
188

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SERSCIS-Ont

Evaluation of a Formal Metric Model using Airport Collaborative Decision Making

Mike Surridge, Ajay Chakravarthy,
Maxim Bashevoy, Joel Wright, Martin Hall-May

IT Innovation Centre
University of Southampton

Southampton, UK
{ms,ajc,mvb,jjw,mhm}@it-innovation.soton.ac.uk

Roman Nossal
Austro Control

Österreichische Gesellschaft für Zivilluftfahrt mbH
Vienna, Austria

roman.nossal@austrocontrol.at

Abstract— In the Future Internet, programs will run on a

dynamically changing collection of services, entailing the

consumption of a more complex set of resources including

financial resources. The von Neumann model offers no useful

abstractions for such resources, even with refinements to

address parallel and distributed computing devices. In this

paper we detail the specification for a post-von Neumann

model of metrics where program performance and resource

consumption can be quantified and encoding of the behaviour

of processes that use these resources is possible. Our approach

takes a balanced view between service provider and service

consumer requirements, supporting service management and

protection as well as non-functional specifications for service

discovery and composition. The approach is evaluated using a

case study based on an airport-based collaborative decision-

making scenario. Two experimental approaches are presented:

the first based on stochastic process simulation, the second on

discrete event-based simulation.

Keywords-adaptive metrics; SOA; measurements;

constraints; QoS; discrete event simulation.

I. INTRODUCTION

This paper presents the SERSCIS-Ont metric ontology
first introduced in [11], together with an expanded evaluation
section.

A (relatively) open software industry developed for non-
distributed computers largely because of the von Neumann
model [8], which provided the first practical uniform
abstraction for devices that store and process information.
Given such an abstraction, one can then devise models for
describing computational processes via programming
languages and for executing them on abstract resources
while controlling trade-offs between performance and
resource consumption. These key concepts, resource
abstraction supporting rigorous yet portable process
descriptions, are fundamental to the development and
widespread adoption of software assets including compilers,
operating systems and application programs.

In the Future Internet, programs will run on a
dynamically changing collection of services, entailing the
consumption of a more complex set of resources including
financial resources (e.g., when services have to be paid for).
The von Neumann model offers no useful abstractions for
such resources, even with refinements to address parallel and
distributed computing devices. In this context, we need

something like a ‘post-von Neumann’ model of the Future
Internet of Services (including Grids, Clouds and other
SOA), in which: program performance and consumption of
resource (of all types) can be quantified, measured and
managed; and programmers can encode the behaviour of
processes that use these resources, including trade-offs
between performance and resource consumption, in a way
that is flexible and portable to a wide range of relevant
resources and services.

In this paper, we describe the metric model developed
within the context of the SERSCIS project. SERSCIS aims
to develop adaptive service-oriented technologies for
creating, monitoring and managing secure, resilient and
highly available information systems underpinning critical
infrastructures. The ambition is to develop technologies for
such information systems to enable them to survive faults,
mismanagement and cyber-attack, and automatically adapt to
dynamically changing requirements arising from the direct
impact of natural events, accidents and malicious attacks.
The proof of concept (PoC) chosen to demonstrate the
SERSCIS technologies is an airport-based collaboration and
decision-making scenario. In this scenario, separate decision
makers must collaborate using a number of dynamic
interdependent services to deal with events such as aircraft
arrival and turn-around, which includes passenger boarding,
baggage loading and refuelling. The problem that decision
makers face is that the operations are highly optimised, such
that little slack remains in the turnaround process. If a
disruptive event occurs, such as the late arrival of a
passenger, then this has serious knock-on effects for the rest
of the system that are typically difficult to handle.

The focus for our work is therefore to support the needs
of both service providers and consumers. Our goal is to
allow providers to manage and protect their services from
misbehaving consumers, as well as allowing consumers to
specify non-functional requirements for run-time service
discovery and composition should their normal provider
become unreliable. In this sense, SERSCIS-Ont combines
previous approaches from the Semantic Web community
focusing on service composition, and from the service
engineering community focusing on quantifying and
managing service performance.

The rest of the paper is organised as follows. Section II
defines and clarifies the terminology used for metrics,
measurements and constraints. In Section III, we present the

189

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SERSCIS-Ont metric model. Here each metric is discussed
in a detail along with the constraints which can be imposed
upon these metrics. Section IV reviews the state of the art for
related work and compares and contrasts research work done
in adaptive system metrics with SERSCIS-Ont. Section V
describes the scenario and experiments that are used to test
the applicability of the SERSCIS metrics. Section VI
presents the results of the validation experiment carried out
using stochastic process modelling and simulation. Sections
VIII and IX elaborate the experimental scenario by
describing, respectively, Key Performance Indicators (KPI)
for each actor and failure scenarios. These are then
demonstrated in Section IX using the results of a discrete
event-based simulation experiment. Finally, we conclude the
paper in Section X.

II. METRICS MEASUREMENTS AND CONSTRAINTS

It is important to distinguish between the terminology
used for metrics, measurements and constraints. In Figure 1.
we show the conceptual relationships between these terms.

Figure 1. Metrics, Measurements and Constraints

Services (or sometimes the resources used to operate

them) are monitored to provide information about some
feature of interest associated with their operation. The
monitoring data by some measurement procedure applied to
the feature of interest at some time or during some time
period. Metrics are labels associated with this data, denoting
what feature of interest they refer to and (if appropriate) by
which measurement procedure they were obtained. Finally,
monitoring data is supplied to observers of the service at
some time after it was measured via monitoring reports,
which are generated and communicated to observers using a
reporting procedure. It is important to distinguish between
monitoring data for a feature of interest, and its actual
behaviour. In many situations, monitoring data provides only
an approximation to the actual behaviour, either because the
measurement procedure has limited accuracy or precision, or
was only applied for specific times or time periods and so
does not capture real-time changes in the feature of interest.
Constraints define bounds on the values that monitoring data
should take, and also refer to metrics so it is clear to which

data they pertain. Constraints are used in management
policies, which define management actions to be taken by
the service provider if the constraints are violated. They are
also used in SLA terms, which define commitments between
service providers and customers, and may specify actions to
be taken if the constraints are violated. Note that
management policies are not normally revealed outside the
service provider, while SLA terms are communicated and
agreed between the service provider and customer.
Constraints refer to the behaviour of services or resources,
but of course they can only be tested by applying some
testing procedure to the relevant monitoring data. The testing
procedure will involve some mathematical manipulation to
extract relevant aspects of the behaviour from the monitoring
data.

III. SERSCIS METRICS

In SERSCIS, we aim to support metrics which will
represent the base classes that capture the physical and
mathematical nature of certain kinds of service behaviours
and measurements. These are described below.

A. Absolute Time

This metric signifies when (what time and date) some
event occurs. It can be measured simply by checking the
time when the event is observed. Subclasses of this metric
would be used to refer to particular events, e.g., the time at
which a service is made available, the time it is withdrawn
from service, etc. There are two types of constraints imposed
on this metric. (1) a lower limit on the absolute time,
encoding “not before” condition on the event. (2) an upper
limit on the absolute, encoding a “deadline” by which an
event should occur.

B. Elapsed Time

This metric just signifies how long it takes for some
event to occur in response to some stimulus. It can be
measured by recording the time when the stimulus arises,
then checking the time when the subsequent event is
observed and finding the difference. Subclasses of this
metric would be used to refer to particular responses, e.g.,
the time taken to process and respond to each type of request
supported by each type of service, or the time taken for some
internal resourcing action such as the time for cleaners to
reach an aircraft after it was scheduled and available. In the
SERSCIS PoC, it should be possible to ask a consumer task
for the elapsed times of all responses corresponding to the
metric, and possibly to ask for the same thing in a wider
context (e.g., from a service or service container).
Constraints placed on elapsed time are (1) an upper limit on
the elapsed time which encodes a lower limit on the
performance of a service. (2) a lower limit which is typically
used only in management policies to trigger actions to reduce
the resource available if a service over-performs. If there are
many events of the same type, one may wish to define a
single constraint that applies to all the responses, so if any
breaches the constraint the whole set is considered to do so.
This allows one to test the constraint more efficiently by
checking only the fastest and slowest response in the set.

