
256

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Behaviour-inspired Data Management in the Cloud

Dariusz Król, Renata Słota, Włodzimierz Funika

AGH University of Science and Technology, Faculty of Electrical Engineering,
Automatics, Computer Science and Electronics, Department of Computer Science,

al. Mickiewicza 30, 30-059 Krakow, Poland
{dkrol, rena, funika}@agh.edu.pl

Abstract — Open source cloud computing solutions are still not
mature enough to handle data-intensive applications, e.g.,
scientific simulations. Thus, it is crucial to propose appropriate
algorithms and procedures to the data management problem in
order to adjust Cloud-based infrastructures to scientific
community requirements. This paper presents an approach
inspired by the observation of the Cloud user behaviour: the
intensity of data access operations, their nature, etc. We also
describe how the proposed approach influences the
architecture of a typical Cloud solution and how it can be
implemented based on the Eucalyptus system, which is a
successful open source Cloud solution.

Keywords-cloud computing; data management; monitoring;
behaviour patterns.

I. INTRODUCTION
Cloud computing is arguably the most popular buzzword

in the tech world today. It promises to reduce the total cost of
maintenance of an IT infrastructure with providing better
scalability and reliability at the same time. Apart from
“unlimited” computational power, the Cloud provides also
"unlimited" storage capacity which can be accessed from
every device which is connected to the Internet. Therefore,
this is not a surprise that many commercial companies along
with academic facilities are very interested in this paradigm.
As with other paradigms, various research centers test it in a
variety of ways in order to unveil its strengths and
weaknesses. What makes the Cloud computing special in
comparison to other, more academic-related approaches to
distributed computing, e.g., Grid computing [2], is the
support and investment made by the largest IT companies
[3], e.g., Google, IBM, Microsoft and many others. These
million dollars investments can be treated as a good omen
that Cloud computing can be widely adopted and will not
disappear after few years.

From a few years now, Clouds are evolving into a
number of different forms but with a common goal, i.e.,
providing computational power and storage capacity on
premise. Existing Clouds can be classified in a few ways
each of which relates to one feature from the following list:

• accessibility of the Cloud for users,
• abstraction level on which Cloud users operate,
• resources provided by the Cloud,
• openness of the source code of the Cloud.

The first taxonomy includes public, private and hybrid
Clouds. Today, the most popular are public clouds which can
be used by anyone. Potential customer needs only to obtain
an account on the providers site. This category includes
Amazon Elastic Compute Cloud (Amazon EC2) [5],
Microsoft Azure [6], Google AppEngine [7] and many
others. On the other hand, there are private clouds. In most
cases, they are limited to resources and members of a single
organization. Also, their accessibility is limited to the
organization's intranet. The third group, called hybrid
Clouds, concerns a special type of private Clouds whose
computation power and storage capacity can be extended by
resources of public Clouds. Hybrid Clouds exploit the
scalability feature of the Cloud to provide required resources
by utilizing publicly accessible Clouds when the in-house
infrastructure is not enough.

The second taxonomy concerns the style in which the
customers use Clouds. This taxonomy includes:

• Infrastructure as a Service (IaaS) Clouds which
provide access to a virtualized pool of resources
using which customers assemble Virtual Machines
(VMs) on which customers install any technology
stack and any applications they need. Probably the
most well known example of this group is Amazon
EC2,

• Platform as a Service (PaaS) Clouds expose a well
defined runtime environment, e.g., Java Virtual
Machine or Microsoft .NET and programming
services which are used to develop applications
without troubling with virtual machines, e.g.,
queuing systems, (non-)relational databases and
more. This group includes Google AppEngine
among many other,

• Software as a Service (SaaS) Clouds are about
delivering applications which are deployed at the
providers infrastructure, e.g., Google Apps [8].
Applications which are exposed with SaaS model
are accessible mostly often via a web browser and
are provided in the pay-per-use model. This group
focuses on customers rather than developers.

The third taxonomy of Clouds focuses on the type of
resources provided. Today, this taxonomy includes two
elements: compute Clouds and storage Clouds. The first
group comprises Clouds which provide access to
computational power by running VMs or applications on a

257

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specified virtualized hardware, e.g., in Amazon EC2 the user
can choose the size of a virtual machine to use in terms of
the available number of virtual CPUs and RAM memory [9].
To mention just a few examples, the customer can choose a
small instance of a virtual machine which can be defined as a
single, normalized, virtual CPU, 512 MB of RAM and 10
GB of hard drive capacity while a big instance can consist of
8 virtual CPU, 4 GB of RAM and 50 GB of hard drive
capacity. On the other hand, the storage Clouds enable users
to store data sets in a number of ways, i.e., in files, (non-
)relational databases or block devices. In theory, the storage
clouds can provide an infinity storage capacity on demand.

