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Abstract—Recognition of human activities and situation 

awareness is a premise for advanced safe human-robot-

cooperation. In this paper, a recognition module and its 

advancements based on previous work is presented and 

discussed. The usage of Description Logics allows for 

knowledge based representation of activities and situations. 

Furthermore, reasoning about context dependent actions 

enables conclusions about expectations for robot behavior. 

This work is extensively tested and benchmarked.  The 

presented approach represents a significant step towards a 

full-fledged cognitive industrial robotic framework.    

Keywords – cognitive robotics, Description Logics, situation 

and action recognition, evaluation, human-robot cooperation. 

I.  INTRODUCTION 

Industrial robotics is a challenging domain for cognitive 
systems, especially, when human intelligence meets solid 
machinery with certain degrees of freedom like most of 
today’s industrial robots. 

Hence, guaranteeing safety for human workers, safety 
fences are installed to separate humans and robots. As 
consequence no time and space sharing interaction or 
cooperation can be found in industrial robotics.  

Some progress has gained in the past so that some 
modern working cells are equipped with laser scanners 
performing foreground detection. But with these systems one 
is not able to know what is going on in the scene and, 
therefore, could not contribute something meaningful for 
challenging tasks like safe human-robot cooperation. 

We are conducting research on recognition of and 
reasoning about actions and situations in a human centered 
production environment, in order to enable interactive and 
cooperative scenarios. 

In [1], we presented a first approach for using 
Description Logics (DLs) [9] as means for representation of 
knowledge and as reasoning facilities for inference about 
activities and situations. Furthermore, conclusions about user 
expectations about robotic behavior can be drawn. This 
paper focuses on presenting applied techniques and the 
advancements on previous work [1]. Also, there are further 
investigations taking into account effectiveness and runtime 
behavior of the presented recognition module. 

In Section II, selected research work on reasoning about 
scenes and situations will be presented. In Section III, a 
framework is introduced, which enables the sensor data 
processing and subsequent knowledge based reasoning. In 

Section IV, DLs are briefly introduced and the module 
realizing the communication with a Description Logics 
reasoner, knowledge base management and reasoner result 
management is presented in detail. Also the modeled 
situations and activities are explained. Section V discusses 
experimental results which have been carried out for both, 
predetermined test cases and under real-life conditions. In 
Section VI, a summary is given. Finally, some hints for 
future work are mentioned. 

II. RELATED WORKS 

There are a lot of approaches for action recognition 
systems based on probabilistic methods, e.g., hidden Markov 
Models (HMMs) [17, 18, 19], as their theoretic foundation is 
well understood and applications in speech recognition and 
other domains have shown their capabilities. 

Based on arguments, that HMMs are not suitable for 
recognition of parallel activities, propagation networks [20] 
have been introduced. The propagation network approach 
associates each node of the network with an action primitive, 
which incorporates a probabilistic duration model. Also 
conditional joint probabilities are used to enforce temporal 
and logical constraints. In analogy to HMMs, many 
propagation networks are evaluated, in order to approximate 
the observation probability. 

In [21], Minnen et al. put forward arguments that 
recognition of prolonged activities is not feasible based on 
purely probabilistic methods. Thus, an approach is presented 
which uses parameterized stochastic grammars. 

The application of knowledge based methods for action 
recognition tasks is scarce, but work on scene interpretation 
using DLs has been conducted.  

In [10], Hummel et al. use DLs for reasoning about 
traffic situations and understanding of intersections. 
Deductive inference services are used to reduce the 
intersection hypotheses space and to retrieve useful 
information for the driver. 

In [24], Tenorth and Beetz present a system, which uses 
Prolog in order to process knowledge in the context of 
robotic control. It is especially designed for use with 
personal robots. Knowledge representation is based on DLs 
and processed via a Web Ontology Language (OWL) Prolog 
plug-in. In contrast to our approach, the Prolog based 
reasoning system is not used to recognize activities or reason 
about situations. Instead, it is used to query on its 
environmental model. Actions and events are observed by 
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the processing framework and used as knowledge facts. The 
knowledge base can be extended by using embedded 
classifiers in order to search for groups of instances that have 
common properties. 