Service

(or resource)

Observer
Monitoring

Report

Monitoring

Data Value

Measurement

Procedure
Metric

Feature

of Interest

Reporting

Procedure

Obtained

by

Denoted

by

Denoted

by

Reflects

Obtains

reports via

Provided

via

Provided

to

Observes

Contains

Applied

to

Associated

with

Constraint

Bounds

Has

Behaviour

Has

190

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sometimes it may be appropriate to define constraints that
include more than one response time. For example, suppose
a service supports aircraft refuelling but the amount of fuel
supplied (and hence the time spent actually pumping fuel) is
specified by the consumer – see Figure 2.

Figure 2. Service response times

In this situation, the service provider cannot guarantee
the total response time T(i), because they have no control
over the amount of time C(i) for which the fuel will actually
flow into the aircraft. But they can control how long it takes
for a fuel bowser to reach the aircraft after the refuelling
request is received, and how long it takes to connect and
disconnect the fuelling hoses and get clear after fuelling is
completed, etc. So the service provider may prefer to specify
a constraint on the difference between the two elapsed times.
In SERSCIS, anything that is constrained should be a metric
(to keep the SLA and policy constraint logic and schema
simple), so in this situation one should define a new metric
which might be called something like ‘fuelling operation
time’. One then has two options to obtain its value (1)
measure it directly so values are returned by the
measurement procedure; or (2) define rules specifying the
relationship between the new metric’s value and the other
metrics whose values are measured.

C. Counter

This metric signifies how often events occurs since the
start of measurement. It can be measured by observing all
such events and adding one to the counter (which should be
initialised to zero) each time an event occurs. In some
situations it may be desirable to reset the counter to zero
periodically (e.g., at the start of each day), so the metric can
refer to the number of events since the start of the current
period. In this case it may be appropriate to record the
counter for each period before resetting it the retained value
for the next period. Subclasses of this metric would be used
to refer to particular types of events, e.g., the number of
requests of each type supported by the service, or the number
of exceptions, etc. In the SERSCIS PoC, it should be
possible to ask a consumer task, service or container for the
counters for each type of request and for exceptions arising
from each type of request. Note that some types of request

may only be relevant at the service or container level, and for
these the counters will only be available at the appropriate
level. Constraints here are upper and lower limits encoding
the commitments not to send too many requests or generate
too many exceptions or to trigger management actions. There
are also limits on the ration between the numbers of events
of different types.

D. Max and Min Elapsed Time

These metrics signify the slowest and fastest response to
some stimulus in a set of responses of a given type, possibly
in specified periods (e.g., per day). They can be measured by
observing the elapsed times of all events and keeping track
of the fastest and slowest responses in the set. Subclasses of
this metric would be used to refer to particular types of
response, e.g., times to process and respond to each type of
service request, etc. In the SERSCIS PoC, it should be
possible to ask a consumer task, service or container for the
minimum and maximum elapsed times corresponding to the
metric. Constraints on such metrics signify the range of
elapsed times for a collection of responses. Only one type of
constraint is commonly used: an upper limit on the
maximum elapsed time, encoding a limit on the worst case
performance of a service.

E. Mean Elapsed Time

This metrics signifies the average response to some
stimulus for responses of a given type, possibly in specified
periods. It can be measured by observing the elapsed times
for all such responses, and keeping track of the number of
responses and the sum of their elapsed times: the mean is this
sum divided by the number of responses. Subclasses of this
metric would be used to refer to particular types of response,
e.g., times to process and respond to each type of service
request, etc. In the SERSCIS PoC, it should be possible to
ask a consumer task, service or container for the mean
elapsed time corresponding to the metric. Constraints on this
metric are the same as those for the elapsed time metric.

F. Elapsed Time Compliance

This metric captures the proportion of elapsed times for
responses of a given type that do not exceed a specified time
limit. Metrics of this type allow the distribution of elapsed
times to be measured, by specifying one or more compliance
metrics for different elapsed time limits (see Figure 3.).

Figure 3. Elapsed time distribution

T
ri
g
g
e
ri
n
g
 e
v
e
n
t
(i
-t
h

re
fu
e
lli
n
g
 r
e
q
u
e
s
t
re
c
e
iv
e
d
)

F
u
e
l
s
ta
rt
s
 f
lo
w
in
g

F
u
e
l
s
to
p
s
 f
lo
w
in
g

R
e
fu
e
lli
n
g
 c
o
m
p
le
te
d

C(i)

T(i)

1.0

Elapsed time (T)

F
ra
c
ti
o
n
 F
(T
)
o
f
re
s
p
o
n
s
e
s
 w
it
h
 e
la
p
s
e
d
 t
im
e
 u
p
 t
o
 T

3 mins 6 mins 7.5 mins

Fraction taking

up to 3 m

Fraction taking

up to 6 m

Fraction taking

up to 7.5 m

191

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When measuring elapsed time compliance, it is
convenient to make measurements for all the metrics
associated with a distribution like Figure 3. One has to
observe the elapsed times for all relevant responses, and keep
track of the number of responses that were within each
elapsed time limit, and also the total number of responses.
The value of the elapsed time compliance metric at each
limit is then the ratio between the number of responses that
did not exceed that limit and the total number of responses.
Subclasses of this metric would be used to refer to particular
types of responses and time limits. For example, one might
define multiple elapsed time compliance metrics for different
time limits for responses to each type of request supported by
the service, and for some internal process time. In the
SERSCIS PoC, it should be possible to ask a consumer task,
service or container for the elapsed time compliance for
responses corresponding to the metric. It may also be useful
to support requests for all elapsed time compliance metrics
for a given type of response, allowing the compliance of the
entire distribution function to be obtained at once. Note that
some types of request may only be relevant at the service or
container level, and for these the elapsed time distribution
function will only be available at the appropriate level.
Constraints for this metric are normally expressed as lower
(and sometimes upper) bounds on the value of the metric for
specific responses and time limits. SLA commitments
typically involve the use of lower bounds (e.g., 90% of
responses within 10 mins, 99% within 15 mins, etc.), but
both upper and lower bounds may appear in management
policies (e.g., if less than 95% of aircraft are cleaned within
10 mins, call for an extra cleaning team).

G. Non-recoverable resource usage and usage rate

These metrics capture the notion that services consume
resources, which once consumed cannot be got back again
(this is what we mean by non-recoverable). In most cases,
non-recoverable usage is linked to how long a resource was
used, times the intensity (or rate) of usage over that period. It
can be measured by observing when a resource is used, and
measuring either the rate of usage or the total amount of
usage at each observation. Subclasses of the non-recoverable
usage metric would be used to refer to the usage of particular
types of resources, for example on CPU usage,
communication channel usage, data storage usage etc. In the
SERSCIS PoC, it should be possible to ask a consumer task,
service or container for the usage rate at the last observation,
and the total usage up to that point. Ideally this should trigger
a new observation whose result will be included in the
response. The response should include the absolute time of
the last observation so it is clear whether how out of date the
values in the response may be. Non-recoverable resource
usage is characterized by functions of the form:

 �(�, �) ≥ 0 (1)

 	�(�, �)

	�
≥ 0

(2)

U represents the total usage of the non-recoverable
resource by a set of activities S up to time t. The range of U

is therefore all non-negative numbers, while the domain
spans all possible sets of activities using the resource, over
all times. In fact, U is zero for all times before the start of the
first activity in S (whenever that may have been), and its time
derivative is also zero for all times after the last activity has
finished. The time derivative of U represents the rate of
usage of the non-recoverable resource. This must be well-
defined and non-negative, implying that U itself must be
smooth (continuously differentiable) with respect to time,
i.e., it cannot have any instantaneous changes in value.

Constraints for non-recoverable usage and usage rate are
typically simple bounds on their values. Both upper and
lower bounds often appear in management policies to
regulate actions to decrease as well as increase resources
depending on the load on the service:

� ≤ �(�, ��) − �(�, ��) ≤
� (3)

represents a constraint on the minimum and maximum total
usage for a collection of activities S in a time period from t0
to t1, while:

�� ≤

	�(�, �)

	�
≤ ��, ∀�: �� ≤ � ≤ ��

(4)

represents a constraint on the maximum and minimum total
usage rate for a collection of activities S during a time period
from t0 to t1. Note that it is possible to have a rate constraint
(4) that allows a relatively high usage rate, in combination
with a total usage constraint (3) that enforces a much lower
average usage rate over some period. Alternatively, a
contention ration could be introduced for usage rate
constraints to handle cases where a resource is shared
between multiple users but may support a high usage rate if
used by only one at a time.

