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Abstract— In the Future Internet, programs will run on a 

dynamically changing collection of services, entailing the 

consumption of a more complex set of resources including 

financial resources. The von Neumann model offers no useful 

abstractions for such resources, even with refinements to 

address parallel and distributed computing devices. In this 

paper we detail the specification for a post-von Neumann 

model of metrics where program performance and resource 

consumption can be quantified and encoding of the behaviour 

of processes that use these resources is possible. Our approach 

takes a balanced view between service provider and service 

consumer requirements, supporting service management and 

protection as well as non-functional specifications for service 

discovery and composition. The approach is evaluated using a 

case study based on an airport-based collaborative decision-

making scenario. Two experimental approaches are presented: 

the first based on stochastic process simulation, the second on 

discrete event-based simulation. 

Keywords-adaptive metrics; SOA; measurements; 

constraints; QoS;  discrete event simulation. 

I.  INTRODUCTION  

This paper presents the SERSCIS-Ont metric ontology 
first introduced in [11], together with an expanded evaluation 
section. 

A (relatively) open software industry developed for non-
distributed computers largely because of the von Neumann 
model [8], which provided the first practical uniform 
abstraction for devices that store and process information. 
Given such an abstraction, one can then devise models for 
describing computational processes via programming 
languages and for executing them on abstract resources 
while controlling trade-offs between performance and 
resource consumption. These key concepts, resource 
abstraction supporting rigorous yet portable process 
descriptions, are fundamental to the development and 
widespread adoption of software assets including compilers, 
operating systems and application programs. 

In the Future Internet, programs will run on a 
dynamically changing collection of services, entailing the 
consumption of a more complex set of resources including 
financial resources (e.g., when services have to be paid for). 
The von Neumann model offers no useful abstractions for 
such resources, even with refinements to address parallel and 
distributed computing devices. In this context, we need 

something like a ‘post-von Neumann’ model of the Future 
Internet of Services (including Grids, Clouds and other 
SOA), in which: program performance and consumption of 
resource (of all types) can be quantified, measured and 
managed; and programmers can encode the behaviour of 
processes that use these resources, including trade-offs 
between performance and resource consumption, in a way 
that is flexible and portable to a wide range of relevant 
resources and services. 

In this paper, we describe the metric model developed 
within the context of the SERSCIS project. SERSCIS aims 
to develop adaptive service-oriented technologies for 
creating, monitoring and managing secure, resilient and 
highly available information systems underpinning critical 
infrastructures. The ambition is to develop technologies for 
such information systems to enable them to survive faults, 
mismanagement and cyber-attack, and automatically adapt to 
dynamically changing requirements arising from the direct 
impact of natural events, accidents and malicious attacks. 
The proof of concept (PoC) chosen to demonstrate the 
SERSCIS technologies is an airport-based collaboration and 
decision-making scenario. In this scenario, separate decision 
makers must collaborate using a number of dynamic 
interdependent services to deal with events such as aircraft 
arrival and turn-around, which includes passenger boarding, 
baggage loading and refuelling. The problem that decision 
makers face is that the operations are highly optimised, such 
that little slack remains in the turnaround process. If a 
disruptive event occurs, such as the late arrival of a 
passenger, then this has serious knock-on effects for the rest 
of the system that are typically difficult to handle. 

The focus for our work is therefore to support the needs 
of both service providers and consumers. Our goal is to 
allow providers to manage and protect their services from 
misbehaving consumers, as well as allowing consumers to 
specify non-functional requirements for run-time service 
discovery and composition should their normal provider 
become unreliable. In this sense, SERSCIS-Ont combines 
previous approaches from the Semantic Web community 
focusing on service composition, and from the service 
engineering community focusing on quantifying and 
managing service performance. 

The rest of the paper is organised as follows. Section II 
defines and clarifies the terminology used for metrics, 
measurements and constraints. In Section III, we present the 
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SERSCIS-Ont metric model. Here each metric is discussed 
in a detail along with the constraints which can be imposed 
upon these metrics. Section IV reviews the state of the art for 
related work and compares and contrasts research work done 
in adaptive system metrics with SERSCIS-Ont. Section V 
describes the scenario and experiments that are used to test 
the applicability of the SERSCIS metrics. Section VI 
presents the results of the validation experiment carried out 
using stochastic process modelling and simulation. Sections 
VIII and IX elaborate the experimental scenario by 
describing, respectively, Key Performance Indicators (KPI) 
for each actor and failure scenarios. These are then 
demonstrated in Section IX using the results of a discrete 
event-based simulation experiment. Finally, we conclude the 
paper in Section X. 

II. METRICS MEASUREMENTS AND CONSTRAINTS 

It is important to distinguish between the terminology 
used for metrics, measurements and constraints. In Figure 1.  
we show the conceptual relationships between these terms. 

 

 
Figure 1.  Metrics, Measurements and Constraints 

 
Services (or sometimes the resources used to operate 

them) are monitored to provide information about some 
feature of interest associated with their operation. The 
monitoring data by some measurement procedure applied to 
the feature of interest at some time or during some time 
period. Metrics are labels associated with this data, denoting 
what feature of interest they refer to and (if appropriate) by 
which measurement procedure they were obtained. Finally, 
monitoring data is supplied to observers of the service at 
some time after it was measured via monitoring reports, 
which are generated and communicated to observers using a 
reporting procedure. It is important to distinguish between 
monitoring data for a feature of interest, and its actual 
behaviour. In many situations, monitoring data provides only 
an approximation to the actual behaviour, either because the 
measurement procedure has limited accuracy or precision, or 
was only applied for specific times or time periods and so 
does not capture real-time changes in the feature of interest. 
Constraints define bounds on the values that monitoring data 
should take, and also refer to metrics so it is clear to which 

data they pertain. Constraints are used in management 
policies, which define management actions to be taken by 
the service provider if the constraints are violated. They are 
also used in SLA terms, which define commitments between 
service providers and customers, and may specify actions to 
be taken if the constraints are violated. Note that 
management policies are not normally revealed outside the 
service provider, while SLA terms are communicated and 
agreed between the service provider and customer. 
Constraints refer to the behaviour of services or resources, 
but of course they can only be tested by applying some 
testing procedure to the relevant monitoring data. The testing 
procedure will involve some mathematical manipulation to 
extract relevant aspects of the behaviour from the monitoring 
data. 

III. SERSCIS METRICS 

In SERSCIS, we aim to support metrics which will 
represent the base classes that capture the physical and 
mathematical nature of certain kinds of service behaviours 
and measurements. These are described below. 

A. Absolute Time 

This metric signifies when (what time and date) some 
event occurs. It can be measured simply by checking the 
time when the event is observed. Subclasses of this metric 
would be used to refer to particular events, e.g., the time at 
which a service is made available, the time it is withdrawn 
from service, etc. There are two types of constraints imposed 
on this metric. (1) a lower limit on the absolute time, 
encoding “not before” condition on the event. (2) an upper 
limit on the absolute, encoding a “deadline” by which an 
event should occur. 

B. Elapsed Time 

This metric just signifies how long it takes for some 
event to occur in response to some stimulus. It can be 
measured by recording the time when the stimulus arises, 
then checking the time when the subsequent event is 
observed and finding the difference. Subclasses of this 
metric would be used to refer to particular responses, e.g., 
the time taken to process and respond to each type of request 
supported by each type of service, or the time taken for some 
internal resourcing action such as the time for cleaners to 
reach an aircraft after it was scheduled and available. In the 
SERSCIS PoC, it should be possible to ask a consumer task 
for the elapsed times of all responses corresponding to the 
metric, and possibly to ask for the same thing in a wider 
context (e.g., from a service or service container). 
Constraints placed on elapsed time are (1) an upper limit on 
the elapsed time which encodes a lower limit on the 
performance of a service. (2) a lower limit which is typically 
used only in management policies to trigger actions to reduce 
the resource available if a service over-performs. If there are 
many events of the same type, one may wish to define a 
single constraint that applies to all the responses, so if any 
breaches the constraint the whole set is considered to do so. 
This allows one to test the constraint more efficiently by 
checking only the fastest and slowest response in the set. 
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Sometimes it may be appropriate to define constraints that 
include more than one response time. For example, suppose 
a service supports aircraft refuelling but the amount of fuel 
supplied (and hence the time spent actually pumping fuel) is 
specified by the consumer – see Figure 2.  