In [11], Neumann and Möller establish scene 
interpretation using DLs. Table cover scenes are analyzed 
and interpreted based on temporal and spatial relations of 
visually aggregated concepts. The interpretation uses visual 
evidence and contextual information in order to guide the 
stepwise process. Additionally probabilistic information is 
integrated within the knowledge based framework in order to 
generate preferred interpretations. This work is widened to 
cope with general multimedia data in [12], in which a 
general interpretation framework based on DLs is presented. 

In [13], Springer et al. introduce a comprehensive 
approach for situation-awareness, which incorporates context 
capturing, context abstraction and decision making into a 
generic framework. This framework manages sensing 
devices and reasoning components which allows for using 
different reasoning facilities. Thus, DLs can be used for high 
level decision making. 

These last examples and our previous work show that the 
usage of DLs bears great potential. Hence its adoption in the 
situation and action recognition task incorporated into the 
human robot cooperation (MAROCO) framework. 

To the best of our knowledge, this is the only work to 
incorporate description logics and recognition of situations 
and human activities in the domain of cognitive robotics. For 
reasons of this, it was not possible to directly compare the 
runtime analysis results to concurrent research groups. 

There are investigations concerning runtime analysis of 
descriptions logic reasoners (see e.g., [22, 23]) but they are 
not directly related to the robotics community. Still, they 
show that the FaCT++ system, which was used in this 
publication, is one of the best with respect to the given 
constraints of the software architecture MAROCO. 

The main motivation writing this paper is introducing the 
description logics approach to recognition of situations and 
activities into the domain of cognitive robotics. There are 
just a few other research groups which are dealing with 
description logics in a similar research domain and the most 
related ones were referenced in this paper. Most attention 
was spent on extending the cognitive robotic system 
MAROCO with description logics and building a knowledge 
base for action and gesture recognition. 

The markerless tracking of a human body in real time is 
not at the core of this paper. But this paper brings together 
markerless real time tracking of a human body, a safe robot 
path-planning module and the advanced description logic 
approach based on [1]. Thus, this paper intends to present 
novel results that are gathered from experimental 
investigations using description logics. 

III. THE MAROCO FRAMEWORK 

The MAROCO (human robot cooperation) framework 
[3, 4] is an implemented architecture that enables human 
centered computing realizing a safe human-robot interaction 
and cooperation due to advanced sensor technologies and 
fancy algorithms [7, 8]. 

 

 
 
Figure 1. (Top) Reconstructed human model from depth images. (Bottom) 
Environmental scene model consisting of several kinematical chains. Three 
different industrial robots and a human model. All agents and robots have 
been reconstructed by MAROCO and are integrated into the virtual model 
in real-time including safety features extraction, risk estimation and path 

planning. 

 
Every system implementing machine intelligence has to 

apply a sensor framework. The MAROCO system analyzes 
image sequences that are gathered from a 3D vision system 
[2] based on time-of-flight principle which is mounted to the 
top of the ceiling of the working cell (see Fig. 1). Modules 
dedicated to image sequence analysis make it possible to 
estimate more than a dozen of kinematical parameters, e.g., 
head orientation, upper body orientation, arm configuration, 
etc., of a human model without using any markers (Figure 1). 
The technical details of the methods realizing the real-time 
reconstruction of the kinematical model are not in the focus 
of this paper. Details can be found in [4, 7, 8]. 

As safety is one of the most demanding features when 
industrial robots get in contact with human workers, 
MAROCO is focused on estimating the risk for the human 
worker depending on the scene configuration. A variety of 
methods are integrated into the framework like pure 
functional evaluation, machine learning tools, e.g., support 
vector machines, and a two-threaded adaptive fuzzy logic 
approach, which at the moment makes the race [8]. 

Having estimated the risk, one is interested in finding a 
procedure minimizing the risk for both, the worker and 
machinery. Re-planning is an efficient tool minimizing the 
risk. A method for re-planning the path of the robot with 
respect to safety and real-time capability is presented in [5]. 