H. Maximum and Minimum Usage Rate

These metrics capture the range of variation in the usage
rate (possibly in specified periods, which is described above.
They can be measured by simply retaining the maximum and
minimum values of the usage rate whenever it is observed by
the measurement procedure. Subclasses of these metrics
would be used to refer to maximum and minimum usage for
particular types of resources. Constraints on maximum and
minimum usage rate take the form of simple bounds on their
values. Note that if we constrain maximum usage rate to be
up to some limit, and the usage rate ever breaches that limit,
then the constraint is violated however the usage rate
changes later.

I. State

This metric captures the current state of a service, with
reference to a (usually finite) state model of the service’s
internal situation (e.g., the value of stored data, the status of

192

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supplier resources, etc). The value of the metric at any time
must be a state within a well-defined state model of the
service, usually represented as a string signifying that state
and no other. It can be measured by observing the internal
situation of the service and mapping this to the relevant state
from the state model. In the SERSCIS PoC implementation,
it should be possible to ask a task, service or container for its
current state. Note that the state model of a service will
normally be different from the state model of tasks provided
by the service, and different from the state model of the
container providing the service. State is an instantaneous
metric – a measurement of state gives the state at the time of
observation only. To obtain a measure of the history of state
changes one should use state occupancy metrics or possibly
non-recoverable usage metrics for each possible state of the
service. Subclasses of the state metric will be needed to refer
to particular state models and/or services. Constraints can be
used to specify which state a service should be in, or (if the
state model includes an ordering of states, e.g., security alert
levels), what range of states are acceptable.

J. State Occupancy

This metric captures the amount of time spent by a task
in a particular state (possibly in specified periods). It can be
measured by observing state transitions and keeping track of
the amount of time spent in each state between transitions.
Note that for this to be practical one must predefine a state
model for the task encompassing all its possible states, in
which the first transition is to enter an initial state when the
task is created.

The state of a resource on a service is a function of time:

 ��(�) ∈ Σ, ∀� ≥ �� (5)

where Si(t) is the state of resource i at time t, ∑ is the set of
possible states (from the resource state model) and t0 is the
time resource i was created. Constraints on state occupancy
are bounds on the proportion of time spent in a particular
state, or the ratio between the time spent in one state and
time spent in one or more other states.

K. Data Accuracy

This metric captures the amount of error in (numerical)
data supplied to or from a service, compared with a reference
value from the thing the data is supposed to describe. The
two main aspects of interest with this particular metric are
the precision of the data (how close to the reference value is
the data supposed to be) and the accuracy of the data (how
close to the reference value the data is, compared to how
close it was supposed to be). Subclasses of data accuracy
may be needed to distinguish between different types of data
used to describe the thing of interest (single values, arrays
etc), and different ways of specifying precision (precision in
terms of standard deviation, confidence limit etc), as well as
to distinguish between things described by the data (e.g.,
aircraft landing times, fuel levels or prices). In the SERSCIS
PoC, we are only really interested in the accuracy of

predictions for the absolute time of future events, including
the point when an aircraft will be available so turnaround can
start (an input to the ground handler), the point when the
aircraft will be ready to leave, and various milestones
between these two points (e.g., the start and end of aircraft
cleaning, etc). Constraints on accuracy are typically just
upper bounds on the accuracy measure, e.g., accuracy should
be less than 2.0. Such constraints apply individually to each
data value relating to a given reference value.

L. Data Precision

This is a simple metric associated with the precision
bands for data supplied to or from a service. Data that
describes some reference value should always come with a
specified precision, so measuring the precision is easy – one
just has to check the precision as specified by whoever
supplied the data. The reason it is useful to associate a metric
with this is so one can specify constraints on data precision
in SLA, to prevent data suppliers evading accuracy
commitments by supplying data very poor (wide) precision
bands. Subclasses of data precision are typically needed for
different kinds of things described by data, and different
sources of that data. For example, one might define different
metrics to describe the precision in scheduled arrival times
(taken from an airline timetable) and predicted arrival times
(supplied by Air Traffic Control when the aircraft is en-
route). Note that precision (unlike accuracy) is not a
dimensionless number – it has the same units as the data it
refers to, so metric subclasses should specify this. In the
SERSCIS PoC testbed, it should be possible to ask a
consumer task for the precision of data supplied to or by it.
The response should ideally give the best, worst and latest
precision estimates for the data corresponding to the metric.
Constraints on data precision are simple bounds on its value.
Typically they will appear in SLA, and define the worst-case
precision that is acceptable to both parties. If data is provided
with worse precision than this, the constraint is breached.
This type of constraint is normally used as a conditional
clause in compound constraint for data accuracy or accuracy
distribution.

M. Data Error

This is a simple metric associated with the error in a data
item relative to the reference value to which it relates. In
some situations we may wish to specify and measure
commitments for this ‘raw’ measure of accuracy,
independently of its supposed precision. Subclasses of data
error are typically needed for different kinds of things
described by data, and different sources of data. In the
SERSCIS PoC testbed, it should be possible to ask a
consumer task for the error in data supplied to or by it once
the reference value is known to the service. The response
should ideally give the best, worst and latest error for data
sent/received corresponding to the metric. Constraints on
data error are simple bounds on its value. Typically, they will
appear in SLA, and define the worst-case error that is
acceptable to both parties. If data is provided and turns out to
have an error worse than this, the constraint is breached.

193

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

N. Data Accuracy Compliance

This metric captures the proportion of data items in a
data set provided to or from a service whose accuracy is not
worse than a specified limit. This metric is mathematically
similar to the elapsed time compliance metric, and as before
we may wish to use several accuracy compliance metrics for
the same data at different accuracy levels, to approximate a
data accuracy distribution function. Accuracy compliance
can be measured by keeping track of the total number of data
items, and how many of these had accuracy up to each
specified level. The value of the metric is then the fraction of
data items whose accuracy is within the specified level. In
the SERSCIS PoC testbed, subclasses of accuracy
compliance are typically used to distinguish between
different accuracy levels, types of data and methods for
defining precision, for data forecasting the time of events. To
construct accuracy distributions it is necessary to classify
those events so we know which forecasts to include in each
distribution function. It should be possible to ask consumer
tasks, services or service containers for the value of these
compliance metrics. Constraints on accuracy compliance just
specify bounds on the metrics; thus, specifying what
proportion of data items can have accuracy worse than the
corresponding accuracy limit.

O. Auditable Properties

Auditable property metrics are used to express whether a
service satisfies some criterion that cannot be measured, but
can only be verified through an audit of the service
implementation and behaviour. An auditable property will
normally be asserted by the service provider, who may also
provide proof in the form of accreditation based on previous
audits in which this property was independently verified.
Auditable properties are usually represented as State metrics:
a state model is devised in which the desired property is
associated with one or more states, which are related (out of
band) to some audit and if necessary accreditation process.
Subclasses are used to indicate different auditable properties
and state models. Auditable property constraints typically
denote restrictions on the resources (i.e., supplier services)
used to provide the service. For example, they may specify
that only in-house resources will be used, that staff will be
security vetted, or that data backups will be held off site, etc.
In SERSCIS, such terms are also referred to as Quality of
Resourcing (QoR) terms. As with other state-based
descriptions, auditable properties may be binary (true or
false), or they may be ordered (e.g., to describe staff with
different security clearance levels). It is also possible to treat
Data Precision (and other data characteristics) as an auditable
property which does not correspond to a state model.

IV. RELATED WORK

Characterizing the performance of adaptive real-time
systems is very difficult because it is difficult to predict the
exact run-time workload of such systems. Transient and
steady state behaviour metrics of adaptive systems were
initially drafted in [4], where the performance of an adaptive
was evaluated by its response to a single variation in the

application behaviour that increased the risk of violating a
performance requirement. A very simple set of metrics are
used: reaction time which is the time difference between a
critical variation and the compensating resource allocation,
recovery time by which system performance returns to an
acceptable level, and performance laxity which is the
difference between the expected and actual performance
after the system returns to a steady state. These metrics are
further specialized in [1] by the introduction of load profiles
to characterize the types of variation considered including
step-load (instant) and ramp-load (linear) changes, and a
miss-ratio metric which is the fraction of tasks submitted in a
time window for which the system missed a completion
deadline. System performance is characterized by a set of
miss-ratio profiles with respect to transient and steady state
profiles. A system is said to be stable in response to a load
profile if the system output converges as the time goes to
infinity, while transient profiles can measure responsiveness
and efficiency when reacting to changes in run-time
conditions. The SERSCIS-Ont metrics provide a superset of
these concepts, appropriate to a wider range of situations
where accuracy and reliability may be as important as
performance and stability.