The last taxonomy divides Clouds into two groups: open-
source Clouds and proprietary Clouds. This classification is
important especially from a developer point of view. Open-
source Clouds can be modified and analyzed by anyone
while proprietary Clouds are commercial solutions mostly
often with a closed source code. Hence, their internals are
hidden from customers or developers from outside the Cloud
provider’s company. Thus, in many situations, it is difficult
or even impossible to compare these two types of Clouds.

Todays Cloud computing solutions, especially the open
source ones, are not mature enough in terms of storage
capabilities to handle data-intensive applications which need
to store results in Cloud-based storage. One of the issues is
the lack of adaptability of data management strategy, e.g., to
dynamically changing user requirements or location from
where the user access the Cloud storage. Each of these
aspects influences the access time to data especially when
considering geographically distributed resources which
constitute a single Cloud installation, e.g., a user who lived
in Europe can download his data from a data center in US
instead of a closer data center located in Europe. Therefore,
we propose a novel approach, based on autonomic systems
(similar to situation-aware systems - [4]) and behaviour
observation whose main goal is to adapt data location to the
user needs which will result in decreasing data access time
and higher utilization factor of resources. We introduce a
“Usage profile” concept which describes a piece of data
stored in the Cloud storage. The usage profile contains
information how the described data is used by Cloud clients.
To create such a profile, storage-related operations
performed by Cloud users are monitored and analyzed. The
approach is designed to be an additional element of the
Cloud installation rather than being mandatory. Thus, it can
be treated as a plugin for a Cloud solution. Moreover, it is
transparent from the Cloud user point of view because it
operates on the Cloud provider’s side where various
management actions can improve the storage performance.

The commercial clouds, e.g., Amazon EC2 which is an
IaaS solution, i.e., it allows to manage a computational
environment consisting of virtual machines, cannot be easily
studied due to proprietary source code, thus in this paper
they will not be taken into consideration.

This article is an extended version of the work presented
in [1]. The rest of the paper is organized as follows.In
Section II, a number of the existing Cloud solutions and
Cloud-based storage services are presented. In Section III,
we describe a data management algorithm which is based on

behaviour analysis. Parameters of the usage profile along
with behaviour which is analyzed to create usage profiles are
described in Section IV. A prototype implementation of the
algorithm is presented in Section V. Directions for future
work are discussed in Section VII. The paper is concluded in
Section VIII.

II. RELATED WORK
Cloud computing has been already widely adopted by

various commercial companies and academic facilities.
While many commercial companies develop their own
solutions, e.g., Amazon EC2, Microsoft Azure or Google
AppEngine, others use and invest in open source solutions
which are especially well suited for situations where the
environment has to be adapted to some specific
requirements. This feature is very important for scientific
community which would like to implement new concepts
and approaches, e.g., to optimize data access time or other
parameters. In this section, we focus on three well known
IaaS environments: Eucalyptus, Nimbus, OpenNebula and
OpenStack. We also consider a few commercial products for
data management. In addition, two data management systems
which are based on the Grid computing paradigm are
presented. Hence, we will be able to compare Cloud-based
solutions with Grid-based solutions which is valuable for
readers with a Grid computing background but who are not
familiar with Clouds yet.

A. Eucalyptus
Eucalyptus system [10] is an example of an open source

project which became very popular outside the scientific
community and is exploited by many commercial companies
to create their own private clouds. It was started as a research
project in the Computer Science Department at the
University of California, Santa Barbara in 2007 and today it
is often treated as a model solution of an IaaS Cloud.
Eucalyptus aims at providing an open source counterpart of
the Amazon EC2 Cloud in terms of interface and available
functionality. There are two versions of the Eucalyptus
Cloud: Community and Enterprise.

Each Eucalyptus installation consists of a few loosely
coupled components each of which can run on a separate
physical machine to increase scalability. The frontend of
such a Cloud is “Cloud controller” element which is an
access point to the virtual machines related features. While
“Cloud controller” is responsible for computation, the
“Walrus” component is responsible for data storage. It
allows to store virtual machine images along with any other
files which are organized into a hierarchy of buckets and can
be treated as a counterpart of Amazon Simple Storage
Service (S3) [11] in the Eucalyptus system. Amazon S3 is a
Cloud storage service which allows to store any type of data
in form of files in a number of buckets (each with a unique
name within a bucket) using a simple Application
Programming Interface (API), i.e., put, get, list, del
operations are supported. Each virtual machine is run on a
physical host which is controlled by the “Node controller”
element. A group of nodes can be gathered into a cluster
which exposes a single access point, namely “Cluster

258

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

controller” from the virtual machine management side and
“Storage controller” from the virtual machine images
repository side.