All these modules enable safe human-robot interaction 
and cooperation. Safety, in this context, is understood in 
general terms and from a scientific point of view.  
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The kinematical model also allows for recognition of 
human activities and situations inside the robot working area. 
Using DL reasoning facilities, conclusions about occurring 
situations, actions, their temporal relations and expectations 
about robot behavior can be drawn. This is presented in the 
following sections. 

IV. THE RECOGNITION MODULE 

This section is dedicated to discuss the recognition 
module including its components and modeled knowledge 
base after a very brief introduction to DLs. 

A. Description Logics 

In this paper, DLs [9] are used to formalize knowledge 
about situations, actions and expectations. DL is a 2-variable 
fragment of First Order Logic and most DLs are decidable. 
Thus, sound, complete and terminating reasoning algorithms 
exist. Due to this reason, different efficient algorithms have 
been engineered and implemented into diverse reasoning 
systems.  

 
A DL knowledge base is divided distinctly into general 

knowledge and knowledge about individuals in a domain. 
The former defines the terminology of the domain and its 
axioms are declared in the terminology box, hence TBox. 
The latter defines assertions about individuals and, therefore, 
is declared in the assertion box, hence ABox. This allows for 
modular and reusable knowledge bases and thus for more 
efficient coding of knowledge [10]. 

Due to DL’s open world assumption, it can deal naturally 
with incomplete information, which is essential in reasoning 
taking sensor data into account. 

B. Reasoner Systems and Interfaces 

By progress in the development of the semantic web, 
many reasoning systems were engineered in order to 
implement efficient algorithms, e.g., RacerPro [14], FaCT++ 
[15] or Pellet [16]. These systems can be interfaced by 
different means. In [1], we used the Pellet system and the 
DIG-interface. Pellet allows for efficient reasoning [22, 23]. 
The DIG-interface, on one side, has the advantage of its 
separation of application and reasoner by the means of 
programming language and execution place, because it 
implements communication via TCP and XML messages. 
On the other side, this interface is superseded by more recent 
developments which incorporate more features of recent web 
ontology languages, e.g., OWL API [25]. These new 
interfaces are based on Java implementations. 

Because the MAROCO framework is implemented in 
C++, a Java based implementation of an interface was not 
feasible. The FaCT++ reasoning system, though, is written in 
C++. Furthermore, as shown in [15, 22, 23], FaCT++ uses 
very efficient algorithms. Thus, it is used as reasoning 
facility for the recognition module.  

FaCT++ uses a tableaux decision procedure which 
includes optimization techniques that exploits structural 
features of typical ontologies [15]. Due to its architecture, it 
allows for a wide range of heuristic optimizations. 

In this work, version 1.5.1 of FaCT++ was used. Besides 
the introduction of a new volatile axiom type, described in 
Section IV C, there are no further optimizations implemented 
into the reasoner system. Furthermore, FaCT++ does not 
allow for incremental reasoning after assertions have been 
retracted, added, or changed. 

C. The Module Design 

The recognition module needs to fulfill at least the tasks of 

instantiating a Description Logics reasoner, managing the 

knowledge base and managing the reasoner results.  

The recognition module is embedded in the MAROCO 

Framework and is executed in parallel to the sensor data 

analysis module. This allows for fast computations for the 

safety relevant robot control and, with less priority, 

computations for higher cognitive processes, e.g., situation 

and activity recognition.  

The recognition module consists of different 

subcomponents (see Figure 2). 
 

 
 

Figure 2. Components of the recognition module. 

 
The knowledge base management follows a functional 

approach called Tell&Ask [9]. After defining a knowledge 
base – the tell operation – reasoner results and information 
can be retrieved – the ask operation. The modification of an 
existing knowledge base after using an ask operation can be 
achieved by using the retract-functionality of FaCT++. It 
allows single axioms to be marked as unused and flags the 
knowledge base as changed. In a subsequent processing 
cycle new axioms can be added. The retraction of axioms in 
FaCT++ does not actually delete these axioms due to its 
inner data management. Thus, by repeated retraction and 
addition of axioms, memory requirements increase. 

In the realm of sensor data processing, it is advisable 
having an update functionality rather than retraction and 
addition. Thus, we augmented the FaCT++ reasoning system 
with a new volatile axiom. This allows updating the DL 
knowledge base without increasing its memory usage (see 
Figure 3). 