 
Figure 2.  Service response times 

In this situation, the service provider cannot guarantee 
the total response time T(i), because they have no control 
over the amount of time C(i) for which the fuel will actually 
flow into the aircraft. But they can control how long it takes 
for a fuel bowser to reach the aircraft after the refuelling 
request is received, and how long it takes to connect and 
disconnect the fuelling hoses and get clear after fuelling is 
completed, etc. So the service provider may prefer to specify 
a constraint on the difference between the two elapsed times. 
In SERSCIS, anything that is constrained should be a metric 
(to keep the SLA and policy constraint logic and schema 
simple), so in this situation one should define a new metric 
which might be called something like ‘fuelling operation 
time’. One then has two options to obtain its value (1) 
measure it directly so values are returned by the 
measurement procedure; or (2) define rules specifying the 
relationship between the new metric’s value and the other 
metrics whose values are measured. 

C. Counter 

This metric signifies how often events occurs since the 
start of measurement. It can be measured by observing all 
such events and adding one to the counter (which should be 
initialised to zero) each time an event occurs. In some 
situations it may be desirable to reset the counter to zero 
periodically (e.g., at the start of each day), so the metric can 
refer to the number of events since the start of the current 
period. In this case it may be appropriate to record the 
counter for each period before resetting it the retained value 
for the next period. Subclasses of this metric would be used 
to refer to particular types of events, e.g., the number of 
requests of each type supported by the service, or the number 
of exceptions, etc. In the SERSCIS PoC, it should be 
possible to ask a consumer task, service or container for the 
counters for each type of request and for exceptions arising 
from each type of request. Note that some types of request 

may only be relevant at the service or container level, and for 
these the counters will only be available at the appropriate 
level. Constraints here are upper and lower limits encoding 
the commitments not to send too many requests or generate 
too many exceptions or to trigger management actions. There 
are also limits on the ration between the numbers of events 
of different types. 

D. Max and Min Elapsed Time 

These metrics signify the slowest and fastest response to 
some stimulus in a set of responses of a given type, possibly 
in specified periods (e.g., per day). They can be measured by 
observing the elapsed times of all events and keeping track 
of the fastest and slowest responses in the set. Subclasses of 
this metric would be used to refer to particular types of 
response, e.g., times to process and respond to each type of 
service request, etc. In the SERSCIS PoC, it should be 
possible to ask a consumer task, service or container for the 
minimum and maximum elapsed times corresponding to the 
metric. Constraints on such metrics signify the range of 
elapsed times for a collection of responses. Only one type of 
constraint is commonly used: an upper limit on the 
maximum elapsed time, encoding a limit on the worst case 
performance of a service. 

E. Mean Elapsed Time 

This metrics signifies the average response to some 
stimulus for responses of a given type, possibly in specified 
periods. It can be measured by observing the elapsed times 
for all such responses, and keeping track of the number of 
responses and the sum of their elapsed times: the mean is this 
sum divided by the number of responses. Subclasses of this 
metric would be used to refer to particular types of response, 
e.g., times to process and respond to each type of service 
request, etc. In the SERSCIS PoC, it should be possible to 
ask a consumer task, service or container for the mean 
elapsed time corresponding to the metric.  Constraints on this 
metric are the same as those for the elapsed time metric. 

F. Elapsed Time Compliance 

This metric captures the proportion of elapsed times for 
responses of a given type that do not exceed a specified time 
limit. Metrics of this type allow the distribution of elapsed 
times to be measured, by specifying one or more compliance 
metrics for different elapsed time limits (see Figure 3. ). 

 
Figure 3.  Elapsed time distribution 
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When measuring elapsed time compliance, it is 
convenient to make measurements for all the metrics 
associated with a distribution like Figure 3. One has to 
observe the elapsed times for all relevant responses, and keep 
track of the number of responses that were within each 
elapsed time limit, and also the total number of responses. 
The value of the elapsed time compliance metric at each 
limit is then the ratio between the number of responses that 
did not exceed that limit and the total number of responses. 
Subclasses of this metric would be used to refer to particular 
types of responses and time limits. For example, one might 
define multiple elapsed time compliance metrics for different 
time limits for responses to each type of request supported by 
the service, and for some internal process time. In the 
SERSCIS PoC, it should be possible to ask a consumer task, 
service or container for the elapsed time compliance for 
responses corresponding to the metric. It may also be useful 
to support requests for all elapsed time compliance metrics 
for a given type of response, allowing the compliance of the 
entire distribution function to be obtained at once. Note that 
some types of request may only be relevant at the service or 
container level, and for these the elapsed time distribution 
function will only be available at the appropriate level. 
Constraints for this metric are normally expressed as lower 
(and sometimes upper) bounds on the value of the metric for 
specific responses and time limits.  SLA commitments 
typically involve the use of lower bounds (e.g., 90% of 
responses within 10 mins, 99% within 15 mins, etc.), but 
both upper and lower bounds may appear in management 
policies (e.g., if less than 95% of aircraft are cleaned within 
10 mins, call for an extra cleaning team). 

G. Non-recoverable resource usage and usage rate 

These metrics capture the notion that services consume 
resources, which once consumed cannot be got back again 
(this is what we mean by non-recoverable). In most cases, 
non-recoverable usage is linked to how long a resource was 
used, times the intensity (or rate) of usage over that period. It 
can be measured by observing when a resource is used, and 
measuring either the rate of usage or the total amount of 
usage at each observation. Subclasses of the non-recoverable 
usage metric would be used to refer to the usage of particular 
types of resources, for example on CPU usage, 
communication channel usage, data storage usage etc. In the 
SERSCIS PoC, it should be possible to ask a consumer task, 
service or container for the usage rate at the last observation, 
and the total usage up to that point. Ideally this should trigger 
a new observation whose result will be included in the 
response. The response should include the absolute time of 
the last observation so it is clear whether how out of date the 
values in the response may be. Non-recoverable resource 
usage is characterized by functions of the form: 

 �(�, �) ≥ 0 (1) 

 	�(�, �)

	�
≥ 0 

(2) 

U represents the total usage of the non-recoverable 
resource by a set of activities S up to time t. The range of U 

is therefore all non-negative numbers, while the domain 
spans all possible sets of activities using the resource, over 
all times. In fact, U is zero for all times before the start of the 
first activity in S (whenever that may have been), and its time 
derivative is also zero for all times after the last activity has 
finished. The time derivative of U represents the rate of 
usage of the non-recoverable resource. This must be well-
defined and non-negative, implying that U itself must be 
smooth (continuously differentiable) with respect to time, 
i.e., it cannot have any instantaneous changes in value.  

Constraints for non-recoverable usage and usage rate are 
typically simple bounds on their values. Both upper and 
lower bounds often appear in management policies to 
regulate actions to decrease as well as increase resources 
depending on the load on the service: 

 

 
� ≤ �(�, ��) − �(�, ��) ≤ 
� (3) 

 

represents a constraint on the minimum and maximum total 
usage for a collection of activities S in a time period from t0 
to t1, while: 

 

 
�� ≤

	�(�, �)

	�
≤ ��, ∀�: �� ≤ � ≤ �� 

(4) 

 
represents a constraint on the maximum and minimum total 
usage rate for a collection of activities S during a time period 
from t0 to t1. Note that it is possible to have a rate constraint 
(4) that allows a relatively high usage rate, in combination 
with a total usage constraint (3) that enforces a much lower 
average usage rate over some period. Alternatively, a 
contention ration could be introduced for usage rate 
constraints to handle cases where a resource is shared 
between multiple users but may support a high usage rate if 
used by only one at a time. 

H. Maximum and Minimum Usage Rate 

These metrics capture the range of variation in the usage 
rate (possibly in specified periods, which is described above. 
They can be measured by simply retaining the maximum and 
minimum values of the usage rate whenever it is observed by 
the measurement procedure. Subclasses of these metrics 
would be used to refer to maximum and minimum usage for 
particular types of resources. Constraints on maximum and 
minimum usage rate take the form of simple bounds on their 
values. Note that if we constrain maximum usage rate to be 
up to some limit, and the usage rate ever breaches that limit, 
then the constraint is violated however the usage rate 
changes later. 

