∆(1,1,2)(y)

)

Substituting the expression for J
(1)
(1,1,2)(y), we get

J
(1)
(r,2,3)(x) =

∑

y∈S

P [xN−3 = y|xN−3−r = x]

(

∑

z∈S

P [xN−2 = z|xN−3 = y]e∗1(z)

+1(1,1,2)(y)∆(1,1,2)(y)

)

We simplify the expression by bringing the first summa-
tion in the parentheses. Then we apply the Kolmogorov-
Chapman equation to get

J (1)
(r,2,3)(x) =

∑

z∈S

P [xN−2 = z|xN−3−r = x]e∗1(z)

+
∑

y∈τc

(1,1,2)

P [xN−3 = y|xN−3−r = x]∆(1,1,2)(y)

Putting this into vector form, we have the expression:

J (1)
(r,2,3) = P r+1e∗1 + P rdiag(1(1,1,2))∆(1,1,2)

We use these expressions to get ∆(r,2,3).

∆(r,2,3) = e∗r − P r+1e∗1 − P rdiag(1(1,1,2))∆(1,1,2)

Finally, letting s = 3, we get

J(r,3,3)(x) = 0

This process can be continued for t = 4, 5, .... For each
stage (r, s, t), we may determine J

(0)
(r,s,t) and J

(1)
(r,s,t). These
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costs then allow us to determine when we should make an
observation in the process and when we should not. The
implementation of this policy is detailed in the following
subsection.

C. Solution
We now present a method for constructing an optimal

policy. We do this by storing for each (r, s, t) a subset of S,
denoted by τc

(r,s,t), which is the set of last observed states
for which we do not use an opportunity to view the process
when we are at stage (r, s, t). That is, if the last observed
state x was seen r time slots ago, it is in the set τc

(r,s,t),
there are s opportunities remaining to make observations
and there are t time slots remaining in the horizon then we
should not make an observation at this time and simply make
an estimate w∗

r (x). On the other hand, if x ∈ τ(r,s,t) then
we should make an observation at stage (r, s, t) and accrue
zero cost for that stage.
More precisely, an optimal policy π∗ is given by

u(r,s,t)(x) =

{

0 if x ∈ τc
(r,s,t)

1 otherwise
Let us introduce three vector valued functions:

F(r,s,t), ∆(r,s,t) ∈ RS and 1(r,s,t) ∈ {0, 1}S. We fill
in values for these functions by using the following
recursions:

F(r,s,t) = F(r+1,s−1,t−1)

+ P rdiag(1(1,s−1,t−1))∆(1,s−1,t−1)

∆(r,s,t) = e∗r + F(r+1,s,t−1) − F(r,s,t)

+ diag(1(r+1,s,t−1))∆(r+1,s,t−1)

1(r,s,t)(x) =

{

0 if ∆(r,s,t)(x) > 0
1 otherwise

for 1 < s < t < N and 1 ≤ r ≤ N − t + 1. We also have
the boundary conditions

F(r,t,t) = 0, F(r,1,t) = P r
t−1
∑

j=1

e∗j , ∆(r,t,t) = e∗r

These recursions allow us to determine the sets τc
(r,s,t)

for s, t, r in the bounds specified, which in turn defines our
optimal policy. Specifically, we assign

x ∈ τc
(r,s,t) ⇔ ∆(r,s,t)(x) ≤ 0

We conclude by giving expressions for the cost-to-go from
any particular state when a particular action u ∈ {0, 1} is
taken. The superscripts denote whether or not an observation
will be made in the current stage.

J
(0)
(r,s,t) =e∗r + F(r+1,s,t−1) + diag(1(r+1,s,t−1))∆(r+1,s,t−1)

J
(1)
(r,s,t) =F(r,s,t)

Observe that ∆(r,s,t) is the difference between these
two quantities. Hence, ∆(r,s,t) functions as a method of

determining whether or not to make an observation in the
current time step.
We note that although the curse of dimensionality can

make the operations required for the solution to be in-
tractable for large scale problems, the structure of specific
problems may allow us to generate good approximations
to the solution. For medium sized problems, we see that
with the given algorithms we do not need to conduct
any sort of value iteration to converge at the optimum,
but rather the dynamic programming has been reduced to
matrix multiplications. Hence, the algorithm provided here
outperforms conventional Dynamic Programming tools such
as Dynamic Programming via Linear Programming or value
iteration because this algorithm has been tailored to our
specific problem. In the following section we apply our
results to small example problems.