As a consequence the recognition module needs to 
manage an up-to-date model of the knowledge base, which 
consists of domain specific knowledge and assertions 
dependent on the current kinematical human model and 
robot specific parameters. This distinction corresponds in 
Description Logics with TBoxes and ABoxes. The domain 
specific knowledge is modeled a priori; the assertional 
knowledge is updated in each runtime cycle. The modeled 



221

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

knowledge base will be explained in more detail in Section 
IV D. 

As the assertional knowledge depends on kinematical 
parameters a feature extraction component is applied in order 
to fill the attribute values of the assertions. The following 
features are important w.r.t. the component Human:  

 Angles of both elbows,  

 Angles of both shoulder joints,  

 Angle difference between head orientation and 
robot,  

 Walking velocity, and 

  Used tool. 
The feature used tool is not supported by existing sensors 

at the moment and is therefore simulated. It can have one of 
the following values: none, measurement tool or working 
tool. The simulation of this parameter can be influenced 
directly by user input using standard human machine 
interfaces. As a result, complex working scenarios can be 
modeled and analyzed. 

 The component Robot provides the parameters for: 
gripper status, which can be empty or full, and movement 
status, which can be one of  

 Stopped, 

 Following predefined path, or 

 Follow user given task. 
During feature vector creation, extracted values are 

mapped onto sharp sets. The knowledge base is then 
populated with corresponding set strings which can be used 
for comparative operations during reasoning. 

One major aspect of understanding human activity is 
modeling temporal relations between different actions. In 
this work, these relations are introduced by defining an after-
role. Hence a certain action can only be recognized if certain 
other actions occurred prior. This after-role can be regarded 
as defining preconditions onto actions. Previously 
recognized actions need to be included in the knowledge 
base in order to allow for correct recognition of current 
actions. All recognized actions are stored by the reasoner 

result management component and are retrieved during 
updating of the knowledge base. Each occurred action is 
included in the DL knowledge base as an ABox instance. 

The after-role is defined as a transitive role. Thus, in 
order to relate a new action instance to all past ones, only the 
relation to the previous action needs to be defined in the 
ABox update step. 

D. The Knowledge Base 

In Figure 4, the ontology about situations which is 
modeled by the knowledge base is presented. The concept 
Situation has the attribute Number Humans to distinguish 
between the concepts Robot alone and Human present. 

In addition to the described situation ontology in [1], a 
new sub-concept Partially Attentive is introduced. It allows 
for a more detailed differentiation if observed actions and 
instructions need to be complied by the robot. 

Depending on the Activity, which is done by the Human, 
different sub-concepts can be distinguished. In order to relate 
the concepts Situation, Activity and Human, the roles done by 
and takes place are defined. 

In Figure 5, the concept Activity with its sub-concepts is 
depicted. In the line of the extension of the situation 
ontology, the concept Paying Partially Attention is 
introduced to the activity ontology. The concept Human, its 
properties and the defined roles are not shown for clarity 
reasons. 

  
In Figure 6, the ontology concerning Actions and 

complex Actions is shown. As pointed out above, actions can 

 

 
 

Figure 3. Interaction between recognition module and FaCT++. 
 

 

 
 

Figure 4. ER model of the situation ontology. 
 

 
 

Figure 5. ER model of the activity ontology. 
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have a temporal relation expressed as after-role. The action 
Put Tool Away can only happen after occurrence of the 
action Take Tool. This role is also exploited in complex 
actions, e.g., Continue Robot Motion can only be signaled 
after Stop Robot was recognized. 

Actions can be regarded as atomic concepts, whereas 
complex actions consist of other actions, regardless of 
atomicity. The concepts Take Tool and Put Tool Away are 
considered atomic, because they are defined by and based on 
a single attribute Used Tool. This attribute is directly altered 
by user input, therefore, does not result from sensor data 
analysis. The role doneBy which is defined for activities is 
also modeled for actions. For reasons of readability this 
relation is not depicted. 