I. State 

This metric captures the current state of a service, with 
reference to a (usually finite) state model of the service’s 
internal situation (e.g., the value of stored data, the status of 
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supplier resources, etc). The value of the metric at any time 
must be a state within a well-defined state model of the 
service, usually represented as a string signifying that state 
and no other. It can be measured by observing the internal 
situation of the service and mapping this to the relevant state 
from the state model.  In the SERSCIS PoC implementation, 
it should be possible to ask a task, service or container for its 
current state. Note that the state model of a service will 
normally be different from the state model of tasks provided 
by the service, and different from the state model of the 
container providing the service. State is an instantaneous 
metric – a measurement of state gives the state at the time of 
observation only. To obtain a measure of the history of state 
changes one should use state occupancy metrics or possibly 
non-recoverable usage metrics for each possible state of the 
service. Subclasses of the state metric will be needed to refer 
to particular state models and/or services. Constraints can be 
used to specify which state a service should be in, or (if the 
state model includes an ordering of states, e.g., security alert 
levels), what range of states are acceptable.  

J. State Occupancy 

This metric captures the amount of time spent by a task 
in a particular state (possibly in specified periods). It can be 
measured by observing state transitions and keeping track of 
the amount of time spent in each state between transitions. 
Note that for this to be practical one must predefine a state 
model for the task encompassing all its possible states, in 
which the first transition is to enter an initial state when the 
task is created. 

The state of a resource on a service is a function of time: 
 

 ��(�) ∈ Σ, ∀� ≥ �� (5) 

 

where Si(t) is the state of resource i at time t, ∑ is the set of 
possible states (from the resource state model) and t0 is the 
time resource i was created. Constraints on state occupancy 
are bounds on the proportion of time spent in a particular 
state, or the ratio between the time spent in one state and 
time spent in one or more other states. 

K. Data Accuracy 

This metric captures the amount of error in (numerical) 
data supplied to or from a service, compared with a reference 
value from the thing the data is supposed to describe. The 
two main aspects of interest with this particular metric are 
the precision of the data (how close to the reference value is 
the data supposed to be) and the accuracy of the data (how 
close to the reference value the data is, compared to how 
close it was supposed to be). Subclasses of data accuracy 
may be needed to distinguish between different types of data 
used to describe the thing of interest (single values, arrays 
etc), and different ways of specifying precision (precision in 
terms of standard deviation, confidence limit etc), as well as 
to distinguish between things described by the data (e.g., 
aircraft landing times, fuel levels or prices). In the SERSCIS 
PoC, we are only really interested in the accuracy of 

predictions for the absolute time of future events, including 
the point when an aircraft will be available so turnaround can 
start (an input to the ground handler), the point when the 
aircraft will be ready to leave, and various milestones 
between these two points (e.g., the start and end of aircraft 
cleaning, etc). Constraints on accuracy are typically just 
upper bounds on the accuracy measure, e.g., accuracy should 
be less than 2.0. Such constraints apply individually to each 
data value relating to a given reference value. 

L. Data Precision 

This is a simple metric associated with the precision 
bands for data supplied to or from a service. Data that 
describes some reference value should always come with a 
specified precision, so measuring the precision is easy – one 
just has to check the precision as specified by whoever 
supplied the data. The reason it is useful to associate a metric 
with this is so one can specify constraints on data precision 
in SLA, to prevent data suppliers evading accuracy 
commitments by supplying data very poor (wide) precision 
bands. Subclasses of data precision are typically needed for 
different kinds of things described by data, and different 
sources of that data. For example, one might define different 
metrics to describe the precision in scheduled arrival times 
(taken from an airline timetable) and predicted arrival times 
(supplied by Air Traffic Control when the aircraft is en-
route). Note that precision (unlike accuracy) is not a 
dimensionless number – it has the same units as the data it 
refers to, so metric subclasses should specify this. In the 
SERSCIS PoC testbed, it should be possible to ask a 
consumer task for the precision of data supplied to or by it. 
The response should ideally give the best, worst and latest 
precision estimates for the data corresponding to the metric. 
Constraints on data precision are simple bounds on its value. 
Typically they will appear in SLA, and define the worst-case 
precision that is acceptable to both parties. If data is provided 
with worse precision than this, the constraint is breached. 
This type of constraint is normally used as a conditional 
clause in compound constraint for data accuracy or accuracy 
distribution. 

M. Data Error 

This is a simple metric associated with the error in a data 
item relative to the reference value to which it relates. In 
some situations we may wish to specify and measure 
commitments for this ‘raw’ measure of accuracy, 
independently of its supposed precision. Subclasses of data 
error are typically needed for different kinds of things 
described by data, and different sources of data. In the 
SERSCIS PoC testbed, it should be possible to ask a 
consumer task for the error in data supplied to or by it once 
the reference value is known to the service. The response 
should ideally give the best, worst and latest error for data 
sent/received corresponding to the metric. Constraints on 
data error are simple bounds on its value. Typically, they will 
appear in SLA, and define the worst-case error that is 
acceptable to both parties. If data is provided and turns out to 
have an error worse than this, the constraint is breached. 
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N. Data Accuracy Compliance 

This metric captures the proportion of data items in a 
data set provided to or from a service whose accuracy is not 
worse than a specified limit. This metric is mathematically 
similar to the elapsed time compliance metric, and as before 
we may wish to use several accuracy compliance metrics for 
the same data at different accuracy levels, to approximate a 
data accuracy distribution function. Accuracy compliance 
can be measured by keeping track of the total number of data 
items, and how many of these had accuracy up to each 
specified level. The value of the metric is then the fraction of 
data items whose accuracy is within the specified level. In 
the SERSCIS PoC testbed, subclasses of accuracy 
compliance are typically used to distinguish between 
different accuracy levels, types of data and methods for 
defining precision, for data forecasting the time of events. To 
construct accuracy distributions it is necessary to classify 
those events so we know which forecasts to include in each 
distribution function. It should be possible to ask consumer 
tasks, services or service containers for the value of these 
compliance metrics. Constraints on accuracy compliance just 
specify bounds on the metrics; thus, specifying what 
proportion of data items can have accuracy worse than the 
corresponding accuracy limit.  

O. Auditable Properties 

Auditable property metrics are used to express whether a 
service satisfies some criterion that cannot be measured, but 
can only be verified through an audit of the service 
implementation and behaviour. An auditable property will 
normally be asserted by the service provider, who may also 
provide proof in the form of accreditation based on previous 
audits in which this property was independently verified. 
Auditable properties are usually represented as State metrics: 
a state model is devised in which the desired property is 
associated with one or more states, which are related (out of 
band) to some audit and if necessary accreditation process. 
Subclasses are used to indicate different auditable properties 
and state models. Auditable property constraints typically 
denote restrictions on the resources (i.e., supplier services) 
used to provide the service. For example, they may specify 
that only in-house resources will be used, that staff will be 
security vetted, or that data backups will be held off site, etc. 
In SERSCIS, such terms are also referred to as Quality of 
Resourcing (QoR) terms. As with other state-based 
descriptions, auditable properties may be binary (true or 
false), or they may be ordered (e.g., to describe staff with 
different security clearance levels). It is also possible to treat 
Data Precision (and other data characteristics) as an auditable 
property which does not correspond to a state model. 

IV. RELATED WORK 

Characterizing the performance of adaptive real-time 
systems is very difficult because it is difficult to predict the 
exact run-time workload of such systems. Transient and 
steady state behaviour metrics of adaptive systems were 
initially drafted in [4], where the performance of an adaptive 
was evaluated by its response to a single variation in the 

application behaviour that increased the risk of violating a 
performance requirement. A very simple set of metrics are 
used: reaction time which is the time difference between a 
critical variation and the compensating resource allocation, 
recovery time by which system performance returns to an 
acceptable level, and performance laxity which is the 
difference between the expected and actual performance 
after the system returns to a steady state. These metrics are 
further specialized in [1] by the introduction of load profiles 
to characterize the types of variation considered including 
step-load (instant) and ramp-load (linear) changes, and a 
miss-ratio metric which is the fraction of tasks submitted in a 
time window for which the system missed a completion 
deadline. System performance is characterized by a set of 
miss-ratio profiles with respect to transient and steady state 
profiles. A system is said to be stable in response to a load 
profile if the system output converges as the time goes to 
infinity, while transient profiles can measure responsiveness 
and efficiency when reacting to changes in run-time 
conditions. The SERSCIS-Ont metrics provide a superset of 
these concepts, appropriate to a wider range of situations 
where accuracy and reliability may be as important as 
performance and stability. 