IV. EXTENSION: OBSERVATION COST
The results obtained thus far have imposed a hard con-

straint on the number of opportunities available for obser-
vations, however no explicit cost was accrued from making
an observation. This can indeed be the case in scenarios
where a sensor network is tracking an adversary with a
predetermined budget that can be exhausted. In other sit-
uations, however, one may also imagine that there would
be an explicit cost on the observation in addition to the
hard constraint. This explicit cost could come from resources
necessary to scan a network, for example. One may still like
to keep the number of disruptions below a certain number,
but also consider the cost of taking an action as well. In this
section, we extend the methods used in the previous section
to accommodate this modified model.









 

 





  

 



 

Figure 3. New (previously inadmissible) states and transitions. The
pair (s,t) represents the number of observations and remaining time steps,
respectively.
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A. New Model
We proceed with the same formulation proposed in Sec-

tion III with an added feature to the model: the cost of
making an observation (taking an action u = 1) is c. We
may now ask what the interpretation of this is as related
to our original distance measure d(·, ·). We suppose that a
linear cost is attached with the estimation error at each time
step. This cost is measured in the same units as the cost c of
making an observation. Note that our problem statement in
this form now allows for a new degree of freedom that was
not seen in the previous section: in the backwards induction
process, it is now necessary to consider states for which
s > t (Figure 3), since it is possible to come to such a state
by not using an observation even when s = t. This would
happen if the cost of using an observation is prohibitively
high, a scenario left unconsidered earlier.

B. Dynamic Programming
Beginning with stage t = 1, we can reuse our previous

calculation of

J(r,0,1) = e∗r

since an added observation cost does not change this quan-
tity. In the s = 1 case, however, we now must decide whether
it is worthwhile to use this observation opportunity. We can
write:

J
(0)
(r,1,1) = e∗r J

(1)
(r,1,1) = c

where we have abbreviated c to be the vector where all
elements are c. This results in a function

∆(r,1,1) = e∗r − c

with associated set τ(r,1,1). Larger values of s behave the
same way as s = 1. For t = 2, we again recycle the result

J(r,0,2) = e∗r + e∗r+1

and must consider s = 1 as follows:

J
(0)
(r,1,2)(x) = e∗r + c + 1(r+1,1,1)(x)∆(r+1,1,1)(x)

J
(1)
(r,1,2)(x) = c + P re∗1

Once again, ∆(r,1,2) and τ(r,1,2) can be found by con-
struction.
For the s = 2 case we must again look at both u = 0 and

u = 1 cases.

J
(0)
(r,2,2)(x) = e∗r + c + 1(r+1,2,1)(x)∆(r+1,2,1)(x)

J
(1)
(r,2,2)(x) = 2c + 1(r+1,1,1)(x)∆(r+1,1,1)(x)

Larger values of s behave exactly the same as s = 2, and
∆ as well as τ can be constructed in the usual way.
We can continue in the same manner as the previous

section, incrementing t and s accordingly. We omit these
details and present the solution, whose structure closely
mirrors the no-cost case.

C. Solution
An optimal policy is given by

u(r,s,t)(x) =

{

0 if x ∈ τc
(r,s,t)

1 otherwise
We again have three vector valued functions:

F(r,s,t), ∆(r,s,t) ∈ RS and 1(r,s,t) ∈ {0, 1}S. We fill
in values for these functions by using the following
recursions:

F(r,s,t) = F(r+1,s−1,t−1) + c

+ P rdiag(1(1,s−1,t−1))∆(1,s−1,t−1)

∆(r,s,t) = e∗r + F(r+1,s,t−1) − F(r,s,t)

+ diag(1(r+1,s,t−1))∆(r+1,s,t−1)

1(r,s,t)(x) =

{

0 if ∆(r,s,t)(x) > 0
1 otherwise

for 1 < s, t < N and 1 ≤ r ≤ N − t + 1. We also have the
boundary conditions

F(r,1,t) = c + P r
t−1
∑

j=1

e∗j , ∆(r,s,1) = e∗r − c

These recursions allow us to determine the sets τc
(r,s,t)

for s, t, r in the bounds specified, which in turn defines our
optimal policy. Specifically, we assign

x ∈ τc
(r,s,t) ⇔ ∆(r,s,t)(x) ≤ 0

We conclude by giving expressions for the cost-to-go from
any particular state when a particular action u ∈ {0, 1} is
taken. The superscripts denote whether or not an observation
will be made in the current stage.