A more recent alternative approach to defining adaptive
system metrics is given by [6,7]. Here the focus is on the
system engineering concerns for adaptivity, and metrics are
categorized into four types: architectural metrics which deal
with the separation of concerns and architectural growth for
adaptive systems [2], structural metrics which provide
information about the role of adaptation in the overall
functionality of a system (and vice versa), interaction
metrics which measure the changes in user interactions
imposed by adaptation, and performance metrics which deal
with the impact of adaptation on system performance, such
as its response time, performance latency, etc. [2]. The focus
of SERSCIS-Ont is to provide concrete and mathematically
precise metrics covering performance and some aspects of
interactivity, which can be used in such a wider engineering
framework.

The most closely related work is found in the WSMO
initiative [3], which has also formalized metrics for resource
dependability. This was done with the intention of providing
QoS aware service oriented infrastructures. Semantic SLA
modelling using WSMO focuses principally on automated
service mediation and on the service execution infrastructure
[3]. By adding semantic descriptions for service parameters
it is possible for agents to discover and rank services
automatically by applying semantic reasoning. The WSMO
initiative focused its modelling efforts on capturing service
consumer requirements, which can then be used for service
discovery. Work in [5] extends the WSMO ontology to
include QoS and non-functional properties. This includes
providing formal specifications for service level agreements
including the units for measurement, price, CPU usage, etc.
However, the focus is still to support the description of
services for orchestration purposes (service discovery and
selection). SERSCIS-Ont is more even-handed. It can be
used for service discovery and selection, but it is also
designed to support service operators by introducing service

194

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

protection measures from a provider’s perspective such as
the usage limits, service access and control decisions, as well
as workflow adaption, etc.

SERSCIS-Ont is thus also related to the development and
service management specifications such as WSDM. The
WSDM-MOWS specification [9] defines 10 metrics which
are used to measure the use and performance of a general
Web Service. These include NumberOfRequests,
NumberOfFailedRequests and NumberOfSucessfulRequests
which count the messages received by the Web Service end
point, and whether the service handles them successfully. In
SERSCIS-Ont we have a more general Counter metric, of
which these WSDM-MOWS metrics can be regarded as
subclasses specifically for Web Service management.
WSDM-MOWS also defines ServiceTime (the time taken by
the Web Service to process all its requests), and
MaxResponseTime and LatestResponseTime. In SERSCIS-
Ont these would be modelled as subclasses of usage and
elapsed time, and SERSCIS-Ont then provides additional
metrics such as min/max/mean responses and response time
compliance metrics. WSDM-MOWS specifies a state model
for Web Service operation with states {UpState, DownState,
IdleState, BusyState, StoppedState, CrashedState,
SaturatedState}, and metrics CurrentOperationalState and
LastOperationStateTransition all of which can be handled
easily by SERSCIS-Ont. The one area where WSDM-
MOWS goes beyond SERSCIS-Ont is in providing metrics
for the size of Web Service request and response messages:
MaxRequestSize, LastRequestSize and MaxResponseSize.
These can be modelled with difficulty using SERSCIS-Ont
usage metrics, but if SERSCIS-Ont were applied to Web
Service management, some extensions would be desirable.

V. VALIDATION EXPERIMENTS

To verify that SERSCIS-Ont really is applicable to the
management of service performance and dependability, the
project is conducting two types of experiments: the first
involving stochastic process simulation and the second
extends to discrete event simulation. In the latter case, a
testbed has been developed which comprises SERSCIS
dependability management tools along with emulated
application services based on air-side operations at Vienna
Airport. This is a discrete event simulation in which realistic
application-level requests and responses are produced, and
the full (not emulated) management tools are tested using
SERSCIS-Ont metrics in service level agreements and
monitoring and management policies.

A. Scenario Description

The scenario used to validate the metric model is based
on Airport Collaborative Decision Making (A-CDM). A-
CDM is an approach to optimizing resource usage and
improving timeliness at an airport. It is about all partners at
an airport working together, openly sharing accurate
information and – based on the information – making
decisions together. Through the use of A-CDM predictability
of airport operations is improved. All actions involved in
turning around an aircraft can be planned more accurately

and the plans can more easily be controlled with respect to
the actual operation.

A-CDM also has a European, network-wide perspective.
The Central Flow Management Unit (CFMU) of Eurocontrol
monitors the capacity of airspace sectors and imposes
restrictions by issuing so-called slots in case congestion
might arise. Currently, this planning is mainly based on
flight plan information that is filed up to three hours before
the actual flight. Changes, in particular last minute changes
e.g., due to late passengers, are not taken into account.
Hence, everyday a huge amount of airspace capacity is
wasted due to inaccurate information. The Airports applying
A-CDM can more accurately determine the take-off time of
departing flights. CFMU can then update their network
planning based on information that closely reflects the real
traffic to be expected. Hence, slot wastage is minimized for
the benefit of all airspace users.

The testbed scenario for the evaluation is based on the
workflow that is executed during an aircraft turn-around. The
workflow represents the interaction of the main actors in a
turn-around, i.e., the ANSP, a ground handler and ramp
service providers. Each step in the workflow uses a service
to perform the step. Services are provided by different actors.
Most services can be provided by more than one service
provider. In this case the service user has the choice of the
service provider, for which he has to take into account
several Quality-of-Service criteria.

The workflow, which is shown in Figure 4. consists of
three sub-workflows being executed in parallel. After the
aircraft goes in-block passenger disembarkation starts. At the
same time a baggage handler starts to offload the luggage
from the aircraft. The third sub-workflow deals with
refuelling the aircraft. It can only be started after
disembarkation of passengers is finished. Going back to the
first sub-workflow, when disembarkation is finished an
optional security check of the plane for left items can be
performed by either the crew or a security company under
the crew’s supervision. When this is done the crew leaves the
aircraft. Cleaning of the aircraft and catering commence in
parallel. For the latter to be released the new crew is required
as they have to check the number of meals provided. Upon
completion of cleaning and release of catering another
optional security check can be performed given that
refuelling has completed as well. After the security check
embarkation of passengers can begin if the landside
workflow is ready for boarding.

The second sub-workflow is concerned with offloading
the luggage and loading the new luggage. It is completely
independent of the passenger and cabin-related workflow.
Finally, the third sub-workflow has the purpose of refuelling
the aircraft. As mentioned above, it can only commence once
disembarkation has completed. In turn, completion of
refuelling is a precondition for passenger embarkation.

195

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Airside Workflow for Aircraft Turnaround

B. Validation Objectives

This evaluation is done by validation, which applies the
system to a chosen scenario. From the results of validation
one can derive the usefulness of the system for the given
application.

In the chosen A-CDM scenario the SERSCIS
mechanisms and tools must demonstrate two characteristics:

• They must be able to implement and execute the
real-world scenario in the fault-free case. This
property ensures that the SERSCIS tools capture the
scenario requirements and are able to accompany the
execution of the processes. Note that in order to gain
acceptance with the potential users, the tools and
mechanisms must adapt to the real-world processes,
not the other way round.

• They must be able to handle failure cases and
improve the execution of the processes in these
cases. While the above fault-free case shows the
possibility to execute the processes with SERSCIS
support, this validation aims at proving the added
value of SERSCIS. The tools and mechanisms must
improve the handling of failure cases.

Several test runs were conducted to demonstrate the
above characteristics. The properties of the SERSCIS tools
and mechanisms were evaluated by use of so-called Key

Performance Indicators (KPIs), which are described in
Section VII.

VI. STOCHASTIC PROCESS SIMULATION EXPERIMENTS

SERSCIS validation work initially focused on the use of
stochastic process simulation based on queuing theory [10].
A simplified Markov chain model was developed for a single
aircraft refuelling service, and the resulting equations solved
numerically to compute the expected behaviour. This
approach is faster and easier to interpret than a discrete event
simulation, though it uses simpler and less realistic models of
services and their interactions.