A more recent alternative approach to defining adaptive 
system metrics is given by [6,7]. Here the focus is on the 
system engineering concerns for adaptivity, and metrics are 
categorized into four types: architectural metrics which deal 
with the separation of concerns and architectural growth for 
adaptive systems [2], structural metrics which provide 
information about the role of adaptation in the overall 
functionality of a system (and vice versa), interaction 
metrics which measure the changes in user interactions 
imposed by adaptation, and performance metrics which deal 
with the impact of adaptation on system performance, such 
as its response time, performance latency, etc. [2]. The focus 
of SERSCIS-Ont is to provide concrete and mathematically 
precise metrics covering performance and some aspects of 
interactivity, which can be used in such a wider engineering 
framework. 

The most closely related work is found in the WSMO 
initiative [3], which has also formalized metrics for resource 
dependability. This was done with the intention of providing 
QoS aware service oriented infrastructures. Semantic SLA 
modelling using WSMO focuses principally on automated 
service mediation and on the service execution infrastructure 
[3]. By adding semantic descriptions for service parameters 
it is possible for agents to discover and rank services 
automatically by applying semantic reasoning. The WSMO 
initiative focused its modelling efforts on capturing service 
consumer requirements, which can then be used for service 
discovery. Work in [5] extends the WSMO ontology to 
include QoS and non-functional properties. This includes 
providing formal specifications for service level agreements 
including the units for measurement, price, CPU usage, etc. 
However, the focus is still to support the description of 
services for orchestration purposes (service discovery and 
selection). SERSCIS-Ont is more even-handed. It can be 
used for service discovery and selection, but it is also 
designed to support service operators by introducing service 
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protection measures from a provider’s perspective such as 
the usage limits, service access and control decisions, as well 
as workflow adaption, etc. 

SERSCIS-Ont is thus also related to the development and 
service management specifications such as WSDM. The 
WSDM-MOWS specification [9] defines 10 metrics which 
are used to measure the use and performance of a general 
Web Service. These include NumberOfRequests,  
NumberOfFailedRequests and NumberOfSucessfulRequests 
which count the messages received by the Web Service end 
point, and whether the service handles them successfully. In 
SERSCIS-Ont we have a more general Counter metric, of 
which these WSDM-MOWS metrics can be regarded as 
subclasses specifically for Web Service management. 
WSDM-MOWS also defines ServiceTime (the time taken by 
the Web Service to process all its requests), and 
MaxResponseTime and LatestResponseTime. In SERSCIS-
Ont these would be modelled as subclasses of usage and 
elapsed time, and SERSCIS-Ont then provides additional 
metrics such as min/max/mean responses and response time 
compliance metrics. WSDM-MOWS specifies a state model 
for Web Service operation with states {UpState, DownState, 
IdleState, BusyState, StoppedState, CrashedState, 
SaturatedState}, and metrics CurrentOperationalState and 
LastOperationStateTransition all of which can be handled 
easily by SERSCIS-Ont. The one area where WSDM-
MOWS goes beyond SERSCIS-Ont is in providing metrics 
for the size of Web Service request and response messages:  
MaxRequestSize, LastRequestSize and MaxResponseSize. 
These can be modelled with difficulty using SERSCIS-Ont 
usage metrics, but if SERSCIS-Ont were applied to Web 
Service management, some extensions would be desirable. 

V. VALIDATION EXPERIMENTS 

To verify that SERSCIS-Ont really is applicable to the 
management of service performance and dependability, the 
project is conducting two types of experiments: the first 
involving stochastic process simulation and the second 
extends to discrete event simulation. In the latter case, a 
testbed has been developed which comprises SERSCIS 
dependability management tools along with emulated 
application services based on air-side operations at Vienna 
Airport. This is a discrete event simulation in which realistic 
application-level requests and responses are produced, and 
the full (not emulated) management tools are tested using 
SERSCIS-Ont metrics in service level agreements and 
monitoring and management policies. 

A. Scenario Description 

The scenario used to validate the metric model is based 
on Airport Collaborative Decision Making (A-CDM). A-
CDM is an approach to optimizing resource usage and 
improving timeliness at an airport. It is about all partners at 
an airport working together, openly sharing accurate 
information and – based on the information – making 
decisions together. Through the use of A-CDM predictability 
of airport operations is improved. All actions involved in 
turning around an aircraft can be planned more accurately 

and the plans can more easily be controlled with respect to 
the actual operation.  

A-CDM also has a European, network-wide perspective. 
The Central Flow Management Unit (CFMU) of Eurocontrol 
monitors the capacity of airspace sectors and imposes 
restrictions by issuing so-called slots in case congestion 
might arise. Currently, this planning is mainly based on 
flight plan information that is filed up to three hours before 
the actual flight. Changes, in particular last minute changes 
e.g., due to late passengers, are not taken into account. 
Hence, everyday a huge amount of airspace capacity is 
wasted due to inaccurate information. The Airports applying 
A-CDM can more accurately determine the take-off time of 
departing flights. CFMU can then update their network 
planning based on information that closely reflects the real 
traffic to be expected. Hence, slot wastage is minimized for 
the benefit of all airspace users. 

The testbed scenario for the evaluation is based on the 
workflow that is executed during an aircraft turn-around. The 
workflow represents the interaction of the main actors in a 
turn-around, i.e., the ANSP, a ground handler and ramp 
service providers. Each step in the workflow uses a service 
to perform the step. Services are provided by different actors. 
Most services can be provided by more than one service 
provider. In this case the service user has the choice of the 
service provider, for which he has to take into account 
several Quality-of-Service criteria.  

The workflow, which is shown in Figure 4.  consists of 
three sub-workflows being executed in parallel. After the 
aircraft goes in-block passenger disembarkation starts. At the 
same time a baggage handler starts to offload the luggage 
from the aircraft. The third sub-workflow deals with 
refuelling the aircraft. It can only be started after 
disembarkation of passengers is finished. Going back to the 
first sub-workflow, when disembarkation is finished an 
optional security check of the plane for left items can be 
performed by either the crew or a security company under 
the crew’s supervision. When this is done the crew leaves the 
aircraft. Cleaning of the aircraft and catering commence in 
parallel. For the latter to be released the new crew is required 
as they have to check the number of meals provided. Upon 
completion of cleaning and release of catering another 
optional security check can be performed given that 
refuelling has completed as well. After the security check 
embarkation of passengers can begin if the landside 
workflow is ready for boarding. 

The second sub-workflow is concerned with offloading 
the luggage and loading the new luggage. It is completely 
independent of the passenger and cabin-related workflow. 
Finally, the third sub-workflow has the purpose of refuelling 
the aircraft. As mentioned above, it can only commence once 
disembarkation has completed. In turn, completion of 
refuelling is a precondition for passenger embarkation. 
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Figure 4.  Airside Workflow for Aircraft Turnaround 

B. Validation Objectives 

This evaluation is done by validation, which applies the 
system to a chosen scenario. From the results of validation 
one can derive the usefulness of the system for the given 
application. 

In the chosen A-CDM scenario the SERSCIS 
mechanisms and tools must demonstrate two characteristics: 

• They must be able to implement and execute the 
real-world scenario in the fault-free case. This 
property ensures that the SERSCIS tools capture the 
scenario requirements and are able to accompany the 
execution of the processes. Note that in order to gain 
acceptance with the potential users, the tools and 
mechanisms must adapt to the real-world processes, 
not the other way round. 

• They must be able to handle failure cases and 
improve the execution of the processes in these 
cases. While the above fault-free case shows the 
possibility to execute the processes with SERSCIS 
support, this validation aims at proving the added 
value of SERSCIS. The tools and mechanisms must 
improve the handling of failure cases. 

Several test runs were conducted to demonstrate the 
above characteristics. The properties of the SERSCIS tools 
and mechanisms were evaluated by use of so-called Key 

Performance Indicators (KPIs), which are described in 
Section VII. 

VI. STOCHASTIC PROCESS SIMULATION EXPERIMENTS 

SERSCIS validation work initially focused on the use of 
stochastic process simulation based on queuing theory [10]. 
A simplified Markov chain model was developed for a single 
aircraft refuelling service, and the resulting equations solved 
numerically to compute the expected behaviour. This 
approach is faster and easier to interpret than a discrete event 
simulation, though it uses simpler and less realistic models of 
services and their interactions. 