Eucalyptus is based on the Java technology stack and its
source code is freely accessible and can be modified as
necessary. To mention a few, the current implementation
uses web services (Apache Axis [12]) to expose the provided
functionality to the external clients, and exposes a web-based
user interface developed with Google Web Toolkit (GWT)
[13]. It also supports the Xen [14] and Kernel-based Virtual
Machine (KVM) [15] hypervisors to run virtual machines on
the supervised resources.

The open version of the Eucalyptus system stores data
into a single directory on the host on which the Walrus
component is installed. Therefore, the only way to distribute
the data is to exploit a distributed file system, e.g., Lustre
[16] or Oracle Cluster File System 2 [17], which will be
mounted to the directory used by the Eucalyptus installation.
However, this file system is orthogonal to the Cloud
solution, i.e., it does not have access to any information
about the Cloud. Thus, it can manage data based on some
basic information only, e.g., size of stored files or capacity of
available storage resources. Such strategies are very limited
and are not customizable for the Cloud computing paradigm.

On the other hand, we have the Enterprise version of
Eucalyptus. Among other features, the Enterprise version of
Eucalyptus provides an adapter for direct integration with
Storage Area Networks (SANs) [18], e.g., Dell Equallogic or
NetApp. With this adapter, you can easily configure
Eucalyptus to exploit SAN [19] directly as a data storage
back end. However, to our best knowledge, this integration
does not allow to combine different types of storage systems
within a single Cloud installation. Also, a Cloud
administrator can`t provide policy for data distribution
among available storage resources. The data management is
left entirely to the SAN solution which knows nothing about
the Cloud, its users or the type of data stored in the Cloud.
Though, SANs are enterprise-class solutions for data storage,
they do not provide any Cloud-specific storage strategies
which would regard, e.g., information about Cloud
customers.

B. Nimbus
Nimbus [20] is a toolkit for turning a cluster into an IaaS

Cloud computing solution. It is developed by the Globus
Alliance [21]. A Nimbus client can lease remote resources
by deploying virtual machines on these resources and
configure them to fulfil the user requirements. What makes it
attractive is support for a communication interface known
from the Grid computing, namely Web Services Resource
Framework (WSRF) [22]. As in other popular solutions,
Nimbus provides an Amazon EC2 compatible interface for
Cloud clients, which is de facto a standard of IaaS
environment due to its wide adoption in a number of
solutions.

A Nimbus installation consists of a number of loosely
coupled elements. The center point of the Nimbus
architecture is the “Workspace service” component which is
a coordinator of the whole installation. It is invoked through

different remote protocol frontends, e.g., WSRF or EC2 –
compatible services. Another important component is
“Workspace resource manager” which runs on each host
within the Cloud and is responsible for controlling a
hypervisor on the host machine. The current version fully
supports the Xen hypervisor and most of the operations on
the KVM hypervisor. It is also worth of mentioning that
Nimbus installation can be easily connected to a public
commercial Cloud, e.g., Amazon EC2 in order to achieve
even greater computer power when the in-house
infrastructure is not enough.

In terms of data management, the Nimbus project is
limited to the virtual machine image repository. There is no
component which would provide a functionality similar to
that of the Amazon S3. The user can only upload virtual
machine images to the Nimbus cloud and store the data
stemming from computation on storage devices connected
directly to a virtual machine.

The Nimbus project is based on open source tools and
frameworks, e.g., Apache Axis, the Spring framework [28]
or JavaDB [29]. Therefore, everyone can download its
sources from a public repository and modify its functionality
as desired.

C. OpenNebula
OpenNebula [30] is a Virtual Infrastructure Manager for
building cloud infrastructures based on Xen, KVM and
VMWare virtualization platforms [31]. It was designed and
developed as part of the EU project RESERVOIR [32],
whose main goal is to provide open source technologies to
enable deployment and management of complete IT services
across different administrative domains. OpenNebula aims
to overcome the shortcomings of existing virtual
infrastructure solutions, e.g., inability to scale to external
clouds, a limited choice of interfaces with the existing
storage and network management solutions, few
preconfigured placement policies or lack of support for
scheduling, deploying and configuring groups of virtual
machines (apart from the VMWare vApp solution [34]).
Like other of the presented solutions, OpenNebula is fully
open source and its source code can freely be downloaded
from a public repository.

OpenNebula architecture was designed with modularity
in mind. Therefore, it can be extended to seamlessly support
a new virtualization platform e.g., in terms of virtual image
or service managers. For instance, a procedure of setting up
a VM disk image consists of well-defined hooks whose
implementation can be easily replaced to interface with the
third-party software. To manage an OpenNebula
installation, the user can use a simple, dedicated command
line interface or Amazon EC2 query interface. Therefore, it
can be accessed with the tools originally developed to work
with the Amazon EC2 cloud.