The basic model of the refuelling service assumes that
around 20 aircraft arrive per hour and need to be refuelled.
The service provider has 3 bowsers (fuel tankers), which can
supply fuel to aircraft at a certain rate. The time taken for
refuelling varies randomly between aircraft depending on
their needs and how much fuel they still have on landing, but
the average time is 7.5 minutes. However, with only 3
bowsers, aircraft may have to wait until one becomes
available before refuelling can start. The SERSCIS-Ont
metrics used to describe this service are:

• a counter metric for the number of aircraft refuelled,
and an associated usage rate metric for the number
of aircraft refuelled per hour;

• a non-recoverable usage rate metric for the time the
bowsers spend actually refuelling aircraft, from
which we can also obtain the resource utilization
percentage;

• an elapsed time metric for the amount of time spent
by aircraft waiting for a bowser (the refuelling
service cannot control how long the refuelling takes,
so QoS is defined in terms of the waiting time only);
and

• elapsed time compliance metrics for the proportion
of aircraft that have to wait for different lengths of
time between 0 and 20 minutes.

We also assume that the service will refuse an aircraft,
i.e., tell it to use another refuelling company rather than wait,
if it would become the 10th aircraft in the queue. This is
captured by a further counter metric, which is used to find
the proportion of arriving aircraft that are refused service.

The first simulation considered an unmanaged service
(no SLAs), and produced the following behaviour (See Table
I):

TABLE I. UNMANAGED SERVICE SIMULATION

Metric Value

Service load 20 aircraft / hour
Service throughput 19.5 aircraft / hour
Percentage of aircraft that do not have to wait 33.6%
Percentage that do not have to wait more than
10 mins

74.6%

Percentage that do not have to wait more than
20 mins

94.4%

Percentage of aircraft refused service 2.6%
Mean waiting time 6.1 mins
Resource utilization 81.2%

196

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The QoS is relatively poor because the random variation
in aircraft arrival and refuelling times means queues can
build up, leading to a high proportion of aircraft having to
wait, and some having to wait for a long time or even being
sent to other service providers.

To investigate how the metrics could be used to manage
the service, the simulation was extended so airlines must
have an SLA with the service provider before they can use
the service. Each SLA lasts on average 1 week, and allows
an airline to refuel an average of 3 aircraft per hour. The
extended model assumed about one new SLA per day would
be signed, giving an average load roughly similar to the total
load in the first simulation. We also assumed the service
provider would refuse to agree more than 12 SLA at a time,
so the load could temporarily rise up to 50% higher than the
capacity of its resources. We wished to investigate how well
the use of SLA as a pre-requisite for service access allowed
such overloads to be managed. The results of this second
simulation were as follows (See Table II):

TABLE II. MANAGED SERVICE SIMULATION

Metric Value

Service load 0-36 aircraft / hour
Service throughput 21.1 aircraft / hour
Percentage of aircraft that do not have to wait 22.4%
Percentage that do not have to wait more than
10 mins

60.4%

Percentage that do not have to wait more than
20 mins

89.7%

Percentage of aircraft refused service 4.9%
Mean waiting time 9.4 mins
Resource utilization 87.8%

While the use of this SLA allowed the service provider to

anticipate the load from a pool of potential consumers, it
could not improve QoS with a fixed set of resources. In fact,
the compliance metrics are now much worse than before,
with only a small increase in the total throughput because the
load exceeds the resource capacity around 25% of the time.
Further tests showed that reducing the number of SLA the
service accepts does not help much as this only lowers the
long term average load, whereas overloads and long queues
arise from shorter-term fluctuations. The limit would have to
be much lower (and the throughput substantially lower)
before the compliance metrics were good enough to be of
interest to customers.

The final experiment used a different type of SLA in
which each customer can still have 3 aircraft serviced per
hour on average, but only one at a time. To handle this, we
used a non-recoverable usage rate metric for the number of
aircraft in the system and specified in the SLA that this could
not exceed 1. This simulation produced the following (See
Table 3):

TABLE III. CONSTRAINED SLA SERVICE SIMULATION

Metric Value

Service load 0-36 aircraft / hour
Service throughput 17.9 aircraft / hour
Percentage of aircraft that do not have to wait 50.6%

Metric Value

Percentage that do not have to wait more than
10 mins

96.0%

Percentage that do not have to wait more than
20 mins

99.9%

Percentage of aircraft refused service 0%
Mean waiting time 3.4 mins
Resource utilization 74.7%

Evidently, if this last type of SLA were enforced by a

suitable management procedure, it would allow the service to
protect itself from overloads, without a huge drop in the
service throughput. Further experiments showed that if the
permitted long-term load per SLA were pushed up to 3.5
aircraft per hour, the throughput would reach 19.7 aircraft
per hour (more than the original unmanaged service), yet the
compliance metrics would stay above 90%. This provides a
good indication that the SERSCIS-Ont metrics can be used
to describe service management and protection constraints,
as well as consumer QoS measurements and guarantees.

VII. BUSINESS-LEVEL OBJECTIVES AND KEY

PERFORMANCE INDICATORS

While the above-mentioned description set the
framework for the scenario, the identification of failure and
threat scenarios requires a more in–depth look. In order to
determine relevant service disruptions two additional pieces
of information are required:

• A definition of the business-level objectives for each
player in the scenario.

• An identification of the Key Performance Indicators
(KPIs) used to measure the objective achievement.

Starting from the top-level CDM system business-level
objectives are identified for each stakeholder in the scenario.
These describe why the stakeholders participate in the CDM
system and what they want to achieve. Each stakeholder’s
objectives determine the individual goals as well as the
contribution to the higher-level goals of CDM overall.

A similar picture is drawn for the KPIs. At each level and
stakeholder the KPIs should be usable to measure the
achievement of the business-level objectives. At the same
time they are grouped according to their contribution to the
higher-level KPIs. The use of KPI enables SERSCIS to focus
on system behaviour that is directly related to business
performance, both of the A-CDM cell (i.e., the system as a
whole), and of the individual stakeholders that contribute to
it. This helps to ensure that SERSCIS only takes action when
a problem really is a problem.

See Figure 5. for the concrete business-level objectives
and KPIs for the Airport CDM scenario.

197

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Business-level Objectives and Key Performance Indicators

The following sections describe the objectives and KPIs
for the individual stakeholders. Please note that these
sections only list KPIs that are of relevance to the overall A-
CDM objectives and KPIs. Naturally there are several
additional KPIs for each stakeholder, which they may use to
assess their own performance. It was considered sufficient to
use a few individual stakeholder KPIs in this evaluation. This
ensures that SERSCIS can handle situations where individual
and community goals may differ, but without needing to
emulate the individual actors in excessive detail.

A. CDM Cell

The objective at this highest level is to make optimal use
of the available resources. Note that this does not mean to
increase any capacity, but to increase the usage of existing
capacity.

The achievement level of this goal is measured by two
KPIs.
1) Percentage of wasted slots (slots allocated but not

used) (K1)
This will be measured on a monthly basis by measuring

the wasted slots and dividing this figure by the number of
totally allocated slots. Total allocated slots is given by the
number of CTOTs issued by CFMU for flights departing
from the airport. Wasted slots are defined as allocated slots
(CTOTs) that passed without the aircraft departure or
allocated slots (CTOTs) that have been changed within 15
minutes before the CTOT1.

This KPI indirectly includes external requirements from
the CFMU. It is the objective of the CFMU to reduce
congestions and to reduce the number of wasted slots.
2) Accuracy of EIBT (K2)

This parameter is the basis for optimal resource
scheduling and dispatching for ground handling and ramp
services. The EIBT is the estimated time when the aircraft

1 This assumes that a slot changed within the last 15 minutes

before CTOT cannot be re-used for another flight by CFMU.

goes in-block at the stand. Hence this is the time when
ground handling should start.

Measurement is done by mean square deviation between
EIBT and AIBT for all flights of one day. EIBT is taken at
FIR entry and at commencement of final approach for
measurement purposes. The suggested goal is to achieve an
accuracy of +/- 3 minutes at FIR entry and +/-1 minute on
final approach.

EIBT accuracy is determined by:
• The accuracy of the landing time prediction (ELDT)

and the updates to this and
• The accuracy of the taxi time prediction (EXIT).
While the latter factor originates from within the CDM

cell (being provided by the ACISP), the first is provided
either by the CDM actor ATC or externally by CFMU.
Neither this input factor not EIBT accuracy itself are
emulated in the current (proof of concept) testbed. The KPI
is therefore listed here for completeness purpose only. The
testbed and its evaluation at this stage focused on K1.