J
(0)
(r,s,t) =e∗r + F(r+1,s,t−1) + diag(1(r+1,s,t−1))∆(r+1,s,t−1)

J
(1)
(r,s,t) =F(r,s,t)

The modification to our algorithm is surprisingly minimal
- we only need to add cost c in the appropriate places to
consider this larger class of problems. Indeed, in this case
we are able to profit from the work that was required in
Section III.

D. Implementation Optimization
Note that in this modified solution structure, the number

of possible dynamic programming states has approximately
doubled. This is due to the fact that dynamic programming
states for which s > t are now possible. However, once can
also see that for quantities indexed as (r, s, t) where s > t,
the values are exactly the same as for s = t. In fact, the only
thing changing is the indexing, since there is no utility to
observations that cannot be used. For reducing complexity
during deployment then, one could simply collapse s > t
states into the s = t state, but for the purposes of clarity
and accounting for observation usage, we have chosen to
represent them as different states.
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V. EXTENSION: LARGE STATE SPACES
We now include a short note about dealing with very large

state spaces. For the most part, when state spaces become
prohibitively large in this type of problem setting, one must
consider the specific structure of the problem at hand to
find a technique to either approximate or simply the true
problem. There are, however, a couple general methods to
cut down on the problem size.

A. Breadth First Search
In some cases, the size of state space is much larger than

the subset of states that are reachable for the process in
the time horizon under consideration. This is unlikely to
happen since the size of a set covered by breadth first search
exponentially increases, but for problems with a small time
horizon, it is a good first step and suffers no performance
loss. The downside is that this approach is applicable only
for shorter time horizon problems.

B. Agglomeration of States
Another way to reduce the complexity of the problem

at hand is to examine the distance measure and combine
states that are close to each other compared to the average
distance between states. A threshold can be set for how close
two states must be in order to warrant agglomeration. This
threshold can be used to bound the additional error accrued
due to this simplification. This method can be effective if
there is a high probability that the process will take many
of the longer transitions over the course of the problem, but
can be a poor approximation technique if the intruder spends
many time steps traversing the smaller arcs of the graph.

C. Truncation of States
Still another way to reduce the number of states under

consideration in the solution for this problem is to find
those states that are probabilistically unlikely to be reached.
These states on the Markov chain can be omitted. Indeed, in
the case of hypercubes and euclidean distance as the state
space and measure respectively, there are results bounding
the probability with which the process will drift outside a
given radius. Depending on the resources at hand, one can
perform the prescribed state space reduction in several ways.
One method can be to simulate many paths and eliminate
those that have not been reached often. Another technique
can be to simply find the transitions in the Markov chain
with lowest probability and remove them until many states
are no longer reachable. The downside of eliminating seldom
reached paths could also introduce the danger of missing
new intrusion patterns.

D. Combination
In reality, a combination of these approaches should be

attempted when attempting to simplify a problem. One can
combine the agglomeration and truncation approaches by

(1, 1) (2, 1)

(2, 2)(1, 2)

pab

paa

pad pbc

pbb

pba

pcc

pcb

pcd

pdd

pda

pdc

Figure 4. Markov chain M2×2

combining only those states that satisfy a proximity metric
in addition to being unlikely to be reached.

VI. NUMERICAL RESULTS

Let us now examine the performance of our algorithm.
Everything that follows pertains to the no-cost observation
case, unless explicitly stated. We fix a horizon length and
plot the cost that the prescribed algorithm accrues versus
the number of opportunities to make observations. Let us
consider Markov chains of the type Mn×n in Figure 4,
which is an n-by-n grid of states where the transition
probabilities are given in the figure. Such a construction
is simple enough for quick simulation but can capture the
inherent variations that our algorithm is able to leverage.