In terms of storage mechanisms, it is limited to repository
of VM images only. The repository can be shared between
available nodes with the Network File System (NFS) [35]. It
is also possible to take advantage of block devices, e.g.,

259

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Logical Volume Management 2 (LVM2) [36] to create
snapshots of images in order to decrease time needed to run a
new image instance.

D. OpenStack

OpenStack is a joint effort of NASA and RackSpace.
NASA contributed to the project by releasing its
middleware, called Nebula [23], for managing virtual
machines at physical infrastructure. RackSpace contributed
with its storage solution known as Cloud Files [24].
OpenStack [25] is a collection of tools for managing data
centers resources to build a virtual infrastructure. In terms of
computations, OpenStack provides OpenStack Compute
(Nova) solution which is responsible for managing instances
of virtual machines. In terms of storage, OpenStack
provides OpenStack Object Storage (Swift) which is an
object storage solution with built-in redundancy and failover
mechanisms. There is also a separate subsystem, called
OpenStack Imaging Service, which can be used to lookup
and retrieving virtual machine images. Since the first release
of OpenStack was in October 2010, there is no evidence
about production deployments of the toolkit in either
industry or scientific area yet. Thus, there is no information
about the performance and stability of OpenStack. Also,
OpenStack lacks of an interface that would be compatible
with the Amazon clouds which is a de facto standard in the
Cloud ecosystem.

E. Flash Cloud
“Flash Cloud” [27] is a commercial service for storing

data using the Cloud paradigm. After creating an account,
the user gets access to a certain storage capacity which can
be scaled up depending on your requirements. Your data can
be managed using the following methods:

• Web 2.0 interface,
• native desktop software for PC or Mac and mobile

devices including IPhone and BlackBerry,
• Web Distributed Authoring and Versioning

(WebDAV)-based [38] API.
The data are stored using industry leading solutions such

as Internet Small Computer Interface (iSCSI) [37], File
Transfer Protocol (FTP)/Network Attached Storage (NAS)
and EVault [39]. However, “Flash Cloud” does not provide
any mechanism for integrating with popular computing
Clouds, e.g. Eucalyptus, Nimbus, OpenStack. Moreover, the
storage capacity limits (250GB for a normal customer and
2000 GB for an enterprise customer) are rather low
comparing to the requirements for a Cloud which can be
measured in TeraBytes or even PetaBytes. The last
drawback is the programming interface which is proprietary
and does not follow any popular solutions, though it is
based on open WebDAV protocol.

F. EMC Atmos
Another commercial product is EMC2 Atmos which is a

complete Cloud Storage-as-a-Service solution [17]. It

provides massive scalability by allowing to manage and
attach new storage resources from a single control center.
Atmos features policy-based information management
which allows to define bussiness level policies how the
stored information should be distributed among available
resources. It also reduces effort required for administration
by implementing auto-configuring, auto-managing and auto-
healing capabilities. In the newest version 2.0, it also
provides a Representational State Transfer (REST)-based
API which is compatible with Amazon S3. Although,
Atmos provides many interesting features and capabilities, it
does not provide integration with existing Clouds, to our
best knowledge. It is rather a separate solution oriented to
the storage only, i.e., it does not support any functionality
related to running virtual machines. Thus, to provide your
users with a fully functional Cloud you will need to use a
computing Cloud solution besides EMC Atmos. However,
the data management within EMC Atmos does not take into
account specific information about the computing Cloud
part and its users, e.g., access frequency to users data.

G. XtreemOS
XtreemFS [33] is a cluster-oriented, distributed file

system developed within the XtreemOS European project.
The main goal of the project is to develop an easy to use and
administrate, grid operating system which provides an
abstraction layer on top of available resources, both
computational and storage ones. From the data management
point of view, the project provides a modern file system
which is optimized to run in a Grid environment. It focuses
on such features as: scalability, parallel Input/Output (IO),
replication and extendibility. Like many other distributed
file systems, XtreemFS separates metadata information
from the actual data in order to provide a coherent logical
namespace on the one hand and to distribute actual data
among available resources, on the other hand. The
replication mechanism is introduced to provide high
availability of the stored data. While this behaviour is
appropriate for crucial data which may not be lost in any
case, in other cases the replication mechanism generates
only overhead in terms of time necessary to write a single
file in many locations. Also, there is no Web Service
interface available to access the XtreemFS remotely.