B. Central Flow Management Unit

The objective for this unit is to reduce congestions in the
European air-traffic system and to avoid slotting2 wherever
possible.

The CFMU is not further detailed as it only acts as a
value provider in the simulation. Beyond this CFMU’s real
functionality is not simulated.

C. A-CDM Information Sharing Platform

The objective for the ACISP is to deliver a performance
that allows all stakeholders and the entire A-CDM system to
achieve their goals. This performance goal also includes
certain quality criteria with regard to data handling, in
particular data consistency and data accuracy.

This is measured by the ACISP performance, i.e., the
delay in forwarding values the CISP has received. This is
simply measured by the sum of differences between
reception and according sending time of a value divided by
the number of such forwarding operations. This KPI also
contributes to K1 and K2.

The ACISP as central data repository must meet high
security requirements. Some of the data it stores are sensitive
with respect to competition; others might influence physical
security if exposed to the wrong person or if data from a
wrong source are incorporated. It is also important that the
data is accessible to those who have a right to use it.

To deal with this, a wide variety of metrics can be used,
including:

• the accuracy of data retrieved by another actor:
inaccuracy may indicate it is forged or corrupted
(insecure update), in the absence of other
explanations; or

2 “Slotting” is the process of issuing departure slots for flights if

the calculation by CFMU shows a potential congestion anywhere in the
enroute part. In other words, if the combined flight trajectories of all flights
result in a capacity demand exceeding the capacity of any sector along the
route, slots are issued for all flight passing this sector.

198

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• the timeliness of data retrieved by another actor: if
data updates are not available soon after they are
made, or in the worst case, not available until after
they are needed, this may indicate an availability
problem.

Data confidentiality is difficult to monitor, as it is
impossible to prove the null hypothesis that the data has
NOT been accessed by an authorised party. One could seek
to measure the number of known confidentiality breaches,
which may be an indicator (albeit imperfect) of the number
of actual breaches. A more common option is to ensure the
data service has access control in place and to check the
integrity of its implementation, e.g., through the use of vetted
staff and accredited software.

Access control to ACISP data is implemented in the PoC
testbed, but confidentiality breaches are not simulated yet, as
they cannot directly cause a degradation of the infrastructure.
However, data accuracy and timeliness are measures that can
be used in the PoC evaluation.

D. Air Traffic Control

For ATC representing the Air Navigation Service
Provider (ANSP) the business level is to maximize runway
capacity and to reduce congestion of the European air traffic
system while at the same time limiting or reducing the air-
traffic controller workload. The second goal is not A-CDM
specific and will not be regarded any further here.

For measuring the first objective two KPIs are devised.
The first KPI helps to ensure that the European air traffic
system makes best use of the available capacity by
measuring the percentage of take-offs outside the so called
slot tolerance window (STW, -5/+10 minutes around the
Calculated Take-Off Time CTOT). This is performed by
counting take-offs outside the STW and dividing this by the
number of take-offs of regulated flights, i.e., flights that have
a CTOT assigned. This directly contributes to K1.

Secondly the accuracy of the landing time prediction is
measured, which reflects the ATC contribution to turn-
around optimisation. For this the ELDT is compared to the
ALDT. The concrete measurement is done by calculating the
mean square deviation between ELDT and ALDT for all
flights of one day. ELDT is taken at FIR entry and at
commencement of final approach for measurement purposes.
The suggested goal is to achieve an accuracy of +/- 3
minutes at FIR entry and +/-1 minute on final approach. In
the PoC testbed, the ATC is not represented by an explicit
service emulator, so any error in the landing time prediction
forms part of the simulation input. For this reason, it is not
used here, as already explained in section VII.A.

E. Ground Handler

The ground handler strives to optimize resource usage of
his own and indirectly of the ramp services’ resources. This
involves human resources as well as equipment.

For the evaluation of this business level objective two
internal KPIs are devised, which do not contribute to K1 nor
to K2. They solely reflect the resource usage. Indicator 1
averages the usage of a type of resource over the period of a
day, where usage is defined as percentage of resources

occupied in comparison to resources available. One indicator
is required for each type of resource.

The second indicator aims at avoiding overbooking. Per
type of resource the number of occasions during a day are
counted, when the service consumer tries to obtain resources
beyond the available. Again, one indicator is required for
each type of resource.

With respect to the overall A-CDM goals the ground
handler contributes by accurately predicting the aircraft’s
TOBT. This is evaluated by two KPIs, TOBT accuracy and
TOBT stability. The first KPI is derived from comparing the
TOBT with the ARDT. Again the mean square deviation
between TOBT and ARDT is calculated for all flight of a
day, where TOBT is taken at TOBT freeze time, i.e., 30
minutes before TOBT.

In the PoC testbed the estimate given by the ground
handler will be a constant. The actual delivery time of the
ramp services, however, will include some variation, e.g.,
dictated by the actual service requirements or by the service
provider’s resource trade-offs. Hence this parameter will be
of interest.

The second parameter measures how stable the prediction
mechanism of the ground handler is. For this purpose the
average number of TOBT updates per flight is calculated.

Both parameters contribute directly to K1.

F. Ramp Service

Like the ground handler each ramp service provider
wants to optimize his resource usage of both human
resources as well as equipment.

For the evaluation of this business level objective two
internal KPIs are devised, which do not contribute to K1 or
to K2. They solely reflect the resource usage. Indicator 1
averages the usage of a type of resource over the period of a
day, where usage is defined as percentage of resources
occupied in comparison to resources available. One indicator
is required for each type of resource.

The second indicator aims at avoiding overbooking. Per
type of resource the number of occasions during a day are
counted, when the service consumer tries to obtain resources
beyond the available. Again, one indicator is required for
each type of resource.

With regard to the overall A-CDM objectives two KPIs
are required to evaluate the ramp service provider’s
performance: the arrival reliability and the service delivery
duration. Both parameters contribute to K1.

VIII. FAILURE SCENARIOS

This section describes a number of cases that represent
failures caused by malfunctions, performance shortcomings
or security breaches that can affect the operation of A-CDM
in an adverse manner. The SERSCIS tools and mechanisms
are expected to handle these failure cases and improve the
process performance of A-CDM even in the existence of
failure conditions. The evaluation of these cases and thus the
full validation of the SERSCIS results will be undertaken in
project year 3.

The evaluation studies described in the deliverable at
hand have a different purpose. Apart from proving the ability

199

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to implement and reflect the process as described in chapter
II), they should demonstrate that the testbed can actually
perform failure cases and that meaningful KPIs have been
chosen. The KPIs must enable the user to identify the effects
of failures and to assess the impact of the SERSCIS
mechanisms in handling the failure. Thus, the purpose of this
is not to apply a huge number of failure scenarios but to
focus on one or two cases that yield a representative
assessment of the SERSCIS mechanisms and tools.

In order to cover the SERSCIS mechanisms as
comprehensively as possible, mainly two distinctions of
failure scenarios should be taken into account, the recurrence
of threats and the phase when they occur along with the
countermeasures provided by SERSCIS on the one hand and
the type of security issue causing these on the other hand.

There are three basic types of threats or failures to be
evaluated according to their recurrence and the
countermeasure SERSCIS supports:

(M1) One-off threats or failures, for which SERSCIS can
help to mitigate the effects.

(M2) Recurring failures, for which SERSCIS can support
the mitigation by systematic adaptation.

(M3) System problems identified in modelling and
prevented from happening by redesigning the system.

From a phenomenal cause point of view, failures can be
induced by physical (C1) or by ICT related compromises
(C2). The use case validation will cover both types. But in
both cases the primary concern is the impact on and the
usage of the ICT facilities to mitigate the threats.

A. Compromise of ramp service availability

In this scenario, the ramp service provider fails to
respond to service requests in a timely manner or does not
show up at all. In this case, the ground handler’s request is
not met with a reply containing the estimated completion
time from the ramp service. After a timeout the ground
handler could try to invoke the service a second time. If this
does not succeed either, he would have to schedule and
invoke the ramp service with an alternative provider. Once
this provider replies to the service invocation with an
estimated completion time, the workflow continues as
described in Section V.A.

This event can be handled in two ways:
• As a one-off event that requires the selection of an

alternative service provider
• From the point of view of a recurring event, which is

counteracted by either blacklisting the specific
service provider or by adapting the workflow such
that it has more slack for late service delivery.

This scenario covers recurrence and countermeasures M1
and M2 and cause C1. It was used in the evaluation of both
the run-time and off line SERSCIS components.