 The occurrence of the situation Cooperation implies that 
there are expectations towards the robot behavior. Moreover, 
an expectation can be triggered by an action (see Figure 7).  
This allows for reasoning about expectations without 
necessarily recognizing a triggering action. This implicit 
relation is also exploited between the activities Monitor, 
Hold Tool and Actions. 

The resulting expectations can be used as input to a task 
planning module. The scope of each possible expectation is 

variable.  Position TCP and Get Work Piece are concrete 
commands. Complying Follow Instructions, on the other 
side, needs also the information about recognized actions.  

V. EXPERIMENTAL RESULTS 

For reasons of experimental analysis of the implemented 
activity and situation recognition different courses of action 
were executed and the recognition results were recorded. 

In order to analyze different scenarios efficiently, means 
of automated feature value presetting have been 
implemented. The overall analysis is based on these presets 
and on actual sensor data processing. Hence natural 
movements and  
transitions between actions can be tested and special use 
cases can be investigated. 

In this section, recorded recognition results will be 
illustrated and discussed. Due to the advancements and 
changes to the recognition system compared to the presented 
work in [1], all experimental investigations were repeated 
and have to stand up to comparison. During result analysis 
special emphasis was put on efficiency and elapsed 
processing time.  

A. Exemplary Result Records 

The recorded experimental results contain a timestamp 
which indicates the starting time of the recognition cycle in 
milliseconds since program start. This timestamp is then 
followed by the extracted feature values if there is a human 
worker in the supervised area. The components of the feature 
vector are listed in following order: Angle arm left, angle 
arm right, angle elbow left, angle elbow right, walking 
velocity, angle difference between head orientation and 
robot, holding tool, gripper status and robot movement 
status. 

The next number is the timestamp of the final result 
message from the DL reasoner (see Table I). Results will be 
recorded whenever there are new insights. Thus, the last two 
lines of Table I have no special entries past the last return 
timestamp. 

TABLE I.   EXAMPLE RECORD BASED ON SENSOR DATA 

34942 34980 RobotAlone FollowPathPlanning 

34980 0 0 0 0 3 105 0 0 0 35082 Distraction Ignore 

35082 0 0 0 0 1 125 0 0 0 35240 

35240 0 7 0 9 2 117 0 0 0 35408 
 
Table II demonstrates the recognition of different 

situations and activities. Furthermore, an additional action 
and expectation are reasoned and recognized.  

TABLE II.  EXAMPLE RECORD BASED ON PRESETS 

75041 90 0 0 0 20 0 0 0 1 75141 WalkingBy Walking 

. . . 

79949 90 0 0 0 20 0 0 0 1 80109 

80109  0 0 0 0  0 0 1 0 1 80164 Cooperation  

                    HoldTool TakeTool getWorkPiece 
 
During a recognition cycle all recognized concepts are 

returned from the DL reasoner in a single flush, therefore, 

 

 
 

Figure 6. ER model of the action ontology. 
 

 

 
 

Figure 7. ER model of the expectation ontology. 
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the number of lines in the records represents the number of 
returned responses.  

Table I and II also depict the different feature values 
achieved by either using processed sensor data – Table I – or 
presets – Table II respectively.  Assuming the recognition is 
fast enough, natural movement and action transitions can be 
observed. In the next section, this will be investigated. 

 

B. Results 

Tables I and II already indicate that the processing time 
of a recognition cycle varies between 100 ms and 200 ms. 
By analysis of a large amount of processing cycles, this 
indication needs to be corrected only slightly upwards.  

TABLE III.  RESULTS FROM EVALUATION (PRESETS) 

# Recognition cycles 2830 
 

# > 500 ms 
441 

(15.58%) 

Ø Response time [ms] 263.19 
 

# > 1000 ms 
100 

(3.53%) 

Min [ms] 54 
 

# > 1200 ms 
100 

(3.53%) 

Max [ms] 1221  # > 1220 ms 1 (0.03%) 

Standard Deviation [ms] 284.17    

 
In Table III, the results of 2830 recognition cycles are 

summarized. Feature value presets were used and it shows 
that the average processing time is approximately 263 ms. 
The lower bound is 54 ms. The casual outliers take up to 1.2 
seconds in worst case scenarios. The number of cycles taking 
more than 1 second reaches 3.53% of all cycles. Almost all 
of these outliers are situated between 1.2 and 1.22 seconds.  