H. dCache
DCache [26] is a data management system which

implements all the requirements for a Storage Element in
the Grid. It was developed at CERN to fulfil the
requirements of the Large Hadron Collider for data storage.
One of its main features is the separation of the logical
namespace of its data repository from the actual physical
location of the data. DCache exposes a coherent namespace
built from files stored on different physical devices.
Moreover, dCache autonomously distributes data among
available devices according to the currently available space
on devices, workload and the Least Recently Used

260

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithms to free space for the incoming data. Although
dCache distributes data in an autonomic way, there are
settings which can be configured to tune the dCache
installation to specific requirements of a concrete user. This
parameter set contains rules which can take as an input a
directory location within the dCache file system and storage
information of the connected Storage Systems as well as the
IP address of the client and as an output such a rule returns a
destination where the data should be sent. DCache is a Grid-
oriented tool by design, thus it is not compatible with
existing Cloud solutions. DCache provides a programming
interface similar to a filesystem interface which is at a lower
level of abstraction comparing to the storage cloud interface.
However, dCache could be treated as a storage system
which is used by a storage cloud rather than being a
complete storage cloud solution.

III. BEHAVIOUR-INSPIRED APPROACH TO DATA
MANAGEMENT

The most important aspect of the presented approach is
its orientation towards the requirements of each user rather
than some global optimization such as equal data distribution
among available resources. Our approach treats each user
individually by monitoring his/her behaviour related to data
storage. The monitoring is needed to discover the nature of
data automatically, e.g., whether it is read-only or often
modified data. With this knowledge, the data can be
managed appropriately, i.e., with requirements such as high
availability taken into account. Another important feature of
the approach which can be deduced from the previous one is
its transparency from the user point of view. Thus, it can be
applied to any existing solution without any modification
required to the user-side code.

The structure of the described algorithm is depicted in
Figure 1. There are 3 phases included:

• The observation phase where the information about
the user behaviours are aggregated. It is a start point
of the management iteration. Each operation related
to the storage, e.g., uploading or downloading files
is recorded along with information about the user
who performed the operation and a time-stamp.

• The profile construction phase is the one where the
gathered behaviour-related data about is analyzed.
For each user, a profile which describes how the
user accesses each piece of data is created, thus the
profile also contains information how each piece of
data should be treated.

• The data management phase is responsible for
modifying the data storage, i.e., applying a
dedicated strategy which corresponds to a user
profile. Such a strategy can e.g., create many
replicas of a piece of data which is read by many
users but hardly anyone modifies it or it can move
the data closer to the user to decrease its access
time.

An important feature of the algorithm is the fact that it
never ends. There is no stop condition because such a
management process may last as long as the Cloud is

running. Each iteration of the loop results in tuning the
storage strategy to the observed user behaviour. However,
the historical data is taken into account as well and can
influence the storage strategy rather than just be omitted. In
fact, its importance to the new strategy is one of the
parameters of the algorithm.

Figure 1. Profile-based data management loop.

Another important aspect of the approach is its influence

on the architecture of a cloud solution. The overview of such
an architecture is schematically depicted in Figure 2. To
underline its most important components, some
simplifications were introduced, e.g., the Cloud solution is
represented only by "Cloud manager" which is an access
point to the cloud infrastructure. "Storage elements"
represent physical resources where the data is actually
stored. The new components are as follows:

• Monitoring system is responsible for gathering
information about user actions. The most important
operations are those related to data storage, e.g.,
uploading a file or accessing a file by the user.
Information about these actions have to be remotely
accessible by an external Cloud client in a
programming language independent way.

• Behaviour data manager is the main element of this
new approach. It performs the analysis of the user
behaviours and creates their profiles. Then, it
performs all the necessary actions to adjust the
storage strategy to the actual profile. In most cases,
these actions will be related either to moving data
between storage elements with different physical
parameters or to managing data replication, e.g.,
creating new replicas. By combining these two
types of operations, we can improve the Quality of
Service (QoS) of the cloud storage, e.g., decrease
the data access time. It is also possible to apply
more sophisticated algorithms for data management
as the ones described in [41] and [42]. The
communication between “Behaviour data manager”
and “Storage elements” is optional. If “Cloud
manager” exposes an interface to manage the actual
data location, there is no need in “Behaviour data
manager” to interact with “Storage elements”
directly.

261

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Profile knowledge base is a repository where the
historical profiles for each piece of data are stored
along with a record of each performed action. Thus,
it can be used by the "Behaviour data manager" to
take into account not only the most recent
information but also the previous actions.

As we can see, the approach can be easily integrated with
any Cloud solution which can be monitored, i.e., each
performed operation related to the storage is registered, and
the stored data can be moved between available physical
resources, either indirectly with an exposed programming
interface or directly with accessing storage elements and
moving raw data. These requirements are rather easy to meet
and in the next section we are presenting an example
implementation based on a popular open source Cloud
solution. It is also worth mentioning that in most cases the
original source code of such a Cloud solution may stay
untouched.