The basic model of the refuelling service assumes that 
around 20 aircraft arrive per hour and need to be refuelled. 
The service provider has 3 bowsers (fuel tankers), which can 
supply fuel to aircraft at a certain rate. The time taken for 
refuelling varies randomly between aircraft depending on 
their needs and how much fuel they still have on landing, but 
the average time is 7.5 minutes. However, with only 3 
bowsers, aircraft may have to wait until one becomes 
available before refuelling can start. The SERSCIS-Ont 
metrics used to describe this service are: 

• a counter metric for the number of aircraft refuelled, 
and an associated usage rate metric for the number 
of aircraft refuelled per hour; 

• a non-recoverable usage rate metric for the time the 
bowsers spend actually refuelling aircraft, from 
which we can also obtain the resource utilization 
percentage; 

• an elapsed time metric for the amount of time spent 
by aircraft waiting for a bowser (the refuelling 
service cannot control how long the refuelling takes, 
so QoS is defined in terms of the waiting time only); 
and 

• elapsed time compliance metrics for the proportion 
of aircraft that have to wait for different lengths of 
time between 0 and 20 minutes. 

We also assume that the service will refuse an aircraft, 
i.e., tell it to use another refuelling company rather than wait, 
if it would become the 10th aircraft in the queue. This is 
captured by a further counter metric, which is used to find 
the proportion of arriving aircraft that are refused service. 

The first simulation considered an unmanaged service 
(no SLAs), and produced the following behaviour (See Table 
I): 

TABLE I.  UNMANAGED SERVICE SIMULATION 

Metric Value 

Service load 20 aircraft / hour 
Service throughput 19.5 aircraft / hour 
Percentage of aircraft that do not have to wait 33.6% 
Percentage that do not  have to wait more than 
10 mins 

74.6% 

Percentage that do not  have to wait more than 
20 mins 

94.4% 

Percentage of aircraft refused service 2.6% 
Mean waiting time 6.1 mins 
Resource utilization 81.2% 
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The QoS is relatively poor because the random variation 
in aircraft arrival and refuelling times means queues can 
build up, leading to a high proportion of aircraft having to 
wait, and some having to wait for a long time or even being 
sent to other service providers. 

To investigate how the metrics could be used to manage 
the service, the simulation was extended so airlines must 
have an SLA with the service provider before they can use 
the service. Each SLA lasts on average 1 week, and allows 
an airline to refuel an average of 3 aircraft per hour. The 
extended model assumed about one new SLA per day would 
be signed, giving an average load roughly similar to the total 
load in the first simulation. We also assumed the service 
provider would refuse to agree more than 12 SLA at a time, 
so the load could temporarily rise up to 50% higher than the 
capacity of its resources. We wished to investigate how well 
the use of SLA as a pre-requisite for service access allowed 
such overloads to be managed. The results of this second 
simulation were as follows (See Table II): 

TABLE II.  MANAGED SERVICE SIMULATION 

Metric Value 

Service load 0-36 aircraft / hour 
Service throughput 21.1 aircraft / hour 
Percentage of aircraft that do not have to wait 22.4% 
Percentage that do not  have to wait more than 
10 mins 

60.4% 

Percentage that do not  have to wait more than 
20 mins 

89.7% 

Percentage of aircraft refused service 4.9% 
Mean waiting time 9.4 mins 
Resource utilization 87.8% 

 
While the use of this SLA allowed the service provider to 

anticipate the load from a pool of potential consumers, it 
could not improve QoS with a fixed set of resources. In fact, 
the compliance metrics are now much worse than before, 
with only a small increase in the total throughput because the 
load exceeds the resource capacity around 25% of the time. 
Further tests showed that reducing the number of SLA the 
service accepts does not help much as this only lowers the 
long term average load, whereas overloads and long queues 
arise from shorter-term fluctuations. The limit would have to 
be much lower (and the throughput substantially lower) 
before the compliance metrics were good enough to be of 
interest to customers. 

The final experiment used a different type of SLA in 
which each customer can still have 3 aircraft serviced per 
hour on average, but only one at a time. To handle this, we 
used a non-recoverable usage rate metric for the number of 
aircraft in the system and specified in the SLA that this could 
not exceed 1. This simulation produced the following (See 
Table 3):  

TABLE III.  CONSTRAINED SLA SERVICE SIMULATION 

Metric Value 

Service load 0-36 aircraft / hour 
Service throughput 17.9 aircraft / hour 
Percentage of aircraft that do not have to wait 50.6% 

Metric Value 

Percentage that do not  have to wait more than 
10 mins 

96.0% 

Percentage that do not  have to wait more than 
20 mins 

99.9% 

Percentage of aircraft refused service 0% 
Mean waiting time 3.4 mins 
Resource utilization 74.7% 

 
Evidently, if this last type of SLA were enforced by a 

suitable management procedure, it would allow the service to 
protect itself from overloads, without a huge drop in the 
service throughput. Further experiments showed that if the 
permitted long-term load per SLA were pushed up to 3.5 
aircraft per hour, the throughput would reach 19.7 aircraft 
per hour (more than the original unmanaged service), yet the 
compliance metrics would stay above 90%. This provides a 
good indication that the SERSCIS-Ont metrics can be used 
to describe service management and protection constraints, 
as well as consumer QoS measurements and guarantees. 

VII. BUSINESS-LEVEL OBJECTIVES AND KEY 

PERFORMANCE INDICATORS 

While the above-mentioned description set the 
framework for the scenario, the identification of failure and 
threat scenarios requires a more in–depth look. In order to 
determine relevant service disruptions two additional pieces 
of information are required: 

• A definition of the business-level objectives for each 
player in the scenario. 

• An identification of the Key Performance Indicators 
(KPIs) used to measure the objective achievement. 

Starting from the top-level CDM system business-level 
objectives are identified for each stakeholder in the scenario. 
These describe why the stakeholders participate in the CDM 
system and what they want to achieve. Each stakeholder’s 
objectives determine the individual goals as well as the 
contribution to the higher-level goals of CDM overall.  

A similar picture is drawn for the KPIs. At each level and 
stakeholder the KPIs should be usable to measure the 
achievement of the business-level objectives. At the same 
time they are grouped according to their contribution to the 
higher-level KPIs. The use of KPI enables SERSCIS to focus 
on system behaviour that is directly related to business 
performance, both of the A-CDM cell (i.e., the system as a 
whole), and of the individual stakeholders that contribute to 
it. This helps to ensure that SERSCIS only takes action when 
a problem really is a problem. 

See Figure 5. for the concrete business-level objectives 
and KPIs for the Airport CDM scenario. 
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Figure 5.  Business-level Objectives and Key Performance Indicators 

The following sections describe the objectives and KPIs 
for the individual stakeholders. Please note that these 
sections only list KPIs that are of relevance to the overall A-
CDM objectives and KPIs. Naturally there are several 
additional KPIs for each stakeholder, which they may use to 
assess their own performance. It was considered sufficient to 
use a few individual stakeholder KPIs in this evaluation. This 
ensures that SERSCIS can handle situations where individual 
and community goals may differ, but without needing to 
emulate the individual actors in excessive detail. 

A. CDM Cell 

The objective at this highest level is to make optimal use 
of the available resources. Note that this does not mean to 
increase any capacity, but to increase the usage of existing 
capacity. 

The achievement level of this goal is measured by two 
KPIs. 
1) Percentage of wasted slots (slots allocated but not 

used) (K1) 
This will be measured on a monthly basis by measuring 

the wasted slots and dividing this figure by the number of 
totally allocated slots. Total allocated slots is given by the 
number of CTOTs issued by CFMU for flights departing 
from the airport. Wasted slots are defined as allocated slots 
(CTOTs) that passed without the aircraft departure or 
allocated slots (CTOTs) that have been changed within 15 
minutes before the CTOT1. 

This KPI indirectly includes external requirements from 
the CFMU. It is the objective of the CFMU to reduce 
congestions and to reduce the number of wasted slots. 
2) Accuracy of EIBT (K2) 

This parameter is the basis for optimal resource 
scheduling and dispatching for ground handling and ramp 
services. The EIBT is the estimated time when the aircraft 

                                                           
1  This assumes that a slot changed within the last 15 minutes 

before CTOT cannot be re-used for another flight by CFMU. 

goes in-block at the stand. Hence this is the time when 
ground handling should start. 