In Table IV, corresponding results are shown using actual 
processed sensor data during recognition. Recorded were 
2680 cycles with an average processing time of 
approximately 237 ms. This seems faster than using value 
presets. Interestingly, the maximal outliers and the standard 
deviation are worse. 

TABLE IV.  RESULTS FROM EVALUATION (SENSOR DATA) 

# Recognition cycles 2680 
 

# > 500 ms 
381 

(13.46%) 

Ø Response time [ms] 236.68 
 

# > 1000 ms 
112 

(3.96%) 

Min [ms] 37  # > 1200 ms 79 (2.79%) 

Max [ms] 1543  # > 1500 ms 41 (1.45%) 

Standard Deviation [ms] 320.24    

 
In Figure 8, the processing time of some cycles using 

presets are shown. The reoccurring nature of the feature 
value presets can clearly be recognized. It can also be seen, 
that the outliers are systematic and presumably dependent on 
feature values. 

In Figure 9, the cycle processing time and the 
corresponding returned number of recognized concepts are 
depicted. It can be seen, that the number of resulting 
concepts is not directly related to the cycle time. 

In order to investigate the difference in runtime behavior 
further, the evident change in cycle times, marked by a red 

rectangle in Figure 9, is examined in Table V. The first 
number in each row marks the cycle index. The first two 
rows enumerate the used feature values during those cycles. 
The bottom rows present the recognized concepts. The only 
difference is the occurrence of the concepts Monitor 
(Monitoring) and Ignore (Distraction) respectively. This 
change is triggered solely by the change of the angle 
difference between viewing angle and robot, namely 
changing from 0 to 60. 

In the knowledge base the definition of these concepts 
only differs in the evaluation of this angle difference. Thus, 
the change in runtime duration cannot be directly related to 
the character of declaration of these concepts.  

It is noticeable, that the increase in cycle times occurs 
with the recognition of a Distraction. This is 
counterintuitive, as the possibilities of interaction decrease 
with distraction and increase with an attentive human 
worker. 

 
 

Figure 8. Runtime analysis with reoccurring feature value presets. 

 

 
 

Figure 9. The bottom line (green) shows the number of returned concepts. 
The upper line (blue) shows the corresponding cycle processing time. For 

recognition, feature value presets were used. The red rectangle highlights the 
examined feature value change. 
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The repeatable and counterintuitive observation will need 
further investigation in order to optimize the DL knowledge 
base and achieve better performance.  

TABLE V.  EXAMINATION OF FEATURE VALUE CHANGE AND CYCLE 

TIME 

303 0 0 0 0 0  0 0 0 1                used feature 

304 0 0 0 0 0 60 0 0 0                      values 

 

303 TOP HumanPresent Monitoring TOP Standing  

    Monitor ArmsDown FollowPathPlanning 

304 TOP HumanPresent Distraction TOP Standing  

    Ignore ArmsDown FollowPathPlanning 

 
In Figure 10, the cycle processing time is shown, when 

using processed sensor data. As expected, the repeatability of 
the preset feature values cannot be achieved. Peaks of more 
than 1000 ms are not a rare coincidence. Thus, further 
investigations about runtime durations are necessary. 
Nevertheless, most processing cycles have shorter durations 
than 800 ms, and as Table IV shows, the average processing 
time is below 237 ms. This allows for recognition frame 
rates of about 4.2 Hz on average. 

 
In Figure 11, the frame rates of the MAROCO 

framework are shown. In each frame sensor data is 
processed, risk is evaluated and the robot motion and path 
planning are adapted accordingly. The frame rates reach 
occasional lows with 15.9 Hz and average out around 33.8 
Hz. Recorded sensor streams were used for playback during 
these tests in order to be independent on a possible 
bottleneck due to sensor restrictions. The repeating sensor 
input can clearly be recognized in Figure 11. 