IV. USAGE PROFILE
The presented approach highly exploits usage profiles

which are based on the observation of the actions performs
by Cloud users. In our approach, a usage profile describes
how a concrete piece of data in the Cloud is used by
customers within a specified period of time in a quantitative
way. The quantitative nature of usage profiles is a must in
order to enable comparison of usage profiles. We would like
to represent each usage profile as an element of a N-
dimensional space where N denotes the number of usage
profile parameters. By doing so, we can determine the
relationship between each two profiles, e.g., whether they
are similar, i.e., close to each other or not.

Such a profile aims at describing a behaviour pattern for a
piece of data to which the profile is assigned. Thus, it can be
treated as a kind of metadata for the actual data stored in a

Cloud storage. The necessary data for creating usage
profiles is obtained with a dedicated monitoring system. On
the other hand, we have a set of behaviour classes which
define typical usage patterns in the domain of data storage,
e.g., read-only data. In our representation in an N-
dimensional space, each behaviour class will be represented
by distinct subspaces of the entire space. Thus, we will be
able to easily determine to which subspace each usage
profile belongs.

The behaviour classes should be defined either by experts
of the data storage domain or experienced administrators of
storage solutions. To each behaviour class, a set of proper
actions is assigned concerning the usage pattern which is
described by the class. After creating a usage profile for a
given data object, the nearest behaviour class is chosen.
Then, the assigned set of data management actions is
performed in order to increase desired quality parameters of
the Cloud, e.g., throughput, data availability or data access
time. Which quality parameters will be increased depends
on the behaviour classes and data management actions
assigned to the behaviour classes. This algorithm is
performed periodically in a loop with a configurable interval
between iterations.

For a system prototype, we defined the following
parameters which will be included in usage profiles:

• frequency of access to an object, e.g., per hour or
per iteration of the algorithm loop,

• number of read/write operations,
• number of different users accessing to the object

(separately for read/write operations),
• number of different places (e.g., IP addresses) from

which the object was accessed (separately for
read/write operations).

Based on these parameters a set of predefined behaviour

Figure 2. Architecture overview of a cloud solution with “Behaviour data manager” involved.

262

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

classes can be created. They should correspond to the well
known storage management patterns, e.g., when an object is
always read, it should be replicated to multiple physical
locations to decrease the access time.

Such a profile is created for each piece of data in the
cloud storage (e.g., file) after the first iteration of the
algorithm and updated on each subsequent iteration. In each
“Data management” phase, for each profile a similarity
function to each defined profile type is calculated. Then, the
actions related to the most similar profile type are
performed.

Therefore, the approach can be easily extended in terms
of recognized behaviour, simply by defining new behaviour
classes along with related actions.

V. IMPLEMENTATION
To present a sample implementation of the approach, we

chose the Eucalyptus system as a basis. This choice was
motivated by the large popularity of Eucalyptus and its
functionality in terms of storage which is very similar to the
Amazon S3 offer, a de facto standard in the Cloud industry.

The Eucalyptus architecture contains a component called
"Walrus" which is responsible for the storage-related
functionality. "Walrus" exposes an API which comprises

methods for creating, updating, and removing objects and
buckets from the Cloud storage.

The open version of Eucalyptus implements cloud
storage as a designated directory on the local file system. It is
rather a minimalistic solution of the Cloud storage, due to
very limited ways of data distribution. A feasible way is to
mount a distributed file system at the designated directory
which will transparently distribute data among a number of
storage elements. Unfortunately such a solution does not
allow to control data manipulation which cannot be accepted
in our situation. Therefore, we extended the storage system
in Eucalyptus by an ability to store data in several directories
instead of one only, each of which can point to a different
physical location, e.g., via NFS. With this extension, the
location of the data can be easily controlled, simply by
moving files between directories.

As mentioned above, there are a few components to add
to the Eucalyptus architecture in order to implement the
approach under discussion. Such an extended architecture is
depicted in Figure 3. There is the "Walrus" component which
exposes an API to external users for storing data in the
Cloud. Apart from storing the custom data, e.g., results
coming from a running simulation, "Walrus" stores two other
types of objects. The first one is a VM image which is
uploaded by the user and then is run on the Eucalyptus

Figure 3. Eucalyptus system architecture extended by “Behaviour Data Manager”, “Profile KnowledgeBase”, “Monitoring
system”, and “Distributed storage component”.