A. Surveillance

Suppose we would like to track the position of an intruder
in an environment modeled by the Markov chainM3×3 over
a discrete-time horizon of 30 time slots. However, updating
the location of the intruder requires battery power of a
mobile device due to communications with a satellite and
hence we are not able to request the position of the intruder
at every time. Fixing the initial position of the device to be
(2, 1), let us vary the number of opportunities to retrieve the
true location from 0 to 30. The distance metric we take is
the standard Euclidian norm, which may be represented in
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matrix form as:

D =
























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√
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
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

























and we choose the transition matrix to be

P =





























0 0.1 0 0.9 0 0 0 0 0
0.1 0 0.9 0 0 0 0 0 0
0 0.1 0.8 0 0 0.1 0 0 0
0 0 0 0 0.2 0 0.8 0 0
0 0.7 0 0.15 0 0.15 0 0 0
0 0 0.5 0 0 0 0 0 0.5
0 0 0 0.9 0 0 0 0.1 0
0 0 0 0 0.8 0 0 0 0.2
0 0 0 0 0 0.5 0 0.4 0.1





























where we have ordered the states by the first
index and then the second (that is in order
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)).
We note that the topology of the state space with the
chosen distance metric is rather uniform, but the transition
probabilities widely vary from state to state.
We expect the estimation error to monotonically decrease

with the number of opportunities to learn the true state.
In Figure 5, we see that this indeed the case, and also
compare it to a benchmark strategy of randomly distributing
observations.
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Figure 5.

Another expected property is that for fixed r, t, as s
increases, the number of states for which ∆(r,s,t) ≥ 0
decreases. That is, we expect that having more opportunities
to make observations results in a more liberal optimal policy,
and vice versa. We see this in Figure 6.
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Figure 6.

Finally, let us consider one more plot with the same
Markov chain states and distance metric, but a different
transition matrix. Specifically, let us choose transitions that
have uniform probabilities to each neighbor. The resulting
matrix is given by

P =














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

This removes most of the variability from the problem -
in fact, the only non-uniformity is due to the fact that the
state space is not large compared to the horizon of the
problem, and hence, the edges introduce some small amount
of variation. In Figure 7, it is apparent that the optimal policy
is practically a straight line. There is not much variability to
exploit, so we aren’t able to exploit situations with sparse
observations as we could in Figure 5.

B. Analysis of Performance
We now note several properties of our curve in Figures

5,6 and 7. In some cases, the justification for the property is
clear and we briefly explain it, where as in others we delve
into a more complete proof.
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1) Endpoints: First, the endpoints in an estimation error
vs. number of observations plot are fixed no matter what
policy is used. This is because when there are zero oppor-
tunities to make observations or there are 30 chances to
view the process, there is no way to come up with policies
that result in different decisions. There is only one way to
allocate opportunities to observe the process. Moving now to
Figure 6, we note that the end points in this type of curve are
also fixed. Specifically, in any plot of number of states with
∆(r,s,t) ≥ 0 vs. number of observations, we have the points
(0, 0) and (t, |S|). The point (0, 0) is guaranteed because
without any observations, there is no chance that one can
be made at any state. The point (t, |S|) is certain because
when the number of observations is equal to the number of
time steps remaining in the problem, the cost J (0) of not
observing can never be less than the cost J (1) of making an
observation.
2) Diminishing Returns: Next, in Figure 5 we note that

our algorithm outperforms a benchmark strategy of ran-
domly placing observations over the 30 time slots. We see
that the greatest “savings” occurs when we have a sparsity of
opportunities to make observations. This can be quantified
by how strong the convexity of this curve is. We will shortly
prove that these curves are always convex, but the salient
point here is that as opportunities to observe the process
are more readily available, there is a law of diminishing
returns and these opportunities become less valuable. The
degree of convexity depends greatly on the transition matrix
P of the Markov chain. For example, if the grid Mn×n

has transitions that are all equal, the optimal policy comes
out to be almost a straight line, as we verified in Figure 7.
This is because there is little variation in the Markov chain to
exploit. A highly variable Markov chain would allow a single
observation to reduce much variability in future predictions,