Measurement is done by mean square deviation between 
EIBT and AIBT for all flights of one day. EIBT is taken at 
FIR entry and at commencement of final approach for 
measurement purposes. The suggested goal is to achieve an 
accuracy of +/- 3 minutes at FIR entry and +/-1 minute on 
final approach. 

EIBT accuracy is determined by: 
• The accuracy of the landing time prediction (ELDT) 

and the updates to this and 
• The accuracy of the taxi time prediction (EXIT). 
While the latter factor originates from within the CDM 

cell (being provided by the ACISP), the first is provided 
either by the CDM actor ATC or externally by CFMU. 
Neither this input factor not EIBT accuracy itself are 
emulated in the current (proof of concept) testbed. The KPI 
is therefore listed here for completeness purpose only. The 
testbed and its evaluation at this stage focused on K1. 

B. Central Flow Management Unit 

The objective for this unit is to reduce congestions in the 
European air-traffic system and to avoid slotting2 wherever 
possible. 

The CFMU is not further detailed as it only acts as a 
value provider in the simulation. Beyond this CFMU’s real 
functionality is not simulated. 

C. A-CDM Information Sharing Platform 

The objective for the ACISP is to deliver a performance 
that allows all stakeholders and the entire A-CDM system to 
achieve their goals. This performance goal also includes 
certain quality criteria with regard to data handling, in 
particular data consistency and data accuracy. 

This is measured by the ACISP performance, i.e., the 
delay in forwarding values the CISP has received. This is 
simply measured by the sum of differences between 
reception and according sending time of a value divided by 
the number of such forwarding operations. This KPI also 
contributes to K1 and K2. 

The ACISP as central data repository must meet high 
security requirements. Some of the data it stores are sensitive 
with respect to competition; others might influence physical 
security if exposed to the wrong person or if data from a 
wrong source are incorporated. It is also important that the 
data is accessible to those who have a right to use it. 

To deal with this, a wide variety of metrics can be used, 
including: 

• the accuracy of data retrieved by another actor: 
inaccuracy may indicate it is forged or corrupted 
(insecure update), in the absence of other 
explanations; or 

                                                           
2  “Slotting” is the process of issuing departure slots for flights if 

the calculation by CFMU shows a potential congestion anywhere in the 
enroute part. In other words, if the combined flight trajectories of all flights 
result in a capacity demand exceeding the capacity of any sector along the 
route, slots are issued for all flight passing this sector. 
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• the timeliness of data retrieved by another actor: if 
data updates are not available soon after they are 
made, or in the worst case, not available until after 
they are needed, this may indicate an availability 
problem. 

Data confidentiality is difficult to monitor, as it is 
impossible to prove the null hypothesis that the data has 
NOT been accessed by an authorised party. One could seek 
to measure the number of known confidentiality breaches, 
which may be an indicator (albeit imperfect) of the number 
of actual breaches. A more common option is to ensure the 
data service has access control in place and to check the 
integrity of its implementation, e.g., through the use of vetted 
staff and accredited software. 

Access control to ACISP data is implemented in the PoC 
testbed, but confidentiality breaches are not simulated yet, as 
they cannot directly cause a degradation of the infrastructure. 
However, data accuracy and timeliness are measures that can 
be used in the PoC evaluation. 

D. Air Traffic Control 

For ATC representing the Air Navigation Service 
Provider (ANSP) the business level is to maximize runway 
capacity and to reduce congestion of the European air traffic 
system while at the same time limiting or reducing the air-
traffic controller workload. The second goal is not A-CDM 
specific and will not be regarded any further here.  

For measuring the first objective two KPIs are devised.  
The first KPI helps to ensure that the European air traffic 
system makes best use of the available capacity by 
measuring the percentage of take-offs outside the so called 
slot tolerance window (STW, -5/+10 minutes around the 
Calculated Take-Off Time CTOT). This is performed by 
counting take-offs outside the STW and dividing this by the 
number of take-offs of regulated flights, i.e., flights that have 
a CTOT assigned. This directly contributes to K1. 

Secondly the accuracy of the landing time prediction is 
measured, which reflects the ATC contribution to turn-
around optimisation. For this the ELDT is compared to the 
ALDT. The concrete measurement is done by calculating the 
mean square deviation between ELDT and ALDT for all 
flights of one day. ELDT is taken at FIR entry and at 
commencement of final approach for measurement purposes. 
The suggested goal is to achieve an accuracy of +/- 3 
minutes at FIR entry and +/-1 minute on final approach. In 
the PoC testbed, the ATC is not represented by an explicit 
service emulator, so any error in the landing time prediction 
forms part of the simulation input. For this reason, it is not 
used here, as already explained in section VII.A. 

E. Ground Handler 

The ground handler strives to optimize resource usage of 
his own and indirectly of the ramp services’ resources. This 
involves human resources as well as equipment. 

For the evaluation of this business level objective two 
internal KPIs are devised, which do not contribute to K1 nor 
to K2. They solely reflect the resource usage. Indicator 1 
averages the usage of a type of resource over the period of a 
day, where usage is defined as percentage of resources 

occupied in comparison to resources available. One indicator 
is required for each type of resource. 

The second indicator aims at avoiding overbooking. Per 
type of resource the number of occasions during a day are 
counted, when the service consumer tries to obtain resources 
beyond the available. Again, one indicator is required for 
each type of resource. 

With respect to the overall A-CDM goals the ground 
handler contributes by accurately predicting the aircraft’s 
TOBT. This is evaluated by two KPIs, TOBT accuracy and 
TOBT stability. The first KPI is derived from comparing the 
TOBT with the ARDT. Again the mean square deviation 
between TOBT and ARDT is calculated for all flight of a 
day, where TOBT is taken at TOBT freeze time, i.e., 30 
minutes before TOBT. 

In the PoC testbed the estimate given by the ground 
handler will be a constant. The actual delivery time of the 
ramp services, however, will include some variation, e.g., 
dictated by the actual service requirements or by the service 
provider’s resource trade-offs. Hence this parameter will be 
of interest. 

The second parameter measures how stable the prediction 
mechanism of the ground handler is. For this purpose the 
average number of TOBT updates per flight is calculated. 

Both parameters contribute directly to K1. 

F. Ramp Service 

Like the ground handler each ramp service provider 
wants to optimize his resource usage of both human 
resources as well as equipment. 

For the evaluation of this business level objective two 
internal KPIs are devised, which do not contribute to K1 or 
to K2. They solely reflect the resource usage. Indicator 1 
averages the usage of a type of resource over the period of a 
day, where usage is defined as percentage of resources 
occupied in comparison to resources available. One indicator 
is required for each type of resource. 

The second indicator aims at avoiding overbooking. Per 
type of resource the number of occasions during a day are 
counted, when the service consumer tries to obtain resources 
beyond the available. Again, one indicator is required for 
each type of resource. 

With regard to the overall A-CDM objectives two KPIs 
are required to evaluate the ramp service provider’s 
performance: the arrival reliability and the service delivery 
duration. Both parameters contribute to K1. 

VIII. FAILURE SCENARIOS 

This section describes a number of cases that represent 
failures caused by malfunctions, performance shortcomings 
or security breaches that can affect the operation of A-CDM 
in an adverse manner. The SERSCIS tools and mechanisms 
are expected to handle these failure cases and improve the 
process performance of A-CDM even in the existence of 
failure conditions. The evaluation of these cases and thus the 
full validation of the SERSCIS results will be undertaken in 
project year 3. 

The evaluation studies described in the deliverable at 
hand have a different purpose. Apart from proving the ability 
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to implement and reflect the process as described in chapter 
II), they should demonstrate that the testbed can actually 
perform failure cases and that meaningful KPIs have been 
chosen. The KPIs must enable the user to identify the effects 
of failures and to assess the impact of the SERSCIS 
mechanisms in handling the failure. Thus, the purpose of this 
is not to apply a huge number of failure scenarios but to 
focus on one or two cases that yield a representative 
assessment of the SERSCIS mechanisms and tools. 

In order to cover the SERSCIS mechanisms as 
comprehensively as possible, mainly two distinctions of 
failure scenarios should be taken into account, the recurrence 
of threats and the phase when they occur along with the 
countermeasures provided by SERSCIS on the one hand and 
the type of security issue causing these on the other hand. 

There are three basic types of threats or failures to be 
evaluated according to their recurrence and the 
countermeasure SERSCIS supports: 

(M1) One-off threats or failures, for which SERSCIS can 
help to mitigate the effects. 