B. Passenger No-Show

A passenger who has checked in luggage does not show
up for boarding. Consequently, his luggage needs to be
unloaded. In its simple form, this is a scenario handled by

countermeasure M1 (alternative workflow applied). It is
caused by type C1.

This failure scheme could also be used for a massive
distributed DoS attack if a huge number of passengers in
coordination and on purpose do not show for boarding.
Beyond the description above, that should also be detected
by means of SERSCIS mechanisms.

This scenario was represented in all run-time tests (there
is a passenger no-show in one flight in all scenarios used),
leading to a small deviation from perfect KPI even in the
‘sunny day’ scenario.

In the off-line evaluation, the idea of an organised mass
passenger no-show was also considered (creating a physical
denial of service attack). This mass no-show could not be
used in the run-time evaluation without a substantial
extension of the PoC emulators for the Ground Handler and
the Baggage Handler services. This is because the possible
mitigation strategies involve changing the strategy for
managing resources and computing the predicted TOBT
(algorithmic adaptation), rather than at the agile SOA level.

C. ACISP Communication Delays

ACISP communication delays, caused by a denial of
service (DoS) attack, can arise if the ACISP can be
addressed from a sufficiently public network (e.g. the
Internet), so an attacker can send too many requests (or
possible a smaller number of malformed requests) in order to
tie up the ACISP service’s resources. It is caused by type C2.

To mitigate this threat, the ACISP can ensure their
software stack is up to date, therefore reducing the
opportunity for small numbers of malformed packets to
cause a problem. They can also use a private network limited
to the other airport stakeholders, although this may not be
possible depending on how many stakeholders need access.
Or they can deploy multiple redundant end points, and
switch frequently so the attacker(s) will not know which
endpoint to flood with malicious requests. These are all
instances of M3.

This scenario with no mitigation was included in the
evaluation of run-time SERSCIS components, to show how
the KPI can be used to detect cyber-attacks as well as
physical effects. The mitigation using redundant end-points
could also have been implemented using the PoC testbed, but
this was not done as it uses the same fail-over mechanism
demonstrated in the compromised ramp service case. Other
mitigation strategies could not be included in the PoC testbed
as they would require explicit emulation of private/redundant
communication networks, which was not yet implemented.
In practice, these have to be included by design, so the
vulnerability would need to be detected at the design stage
via system modelling. However, the use of alternate
networks (as well as endpoints) would need to be activated at
run-time. So, even though prior modelling of the system is
required (treating the threat as type M3), once this is done we
then have to treat the threat as type M1/M2 in deciding when
to activate the use of alternate networks or endpoints if a
compromise is detected.

200

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IX. DISCRETE EVENT SIMULATION EXPERIMENTS

The evaluation using discrete event simulation used the
testbed to emulate a subset of the previously identified
failure scenarios including types M1 and M2 above. The
impact on identified KPI was measured (relative to a
‘normal’ or ‘sunny day’ scenario), thereby verifying that the
testbed is able to emulate adverse behaviour, and that the
impact can be characterised using the chosen KPI. Where the
PoC testbed already provides an appropriate countermeasure
based on the use of agile SOA, a further simulation was run
to determine how this affects (improves) the emulated
outcome and KPI.

This section lists the results obtained during the
simulation runs. It describes the types of tests performed,
shows the KPI values resulting from these runs and provides
an interpretation of those. Several runs of the testbed were
conducted for the evaluation. The runs represented different
cases, one no-failure case and several degraded scenarios.

The simulation driver provides an interface (see Figure 6.
) showing the progress of flights, and it is possible to inspect
monitoring data for various application services (e.g.,
performance metrics) and SERSCIS components (e.g., SLA
usage, etc.). Only if something goes wrong does the user
receive any feedback through the DST interface (from WP5),
after which the user must inspect the corresponding
monitoring data to discover the cause, possibly aided by
queries to a system-of-systems model. However, the
emulation is designed to run in accelerated time (so each run
does not take a whole day), and when this feature is used,
there is very limited opportunity for user interactivity.

Figure 6. SERSCIS Graphical User Interface

The evaluation started with a ‘sunny day’ case, in which
all service providers had a sufficient number of workers and
hence always delivered. This was used to provide a starting
point for further experimentation, and represents a best case
scenario, although even the ‘sunny day’ case included a
single passenger no-show to provide a ‘background’ signal
in the measured KPI.

In the first approach to simulating a failure, the number
of workers of one of the ramp services, specifically the

baggage handler, was reduced step by step. Different runs
were performed with ever-smaller number of workers until a
threshold was reached when turn-around processes took a
substantial time to complete. Once the threshold value was
obtained, the policy of the resource manager was changed
such that it could select an alternative service provider once
the main provider failed. Specifically, once the baggage
handler failed to respond to a service perform request due to
a lack of workers it was considered failed. In this case it was
replaced by another baggage handler with a sufficient
number of workers.

The second approach to simulating a failure affected the
communications of the ACISP. Similarly to above, the delay
in communications to and from the ACISP was increased
step-by-step until degradation in the simulation KPIs was
observed. This experiment was used to model a denial of
service attack on the airport network.

A. KPIs used in the evaluation

In section VII.F, two KPIs to evaluate the performance
on a ramp service provider level are listed, his arrival
reliability and his service delivery duration. In the proof-of-
concept evaluation the second KPI is a constant and
disregarded. The first KPI on the other hand is taken into
account to show the effect of a reduced number of workers.
It is assumed that the reliability decreases if the number of
workers available at a service provider is reduced. In the
testbed this is measured by the number of “perform
attempts” issued to the service provider. If a service provider
has sufficient resources, every flight requires exactly one
perform attempt that is honoured by the service provider; i.e.,
the number of perform attempts must be equal to the number
of flights. If the provider cannot immediately honour a
perform attempt due to a lack of workers, the perform
attempts will be repeated. Thus the number increases beyond
the number of flights.

The ramp service performance also has an effect on the
ground handler’s KPIs. As described in section VII.E, two
KPIs characterize this performance, TOBT accuracy and
TOBT stability. Since the actual delivery time of the ramp
services is a distribution with a certain variation, e.g.,
dictated by the actual service requirements or by the service
provider’s resource trade-offs, TOBT accuracy will decrease
with a reduction in the number of workers at the ramp
service provider. TOBT stability expresses the number of
updates to the TOBT required for each flight. In a sunny day
scenario this number should be 1 or close to it, i.e., once a
TOBT is issued it will not be changed. In degraded
scenarios, however, a ramp service will deliver late due to a
lack of workers. In the testbed the ground handler re-issues a
TOBT whenever the estimate deviates from the previous
value by more than 10 minutes. Hence the longer the ramp
service delays its service delivery the more TOBT values
need to be issued for a flight.

Both above-mentioned KPIs affect the number of take-
offs outside the slot-tolerance windows (STW), an overall
CDM KPI (K1 as listed in Section VII.A). The value will
increase in a ripple on effect of the ramp service provider’s
inaccuracy. If the ramp service provider fails to show up on

201

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the initial perform request, there is a risk that he delays the
turn-around of a flight and causes it to miss its slot. This
effect, however, might be countered in part by an available
slack in the turn-around process.

A policy change that allows to replace the service
provider with an alternate in case he fails to respond to a
perform request must reverse the above effect. Choosing an
alternative service provider when the primary provider
failed, will replace the overall service delivery reliability and
thus result in less take-offs outside the STW.

Another KPI is applied to evaluate the overall CDM
system’s performance, the average number of slots issued
per flight. Obviously, in the ideal case one slot is issued for a
flight and this one is used subsequently. In less ideal
situations delays in the turn-around prevent a flight from
meeting its slot. Thus a new slot has to be issued, potentially
wasting the previous one if it cannot be claimed by another
flight. The longer the delay of a turn-around, e.g., induced by
a lack of workers at a ramp service providers, the more slots
must be issued for a flight3.

B. Applied scenarios

In the beginning of this section, a general description of
the scenarios was given. This section provides more details
on the various scenarios and the changes for the different
failure cases.

All scenarios use a schedule of 124 flights to be turned
around during a day. All of those are regulated flights, i.e.,
all require a slot.

Apart from the non-failure case, three degraded mode
cases are listed and assessed below.

The first case, the ‘sunny day’, provides sufficient
resources for all ramp service providers. Hence none of the
flights experiences a delay in turn-around.