263

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

infrastructure. Although, the user communicates with
another component, called "Cloud controller", the images are
actually stored with "Walrus". The second type of objects is
"Block storage". It is used as a mountable partition to store
data during a VM run, similarly to a local file system.
Moreover, a "Block storage" object can store data between
two subsequent runs of a VM and as opposed to a VM
virtual disk, the data is not erased after a VM shutdown.
Such a partition is stored within the Cloud storage with
"Walrus". All these three types of objects are stored with
"Walrus" on the same rules and thus can be uniformly
managed with our system.

In the following subsections, we describe the
implementation of the previously mentioned components, i.e.
a monitoring system, the behaviour data manager and the
profile knowledge base. However, in order to implement
these components we had to extend the Eucalyptus
implementation to support the distributed storage and to
provide some additional information about storage-related
operations when they occur.

When designing the extension to Eucalyptus, we focused
on making it as non-intrusive as possible. Thus, we decided
to replace an existing implementation of a Java class
responsible for storing the data to the storage resources. By
doing so, we can activate this functionality with few
modifications to the Eucalyptus source code.

A. Storage-related operation monitoring
The first of the additional elements added to the

architecture is a dedicated “Monitoring system”. It consists
of “Log analyzer” which periodically reads the Walrus log
where each storage-related operation is recorded and a
relational database where information who and which
operation performed are stored. Thus all the necessary data
to create usage profiles is prepared in a technology neutral
form.

The Walrus component logs an occurrence of each
storage-related operation to a common log file, i.e., create
and delete buckets, put, get and delete objects from buckets.
A log entry which corresponds to a storage-related operation
contains information about the type of operation, the user
who performs the operation and information about the
subject of the operation. A sample entry describing a
putObject operation is depicted below:

07:53:32 INFO 342 WalrusRESTBinding | <?xml
version="1.0" encoding="UTF-8"?>
| <euca:PutObjectType
xmlns:euca="http://msgs.eucalyptus.com">
| <euca:WalrusDataRequestType>
| <euca:WalrusRequestType>
| <euca:EucalyptusMessage>
| <euca:correlationId>58b85aeb-29f4-4125-
8f60-da95baa4422e</euca:correlationId>
| <euca:_return>true</euca:_return>
| </euca:EucalyptusMessage>
| <euca:accessKeyID>WKy3rMzOWPouVOxK1p3Ar1C2
uRBwa2FBXnCw</euca:accessKeyID>
|<euca:timeStamp>2011-06-
11T05:53:32.006Z</euca:timeStamp>

| <euca:bucket>testing_bucket_1</euca:bucket>
| <euca:key>file_1024_5</euca:key>
| </euca:WalrusRequestType>
| <euca:randomKey>testing_bucket_1.file_1024_5
.Dpq-OXrOgNtjnQ..</euca:randomKey>
| </euca:WalrusDataRequestType>
| <euca:contentLength>1024000000</euca:contentLe
ngth>
| <euca:metaData/>
| <euca:accessControlList>
| <euca:grants/>
| </euca:accessControlList>
| <euca:contentType>binary/octet-
stream</euca:contentType>
| </euca:PutObjectType>

Every entry has a structure similar to an XML document

where data is put within tags which describe the semantic of
the data, e.g., <euca:timeStamp>2011-06-
11T05:53:32.006Z</euca:timeStamp>.

The monitoring system is implemented with the Python
programming language. It uses mainly the standard library
of Python to parse and retrieve relevant information from
Cloud log files. The monitoring system analyzes the size of
a log file in a loop to find out whether or not the file
contains new information. If the size of the file grows
between two iterations, the monitoring system analyzes only
this additional data. Using a regular expression, the storage-
related operations are extracted.

Whenever the monitoring system parses a log entry
which describes a storage-related operation, it inserts
information about this fact to a shared relational database
which acts as the Profile Knowledge base. To connect with
the database, the MySQLdb Python connector is used. The
schema of the knowledge base is depicted in Figure 4. There
are several tables which are filled with monitoring
information. Most of them are self-explanatory. The
“Users”, “Buckets” and “Objects” tables contain
information on the elements, i.e., buckets and objects, stored
in Eucalyptus Cloud and on the users of the cloud. The
information about the performed storage-related operations
are stored in the “BucketOperationHistory” and
“ObjectOperationHistory” tables. The “Operations” table
contains information about possible types of operations.

B. Behaviour-inspired Data Manager
While the monitoring system gathers information about

the state of a Cloud, another component called “Behaviour-
inspired Data Manager” analyzes this information and
manages the data stored in the Cloud.

The Data Manager performs the following actions
periodically on the information gathered by the monitoring
system:

• create usage profiles for each stored object,
• classify the usage profiles to one of the defined

behaviour classes,
• manage stored objects based on actions which are

assigned to behaviour classes.