The peaks in performance are reached when there is no 
human worker in the supervised working area of the robot. 
These peaks reach up to 126 Hz. When the human reenters 
this area, the data shows noticeable performance decrease. 
The circles in Figure 11 mark obvious examples. In these 
cases, the performance drops to a low and recovers 
afterwards to converge with the average frame rate. This 
indicates the adaption of the path planning [5] to the human 

presents. Though, this data is not sufficient to allow 
profound analysis. Thus, the recognition module might cause 
these performance decreases. 

 
By using the kinematical human model, recognition of 

gestures and human motion can be analyzed. In Figure 12, 
different examples of recognized situations and actions are 
depicted. The topmost picture shows a human watching the 
robot. The icons to the right symbolize the recognition 
results. Thus, the identified situation is Monitoring. No 
specified action is recognized. The robot is expected to carry 
on with its task of following its preplanned path. 

In the second image of Figure 12, a human is 
communicating with the robot. The complex action to signal 
a stop of robot movement is recognized. Thus, the resulting 
situation is identified as Communication. The robot is 
expected to comply with the users instructions. 

The bottommost picture also shows a human 
communicating. The complex action to signal a right turning 
movement is recognized. The robot is expected to comply 
accordingly. 

TABLE VI.  EXAMPLE RECORD FOR NATURAL MOVEMENT 

342000 0 0 1 0 7 4 0 1 1 342111 Monitoring Monitor  

                                followPathPlanning 

. . . 

342779 0 0 1 0 7 3 0 1 1 342890 

342890 14 13 10 11 3 4 0 1 1 342952 

342952 20 26 13 16 3 4 0 1 1 343012 

343012 35 39 16 22 4 4 0 1 1 343073 

343073 47 46 19 28 0 5 0 1 1 343134 

343134 47 46 19 28 0 5 0 1 1 343195 

343195 54 51 21 31 0 5 0 1 1 343428 Comm. MoveArms 

                      StopRobot followInstructions 

 
Table VI shows an example in which a human first 

watches the robot. This concludes the expectation, that the 
robot shell follow a planned path. After some time the 

 
 

Figure 10. Runtime analysis with processed sensor data. 

 
 

Figure 11. Frame rates of the MAROCO sensor data processing and robot 
control cycle running in parallel to the recognition module. The circles mark 
the reentrance of the human into the work area of the robot with noticeable 

decrease of performance. 
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human moves his arms which results in a communicative 
situation. The reasoning results in the expectation that the 
robot shell comply with the instructions. It can be seen, that 
both arms are moved upwards at the same time. The value 
changes are observable over some cycles.  

 Consequently natural movements and actions can be 
recognized despite the average cycle processing time of 
approx. 250 ms. 

Tables II and VI demonstrate that depending on situation 
and actions expectations are generated. The generation of 
expectation is also dependent on the robot movement status. 
Table VII shows that at first a cooperative situation is 
recognized and a generated expectation get Work Piece. At 
this moment the robot was following a planned path, which 
is signaled as 1 in the feature vector. In the simulation 
incorporated in MAROCO, this generated expectation leads 
to a change of the robot movement status which sets the 

corresponding feature value to 2, meaning the robot is 
obeying instructions. This change allows the reasoning to 
conclude the new expectation to position the robot’s tool 
center point in order to ease the work that the user is about to 
do with the work piece. 

TABLE VII.  EXAMPLE FOR DYNAMIC EXPECTATION REASONING 

96795 75 0 21 0 0 3 1 0 1 97287 Coop. HoldTool  

                             TakeTool getWorkPiece 

97289 75 0 22 0 0 0 1 1 2 97799 positionTCP 
 
This process of interaction between reasoner results and 

robotic behavior demonstrates the dynamic abilities of the 
presented approach to recognize and understand situations 
and actions. 

 

C. Evaluation of Results 

The results demonstrate that the capabilities of the 
presented approach reach beyond sole activity and situation 
recognition. By generating expectations towards robot 
behavior, an understanding of the situation can be achieved. 
This induction of relations between concepts can hardly be 
realized by purely probabilistic methods. 

The achieved processing cycle time of approx. 250 ms 
does not allow for safe cooperation based only on the 
recognition module. Thus, the MAROCO framework uses its 
implemented techniques and algorithms to enforce safety and 
real-time capabilities during robot motion. Nevertheless, the 
measured results will be used to quantify improvements of 
later developments.  