(M2) Recurring failures, for which SERSCIS can support 
the mitigation by systematic adaptation. 

(M3) System problems identified in modelling and 
prevented from happening by redesigning the system. 

From a phenomenal cause point of view, failures can be 
induced by physical (C1) or by ICT related compromises 
(C2). The use case validation will cover both types. But in 
both cases the primary concern is the impact on and the 
usage of the ICT facilities to mitigate the threats. 

A. Compromise of ramp service availability 

In this scenario, the ramp service provider fails to 
respond to service requests in a timely manner or does not 
show up at all.  In this case, the ground handler’s request is 
not met with a reply containing the estimated completion 
time from the ramp service. After a timeout the ground 
handler could try to invoke the service a second time. If this 
does not succeed either, he would have to schedule and 
invoke the ramp service with an alternative provider. Once 
this provider replies to the service invocation with an 
estimated completion time, the workflow continues as 
described in Section V.A. 

This event can be handled in two ways: 
• As a one-off event that requires the selection of an 

alternative service provider 
• From the point of view of a recurring event, which is 

counteracted by either blacklisting the specific 
service provider or by adapting the workflow such 
that it has more slack for late service delivery. 

This scenario covers recurrence and countermeasures M1 
and M2 and cause C1. It was used in the evaluation of both 
the run-time and off line SERSCIS components. 

B. Passenger No-Show 

A passenger who has checked in luggage does not show 
up for boarding. Consequently, his luggage needs to be 
unloaded. In its simple form, this is a scenario handled by 

countermeasure M1 (alternative workflow applied). It is 
caused by type C1. 

This failure scheme could also be used for a massive 
distributed DoS attack if a huge number of passengers in 
coordination and on purpose do not show for boarding. 
Beyond the description above, that should also be detected 
by means of SERSCIS mechanisms. 

This scenario was represented in all run-time tests (there 
is a passenger no-show in one flight in all scenarios used), 
leading to a small deviation from perfect KPI even in the 
‘sunny day’ scenario. 

In the off-line evaluation, the idea of an organised mass 
passenger no-show was also considered (creating a physical 
denial of service attack). This mass no-show could not be 
used in the run-time evaluation without a substantial 
extension of the PoC emulators for the Ground Handler and 
the Baggage Handler services. This is because the possible 
mitigation strategies involve changing the strategy for 
managing resources and computing the predicted TOBT 
(algorithmic adaptation), rather than at the agile SOA level. 

C. ACISP Communication Delays 

ACISP communication delays, caused by a denial of 
service (DoS) attack, can arise if the ACISP can be 
addressed from a sufficiently public network (e.g. the 
Internet), so an attacker can send too many requests (or 
possible a smaller number of malformed requests) in order to 
tie up the ACISP service’s resources. It is caused by type C2. 

To mitigate this threat, the ACISP can ensure their 
software stack is up to date, therefore reducing the 
opportunity for small numbers of malformed packets to 
cause a problem. They can also use a private network limited 
to the other airport stakeholders, although this may not be 
possible depending on how many stakeholders need access. 
Or they can deploy multiple redundant end points, and 
switch frequently so the attacker(s) will not know which 
endpoint to flood with malicious requests. These are all 
instances of M3.  

This scenario with no mitigation was included in the 
evaluation of run-time SERSCIS components, to show how 
the KPI can be used to detect cyber-attacks as well as 
physical effects. The mitigation using redundant end-points 
could also have been implemented using the PoC testbed, but 
this was not done as it uses the same fail-over mechanism 
demonstrated in the compromised ramp service case. Other 
mitigation strategies could not be included in the PoC testbed 
as they would require explicit emulation of private/redundant 
communication networks, which was not yet implemented. 
In practice, these have to be included by design, so the 
vulnerability would need to be detected at the design stage 
via system modelling. However, the use of alternate 
networks (as well as endpoints) would need to be activated at 
run-time. So, even though prior modelling of the system is 
required (treating the threat as type M3), once this is done we 
then have to treat the threat as type M1/M2 in deciding when 
to activate the use of alternate networks or endpoints if a 
compromise is detected. 
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IX. DISCRETE EVENT SIMULATION EXPERIMENTS 

The evaluation using discrete event simulation used the 
testbed to emulate a subset of the previously identified 
failure scenarios including types M1 and M2 above. The 
impact on identified KPI was measured (relative to a 
‘normal’ or ‘sunny day’ scenario), thereby verifying that the 
testbed is able to emulate adverse behaviour, and that the 
impact can be characterised using the chosen KPI. Where the 
PoC testbed already provides an appropriate countermeasure 
based on the use of agile SOA, a further simulation was run 
to determine how this affects (improves) the emulated 
outcome and KPI. 

This section lists the results obtained during the 
simulation runs. It describes the types of tests performed, 
shows the KPI values resulting from these runs and provides 
an interpretation of those.  Several runs of the testbed were 
conducted for the evaluation. The runs represented different 
cases, one no-failure case and several degraded scenarios. 

The simulation driver provides an interface (see Figure 6. 
) showing the progress of flights, and it is possible to inspect 
monitoring data for various application services (e.g., 
performance metrics) and SERSCIS components (e.g., SLA 
usage, etc.). Only if something goes wrong does the user 
receive any feedback through the DST interface (from WP5), 
after which the user must inspect the corresponding 
monitoring data to discover the cause, possibly aided by 
queries to a system-of-systems model. However, the 
emulation is designed to run in accelerated time (so each run 
does not take a whole day), and when this feature is used, 
there is very limited opportunity for user interactivity. 

 

 
Figure 6.  SERSCIS Graphical User Interface 

The evaluation started with a ‘sunny day’ case, in which 
all service providers had a sufficient number of workers and 
hence always delivered.  This was used to provide a starting 
point for further experimentation, and represents a best case 
scenario, although even the ‘sunny day’ case included a 
single passenger no-show to provide a ‘background’ signal 
in the measured KPI. 

In the first approach to simulating a failure, the number 
of workers of one of the ramp services, specifically the 

baggage handler, was reduced step by step. Different runs 
were performed with ever-smaller number of workers until a 
threshold was reached when turn-around processes took a 
substantial time to complete. Once the threshold value was 
obtained, the policy of the resource manager was changed 
such that it could select an alternative service provider once 
the main provider failed. Specifically, once the baggage 
handler failed to respond to a service perform request due to 
a lack of workers it was considered failed. In this case it was 
replaced by another baggage handler with a sufficient 
number of workers. 

The second approach to simulating a failure affected the 
communications of the ACISP. Similarly to above, the delay 
in communications to and from the ACISP was increased 
step-by-step until degradation in the simulation KPIs was 
observed. This experiment was used to model a denial of 
service attack on the airport network. 

A. KPIs used in the evaluation 

In section VII.F, two KPIs to evaluate the performance 
on a ramp service provider level are listed, his arrival 
reliability and his service delivery duration. In the proof-of-
concept evaluation the second KPI is a constant and 
disregarded. The first KPI on the other hand is taken into 
account to show the effect of a reduced number of workers. 
It is assumed that the reliability decreases if the number of 
workers available at a service provider is reduced. In the 
testbed this is measured by the number of “perform 
attempts” issued to the service provider. If a service provider 
has sufficient resources, every flight requires exactly one 
perform attempt that is honoured by the service provider; i.e., 
the number of perform attempts must be equal to the number 
of flights. If the provider cannot immediately honour a 
perform attempt due to a lack of workers, the perform 
attempts will be repeated. Thus the number increases beyond 
the number of flights. 

The ramp service performance also has an effect on the 
ground handler’s KPIs. As described in section VII.E, two 
KPIs characterize this performance, TOBT accuracy and 
TOBT stability. Since the actual delivery time of the ramp 
services is a distribution with a certain variation, e.g., 
dictated by the actual service requirements or by the service 
provider’s resource trade-offs, TOBT accuracy will decrease 
with a reduction in the number of workers at the ramp 
service provider. TOBT stability expresses the number of 
updates to the TOBT required for each flight. In a sunny day 
scenario this number should be 1 or close to it, i.e., once a 
TOBT is issued it will not be changed. In degraded 
scenarios, however, a ramp service will deliver late due to a 
lack of workers. In the testbed the ground handler re-issues a 
TOBT whenever the estimate deviates from the previous 
value by more than 10 minutes. Hence the longer the ramp 
service delays its service delivery the more TOBT values 
need to be issued for a flight. 