hence reducing error drastically with a small budget.
3) Monotonicity: In the two types of plots we have given,

monotonicity is another property that is present in general.
First, let us consider plots of the type in Figure 5 and 7.
In error vs number of observations plots, we can prove
monotonicity by contradiction. Suppose that these curve are
not guaranteed to be monotonically decreasing and that there
exists some model and s such that J(r,s,t) < J(r,s+1,t).
The the policy for s + 1 could not possibly be optimal,
because we can simply apply the policy for s to the same
problem and achieve better performance. The plot in Figure
6 is monotonically increasing, a property that also matches
our expectation: as the number of opportunities to make
observations increases, the probability of making one (under
a uniform prior) increases, and therefore the number of states
that result in an observation being made should increase.
4) Convexity: Finally, we observe the convexity of the

optimal cost vs. number of observations curve. Indeed, it is
consistent with our intuition that having an extra opportunity
to make observations should be of greater utility when ob-
servations are sparse and less utility when they are abundant.
We can sketch a proof for this. First note that the inequality
we would like to prove is

J(r,s,t) ≤
1

2

(

J(r,s−1,t) + J(r,s+,t)

)

in the range 0 < s < t. We can rewrite this as

2J(r,s,t) ≤ J(r,s−1,t) + J(r,s+,t).

Let us change perspective at this point and consider this
a problem not in allocating observations, but rather in
allocating ‘holes’, or instances without observations. We
want to dynamically schedule holes in a way that the
estimation error accrued due to the presence of these holes is
minimal. Estimation error is only accrued for holes, not for
observations. Let us now consider two processes happening
in parallel of horizon t and the same value r. One process
has ŝ holes to be allocated, and the other has ŝ − 1 holes
to be allocated. Suppose we must now choose a process to
which another hole is to be added. That is, an additional
estimate must be formed on one of the two processes in
such a way to minimize the total estimation error of the two
processes. It is clear that we should choose the process with
fewer holes since this process has more information about
the state of the process and hence is likely to induce a lower
estimation error increase due to the additional hole. We can
see this more graphically in Figure 8.
Returning to our original problem, we can translate this to

conclude that it is preferable, in the event of two processes
with J(r,s−1,t) and J(r,s,t), to add an observation to the one
with fewer observations. That is, 2J(r,s,t) is preferable to
J(r,s−1,t) + J(r,s+1,t), which is what we wanted to show.
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Figure 8. Allocation of holes to two processes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have described a problem in monitoring
over a finite horizon when there are a limited number of
opportunities to conduct surveillance. We mathematically
model this as a problem of state estimation. In the estimation
problem we hope to minimize the distortion from estimating
the state of a Markov chain when the number of time the
process may be viewed is limited to a few times over the
total horizon. The distortion is measured using a specified
metric d(x, y), which tells us how “far apart” states x and
y are.
In our optimal policy, a set of recursive equations with

boundary conditions give a practical method for determining
an optimal policy. Although the policy could have been
determined using standard methods in dynamic program-
ming, such as value iteration, the algorithm given here relies
only on the ability to store data and conduct matrix multi-
plications. Hence, larger problems can be handled before
intractability results due to state space complexity.
Extensions to this basic formulation are then covered,

such as a treatment of the same problem with a cost on
making observations. Techniques for handling problems with
very large state spaces are also discussed. Finally, several
structural properties of the solution are presented.
There are many further problems to consider in future

work. Rather than fixing the problem of interest to a
particular horizon length, we may consider problems with
a variable horizon. That is, we might consider problems
in which the Markov chain dictates a random stopping
time for the process during which we may only make
observations a limited number of times. Additionally, there
are practical scenarios in which one does not have complete
information about the transition matrix. In this case, we
may be interested in coupling parameter estimation with
efficient budget allocation. Finally, distributed problems in
which many sensors are available for measurement but each
has a battery limitation are of great interest, and certainly
can be explored in the context of the budgeted estimation
scheme suggested here.
Overall, the area of budgeted estimation holds much

promise, and there are many avenues left to investigate in
this power limited framework.
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