In comparison with presented results in [1], an increase 
of performance was achieved. The recognition module 
executes its processing cycle more than two times faster on 
average. Due to the incorporation of the DLs reasoning 
system into the MAROCO framework, these speedups are 
gained. It avoids the overhead of the DIG-interface and 
allows for a more thorough investigation concerning runtime 
and cycle duration. 

Having a closer look at the results, there are still outliers 
that take more than a second. All cycle times were faster than 
5 seconds, which was observed in [1]. Investigation in 
concept dependent runtime is needed in order to optimize the 
dependencies between concepts and the overall recognition 
performance. 

In Table VI, it is demonstrated, that the rates of changes 
of actions can be captured. Still, to the best of our 
knowledge, there are no investigations concerning the rate of 
change of human actions in human-robot cooperative 
scenarios. During the experiments conducted for this 
publication, the subjective impression of the MAROCO 
system was responsive and accurate. Nevertheless, it can be 
assumed that repetitive work can be carried out faster by an 
experienced human worker than the current module is 
capable of recognizing. More effort has to be spent to be able 
to evaluate the real-time capabilities of the recognition 
module accurately. 

To the best of our knowledge, there are no other such 
time related results made available in the field of industrial 

 

 

 
 

Figure 12. Different examples of recognized situations and actions. The 
icons on the right in each image symbolize the recognition results. 
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human-robot cooperation or another related field close to it 
so far. 

VI. SUMMARY AND FUTURE WORK 

In this paper, a situation and action recognition module 
was presented, which is capable of generating expectations 
towards robotic behavior.  

A knowledge base containing domain and assertional 
knowledge is modeled. It defines concepts about situations, 
activities, actions and expectations. These concepts are 
linked and related by role definitions. Temporal associations 
of actions are modeled by an after-role, which allows 
preconditioning the recognition of certain actions. 

Description Logics are used to define the knowledge 
base. The Description Logics reasoner FaCT++ was 
incorporated into the MAROCO framework. A volatile 
axiom definition was introduced to the reasoner to avoid 
increasing memory requirements due to repeated updates to 
the assertional knowledge.  

In order to express value constraints on concept 
attributes, the feature extraction process maps feature values 
onto sets, which can be represented as strings in the 
knowledge base. This allows additionally for support of 
future development in regards to symbol based classifiers. 
This might ease the load on DL reasoning and achieve 
further increase of performance. 

During evaluation the effectiveness was shown. 
Situations, activities and naturally conducted actions are 
recognized. Expectations are generated and can influence 
dynamically subsequent processing cycles. 

Compared to previous work, an increase of recognition 
performance was achieved. The recognition cycle requires 
less than half the processing time on average. Extreme 
outliers of over 1.5 seconds duration do not occur. 

The here presented experimental results are promising for 
further research in the field of cognitive industrial robotics. 

The next steps will be modeling a broader knowledge 
base in order to incorporate multi-robot setups and more 
complex cooperation scenarios. Also, the implementation of 
action plan recognition will deepen the understanding of 
situations and enable the analysis of complex cooperation 
scenarios. 

Optimizations to the reasoning system FaCT++ matched 
to the structure of the implemented ontology might increase 
recognition performance. Thus, further investigation of 
concept dependent cycle time durations is needed. Also, 
implementation of incremental reasoning can avoid 
processing of unchanged knowledge. 

Moreover, investigations concerning rate of changes of 
human actions will allow better evaluation of real-time 
constraints and capabilities of the recognition module. 

Using generated expectations towards robotic behavior as 
input for subsequent task planning will augment the 
cooperative experience and will allow research on system 
responsiveness and accuracy. It will also enable 
investigations concerning interaction of reasoner results and 
robotic behavior. 

It was taken a stand against the probabilistic way of 
estimating actions from image sequences in the beginning of 

the related work section. But it is suggested to evaluate 
different approaches in the near future which also take 
probabilistic methods into account or maybe apply different 
methods in a boosting like manner bringing together the best 
of both worlds. 
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