Case 2 is characterized by a reduction in the number of
workers of the baggage handler to 23. In this case the
baggage handler fails to honour several perform attempts and
the flights experience substantial delays.

In case 3 the number of workers is further reduced to 18.
Hence even fewer perform attempts are honoured.

In case 4, a second baggage handling resource was
introduced (i.e., the Ground Handler starts with two SLAs
for the provision of baggage handling services with different
suppliers). Now if the primary baggage handler fails, an
alternative service provider can replace it. If this arises as a
one-off problem it can be handled by the service orchestrator
component (mitigation type M1 as defined in Section IV),
though some delay will still be experienced. If the primary
supplier persistently fails, it is better to manage the situation
by excluding it from further use (mitigation type M2). This
was done by attaching the policy shown below to the

3 In the testbed the ground handler uses a simple strategy to update

the TOBT. A new estimate for TOBT is calculated, and the TOBT is
updated if the new estimate is more than 10 minutes after the previous
TOBT. Note that in the current simulation every TOBT change
automatically results in the issuance of a new slot. For this reason,
currently the number of slots per flight is equal to the number of TOBT
updates. The implementation of this behaviour will be re-assessed for the
final validation.

individual baggage handler resources (as seen by the Ground
Handler). This policy sets the condition of the service to
‘failed’ if there is more than one failure, and deregisters the
service so preventing it being offered to the orchestrator:

This addresses the immediate problem of a failing
supplier, but it reduces the number of available options for
baggage handling to one. A further policy is therefore
needed, attached to the resource manager, causing the
resource manager to procure a new SLA with a replacement
baggage service provider (referred to by the SLA template
provided).

Finally, case 5 implements a simulation of
communication delays to demonstrate the effects of a denial
of service attack on the ACISP. Due to the slow rate of
communications, a number of flights take off outside their
slot windows. No mitigation for this was considered in the
run-time tests, as the only one that could be handled by the
PoC emulators was to have redundant ACISP endpoints,
which duplicates the mechanisms tested in Cases 1-4.

C. KPI results

TABLE IV. KPI RESULTS

KPI Case 1 Case 2 Case 3 Case 4 Case 5

Baggage
perform
attempts

249 556 961 266 249

Average
TOBT error

4 min 14 min 49 min 4 min 4 min

Average
TOBT
updates per
flight

1 1,5 2,7 1 1

Average
number of
slots issued

1 1,5 2,7 1 1

Take-offs
outside STW

0% 15% 31% 0% 13%

The results shown in Table IV clearly indicate that the

chosen KPIs are meaningful for the testbed and the scenario
and that verification and validation of the testbed succeeded.

The KPI “Perform attempts” was expected to increase if
a service provider does not have sufficient resources to
honour all requests in parallel. In this case some of the
requests must be repeated, which means a larger figure.
When introducing the possibility to choose an alternative
provider in case the first one fails to honour requests, the
total number of perform attempts should decrease again.

This is exactly the behaviour of the testbed. Case 2 and
also case 3 exhibit a significantly larger number of perform
attempts than the sunny day case 1. With the introduction of
an alternative service provider in case 4, the number of
request drops close to the value of the sunny day case again.
Note that it is still slightly larger than in the sunny day case,
because additional perform requests are issued (and not
honoured) while the alternative provider is being set up.
Hence the KPI provides meaningful characteristics of the
testbed and the testbed shows the expected behaviour.

The TOBT-related KPIs reflect the quality of service
delivery by a ramp service provider. With a decreasing

202

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number of workers in cases 2 and 3, the TOBT accuracy
decreases as well and the required number of updates to this
value per flight increases accordingly. When the ground
handler has the option to choose an alternative service
provider in case 4, the trend reverses and case 4 delivers the
same performance as the sunny day case 1.

Similarly, the number of slots issued per flight increases
with the number of TOBT updates per flight. In case 4, in
which TOBT does not get updated, only one slot is required
as in case 1.

The last KPI, which was assesses in the testbed
evaluation, is the percentage of take-offs outside the slot-
tolerance window (STW). In the case of a sufficient number
of workers at all service providers (case 1), none of the
flights should miss its slot4. Hence the KPI must be 0%.
With turn-arounds being delayed due to an insufficient
number of workers at one of the service providers, flights
will miss their slots and take off outside the STW. For this
reason the value increases to 19% in case 2. When an
alternative service provider steps in to take over the tasks
from a failed provider as in case 3, turn-arounds are on time
again. The percentage of missed slots falls back to 0% again.

In the event of communication delays with the ACISP we
see the percentage of takeoffs outside the slot tolerance
window increase in proportion to the delay. This is caused by
delays in communications resulting in windows of
opportunity to be missed.

The KPI reflects these behaviours as expected and thus
also indicates a correct behaviour of the testbed.

X. CONCLUSIONS

This paper describes a base metric model that provides a
uniform abstraction for describing service behaviour in an
adaptive environment. Such an abstraction allows services to
be composed into value chains, in which consumers and
providers understand and can manage their use of services
according to these metrics.

A service provider, having analysed the application
service that it is offering, defines a metric ontology to
describe measurements of the relevant service behaviour.
This ontology should refer to the SERSCIS base ontology,
and provide subclasses of the base metrics to describe each
relevant aspect of service behaviour. Note that while each
service provider can in principle define their own metrics
ontology, it is may be advantageous to establish ‘standard’
ontologies in particular domains – this reduces the need for
translation of reported QoS as it crosses organizational
boundaries.

Validation simulations provide a good indication that the
SERSCIS-Ont metrics are useful for describing both service
management and protection constraints, and service
dependability and QoS guarantees.

The evaluation of SERSCIS using discrete event-based
simulation and KPI-based definition of behavior also proved
to be a good indicator of the approach. KPIs were used as a

4 The limited capacity of taxiways and runways might cause flights

to miss their slots despite a timely turn-around, but this is not modelled in
the testbed.

starting point for run-time monitoring and mitigation
strategies. Using an appropriate set of KPIs the behaviour of
the system can be monitored effectively and efficiently.
Failures of individual services can be detected and – given
that mitigation strategies are implemented – their
effectiveness can be observed as well.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme under grant agreement no. 225336, SERSCIS.

REFERENCES

[1] C. Lu, J.A. Stankovic, T.F. Abdelzaher, G.Tao, S.H. Son and
M.Marley, “Performance Specifications and Metrics for Adaptive
Real-Time Systems,”In Real-Time Systems Symposium 2000.

[2] C. Raibulet and L. Masciadri. "Evaluation of Dynamic Adaptivity
Through Metrics: an Achievable Target?". In the paper proceedings
of the 8th working IEEE/IFIP Conference on Software Architecture.
WICSA 2009.

[3] D. Roman, U. Keller, H. Lausen, R.L.J. de Bruijn, M. Stolberg, A.
Polleres, C. Feier, C. Bussler and D. Fensel. “Web service modelling
ontology”. Applied Ontology. I (1):77-106, 2005.

[4] D. Rosu, K. Schwan, S. Yalamanchili and R. Jha, "On Adaptive
Resource Allocation for Complex Real-Time Applications," 18th
IEEE Real-Time Systems Symposium, Dec., 1997. J. Clerk Maxwell,
A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68 73.

[5] I. Toma, D. Foxvog, and M.C. Jaeger. “Modelling QoS characterists
in WSMO”. In: Proceedings of the 1st workshop on Middleware for
Service Oriented Computing. November 27-December 01, 2006.

[6] L. Masciadri, “A Design and Evaluation Framework for Adaptive
Systems”, MSc Thesis, University of Milano-Bicocca, Italy, 2009.

[7] L. Masciadri, and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Software
Metrics”, Proceedings of the 4th International Conference on
Software Engineering Advances, 2009..

[8] Collected Works of John von Neumann, 6 Volumes. Pergamon Press,
1963.

[9] WSDM-MOWS Specification. www: http://docs.oasis-
open.org/wsdm/wsdm-mows-1.1-spec-os-01.htm (Last accessed Feb
2012).

[10] D. Gross and C.M. Harris. Fundamentals of Queueing Theory. Wiley,
1998.

[11] M. Surridge, A. Chakravarthy, M .Bashevoy and M. Hall-May.
“Serscis-Ont: A Formal Metrics Model for Adaptive Service Oriented
Frameworks”. In: Second International Conference on Adaptive and
Self-adaptive Systems and Applications (ADAPTIVE), 2010.