Both above-mentioned KPIs affect the number of take-
offs outside the slot-tolerance windows (STW), an overall 
CDM KPI (K1 as listed in Section VII.A). The value will 
increase in a ripple on effect of the ramp service provider’s 
inaccuracy. If the ramp service provider fails to show up on 
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the initial perform request, there is a risk that he delays the 
turn-around of a flight and causes it to miss its slot. This 
effect, however, might be countered in part by an available 
slack in the turn-around process. 

A policy change that allows to replace the service 
provider with an alternate in case he fails to respond to a 
perform request must reverse the above effect. Choosing an 
alternative service provider when the primary provider 
failed, will replace the overall service delivery reliability and 
thus result in less take-offs outside the STW. 

Another KPI is applied to evaluate the overall CDM 
system’s performance, the average number of slots issued 
per flight. Obviously, in the ideal case one slot is issued for a 
flight and this one is used subsequently. In less ideal 
situations delays in the turn-around prevent a flight from 
meeting its slot. Thus a new slot has to be issued, potentially 
wasting the previous one if it cannot be claimed by another 
flight. The longer the delay of a turn-around, e.g., induced by 
a lack of workers at a ramp service providers, the more slots 
must be issued for a flight3. 

B. Applied scenarios 

In the beginning of this section, a general description of 
the scenarios was given. This section provides more details 
on the various scenarios and the changes for the different 
failure cases. 

All scenarios use a schedule of 124 flights to be turned 
around during a day. All of those are regulated flights, i.e., 
all require a slot. 

Apart from the non-failure case, three degraded mode 
cases are listed and assessed below. 

The first case, the ‘sunny day’, provides sufficient 
resources for all ramp service providers. Hence none of the 
flights experiences a delay in turn-around. 

Case 2 is characterized by a reduction in the number of 
workers of the baggage handler to 23. In this case the 
baggage handler fails to honour several perform attempts and 
the flights experience substantial delays. 

In case 3 the number of workers is further reduced to 18. 
Hence even fewer perform attempts are honoured. 

In case 4, a second baggage handling resource was 
introduced (i.e., the Ground Handler starts with two SLAs 
for the provision of baggage handling services with different 
suppliers). Now if the primary baggage handler fails, an 
alternative service provider can replace it. If this arises as a 
one-off problem it can be handled by the service orchestrator 
component (mitigation type M1 as defined in Section IV), 
though some delay will still be experienced. If the primary 
supplier persistently fails, it is better to manage the situation 
by excluding it from further use (mitigation type M2). This 
was done by attaching the policy shown below to the 

                                                           
3  In the testbed the ground handler uses a simple strategy to update 

the TOBT. A new estimate for TOBT is calculated, and the TOBT is 
updated if the new estimate is more than 10 minutes after the previous 
TOBT. Note that in the current simulation every TOBT change 
automatically results in the issuance of a new slot. For this reason, 
currently the number of slots per flight is equal to the number of TOBT 
updates. The implementation of this behaviour will be re-assessed for the 
final validation. 

individual baggage handler resources (as seen by the Ground 
Handler). This policy sets the condition of the service to 
‘failed’ if there is more than one failure, and deregisters the 
service so preventing it being offered to the orchestrator: 

This addresses the immediate problem of a failing 
supplier, but it reduces the number of available options for 
baggage handling to one. A further policy is therefore 
needed, attached to the resource manager, causing the 
resource manager to procure a new SLA with a replacement 
baggage service provider (referred to by the SLA template 
provided). 

Finally, case 5 implements a simulation of 
communication delays to demonstrate the effects of a denial 
of service attack on the ACISP. Due to the slow rate of 
communications, a number of flights take off outside their 
slot windows. No mitigation for this was considered in the 
run-time tests, as the only one that could be handled by the 
PoC emulators was to have redundant ACISP endpoints, 
which duplicates the mechanisms tested in Cases 1-4.  

C. KPI results 

TABLE IV.  KPI RESULTS 

KPI Case 1 Case 2 Case 3 Case 4 Case 5 

Baggage 
perform 
attempts 

249 556 961 266 249 

Average 
TOBT error 

4 min 14 min 49 min 4 min 4 min 

Average 
TOBT 
updates per 
flight 

1 1,5 2,7 1 1 

Average 
number of 
slots issued 

1 1,5 2,7 1 1 

Take-offs 
outside STW 

0% 15% 31% 0% 13% 

 
The results shown in Table IV clearly indicate that the 

chosen KPIs are meaningful for the testbed and the scenario 
and that verification and validation of the testbed succeeded. 

The KPI “Perform attempts” was expected to increase if 
a service provider does not have sufficient resources to 
honour all requests in parallel. In this case some of the 
requests must be repeated, which means a larger figure. 
When introducing the possibility to choose an alternative 
provider in case the first one fails to honour requests, the 
total number of perform attempts should decrease again. 

This is exactly the behaviour of the testbed. Case 2 and 
also case 3 exhibit a significantly larger number of perform 
attempts than the sunny day case 1. With the introduction of 
an alternative service provider in case 4, the number of 
request drops close to the value of the sunny day case again. 
Note that it is still slightly larger than in the sunny day case, 
because additional perform requests are issued (and not 
honoured) while the alternative provider is being set up. 
Hence the KPI provides meaningful characteristics of the 
testbed and the testbed shows the expected behaviour. 

The TOBT-related KPIs reflect the quality of service 
delivery by a ramp service provider. With a decreasing 
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number of workers in cases 2 and 3, the TOBT accuracy 
decreases as well and the required number of updates to this 
value per flight increases accordingly. When the ground 
handler has the option to choose an alternative service 
provider in case 4, the trend reverses and case 4 delivers the 
same performance as the sunny day case 1. 

Similarly, the number of slots issued per flight increases 
with the number of TOBT updates per flight. In case 4, in 
which TOBT does not get updated, only one slot is required 
as in case 1. 

The last KPI, which was assesses in the testbed 
evaluation, is the percentage of take-offs outside the slot-
tolerance window (STW). In the case of a sufficient number 
of workers at all service providers (case 1), none of the 
flights should miss its slot4. Hence the KPI must be 0%. 
With turn-arounds being delayed due to an insufficient 
number of workers at one of the service providers, flights 
will miss their slots and take off outside the STW. For this 
reason the value increases to 19% in case 2. When an 
alternative service provider steps in to take over the tasks 
from a failed provider as in case 3, turn-arounds are on time 
again. The percentage of missed slots falls back to 0% again. 

In the event of communication delays with the ACISP we 
see the percentage of takeoffs outside the slot tolerance 
window increase in proportion to the delay. This is caused by 
delays in communications resulting in windows of 
opportunity to be missed. 

The KPI reflects these behaviours as expected and thus 
also indicates a correct behaviour of the testbed.  

X. CONCLUSIONS 

This paper describes a base metric model that provides a 
uniform abstraction for describing service behaviour in an 
adaptive environment. Such an abstraction allows services to 
be composed into value chains, in which consumers and 
providers understand and can manage their use of services 
according to these metrics.  

A service provider, having analysed the application 
service that it is offering, defines a metric ontology to 
describe measurements of the relevant service behaviour. 
This ontology should refer to the SERSCIS base ontology, 
and provide subclasses of the base metrics to describe each 
relevant aspect of service behaviour. Note that while each 
service provider can in principle define their own metrics 
ontology, it is may be advantageous to establish ‘standard’ 
ontologies in particular domains – this reduces the need for 
translation of reported QoS as it crosses organizational 
boundaries. 

Validation simulations provide a good indication that the 
SERSCIS-Ont metrics are useful for describing both service 
management and protection constraints, and service 
dependability and QoS guarantees.  

The evaluation of SERSCIS using discrete event-based 
simulation and KPI-based definition of behavior also proved 
to be a good indicator of the approach. KPIs were used as a 

                                                           
4  The limited capacity of taxiways and runways might cause flights 

to miss their slots despite a timely turn-around, but this is not modelled in 
the testbed. 

starting point for run-time monitoring and mitigation 
strategies. Using an appropriate set of KPIs the behaviour of 
the system can be monitored effectively and efficiently. 
Failures of individual services can be detected and – given 
that mitigation strategies are implemented – their 
effectiveness can be observed as well. 
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