264

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The procedure of creating usage profiles is in counting
different types of operations performed on each stored
object by different users. Currently, a usage profile consists
of information about the performed puts and gets operations
and the number of different users who have accessed the
object over a period of time. Each created usage profile is
stored in the “UsageProfile” table in Profile Knowledge
Base with information about the time period to which the
profile refers.
The second step of the management process is the
classification. Each usage profile created in the previous
step is assigned to one of the defined behaviour class. In the
presented prototype, behaviour classes are defined manually
by a Cloud administrator. Each behaviour class refers to a
management pattern which will be exploited in the next
phase. For testing purposes, we defined three sample classes
for describing three main behaviour patterns:

• “Read-only” class which describes objects which
are mostly read,

• “Write-only” class which describes objects which
are often changed,

• “Nothing-do” class which describes objects which

are hardly used.
Each class is defined in the Profile Knowledge base as a

tuple <typical_number_of_gets, typical_number_of_puts,
typical_number_of_users>. Based on the created usage
profiles and behaviour classs, the Data Manager calculates
Euclidian distances between profiles and classes and assigns
the nearest class to each stored object.

The last phase is the phase where the actual management
actions take place. After the classification phase, each object
stored in the Cloud has a behaviour class assigned. Each
behaviour class refers to a management pattern which is a
set of actions which should be performed in a situation
described by the behaviour class. To present the idea, we
provided sample actions for each of the previously defined
behaviour classes:

• Create a new replica of a “read-only” object,
• Remove one of the existing replicas of a “write-

only” object. Also if the user number is equal to one
then move the “write-only” object closer to the
client.

• Do nothing for a “nothing-do” object.
The replication is a common mechanism for increasing

Figure 4. Data model schema of a relational database which constitutes the Profile Knowledge base.

265

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

read performance for files which are often read. By
changing the replication level of a stored object
dynamically, we can respond to changes in the object usage.

To implement the Behaviour-inspired Data Manager we
used the Ruby programming language along with a few
common Ruby libraries (called Ruby Gems) such as:

• ActiveRecord for Object-Relation mapping,
• YAML for reading configuration files,
• ftools for manipulating files in a file system.

C. Profile Knowledge Base
The Profile Knowledge Base provides a shared data

model for the monitoring system and the data manager
components. It is implemented as a relational database
whose schema is depicted in Figure 4.

By sharing a common data model, the monitoring
system and the data manager can be implemented as loosely
coupled components. Also, the shared data model allows to
easily attach new components to the system in the future.
The presented prototype of the system is based on the
MySQL database [40].

VI. EXPERIMENTAL EVALUATION
In order to evaluate the implemented prototype, a proper
testing infrastructure has been configured and a number of
tests were performed. The evaluation aimed at finding how
the proposed system influences Cloud performance.

A. Testing environment
Testing environment is a very important aspect of the

experimental evaluation. Thus, we prepared a sample
configuration for building a small Cloud installation based
on a blade-class cluster nodes and a disk array. As a base
server for an extended version of the Eucalyptus cloud we
use a worker node with the following parameters:

• 2x Intel Xeon CPU L5420 @ 2.50GHz (4 cores
each)

• 16 GB RAM
• 120 GB hard drive (5400 RPM)
• Ubuntu Linux 10.04.1 LTS

Apart from the Cloud front end where the Cloud controller
and Walrus components were installed, we also have three
similar nodes for running virtual machines connected with
the front end by Gigabit Ethernet. However, a more
interesting part of the environment is the storage. As the
main storage resource for our Cloud installation we used
part of a disk array accessible via iSCSI protocol, of 6 TB
capacity. Such a disk array, however, with a greater storage
capacity available, could be used in a production cloud. As
an additional storage, we decided to use hard drives from
additional worker nodes which are exposed via the NFS
protocol. To summarize, we depicted a map of the testing
environment in Figure 5. In our opinion, the presented
environment can be effectively used to evaluate different
storage strategies because it contains heterogeneous storage
resources such as hard drives and disk array distributed

among a few machines all being connected with open
protocols and a commodity network fabric.

Figure 5. A map of physical resources which constitute a

testing environment.

B. Testing scenario
Due to the limited throughput of the network interface

from each worker node (1 GbE) which is lower than the
overall throughput of the available storage devices, we had
to configure the Cloud in a specific way. We decided to use
the three storage nodes as a Cloud storage back end and the
disk array as a user device, i.e., a device to which users
download data. Using this configuration we were able to
show the positive influence of the “Behaviour-inspired Data
Manager” on the data access time stored in the Cloud
despite the limited network throughput. It is worth
mentioning that such a configuration was feasible to prepare
using our extension to the Eucalyptus Cloud which supports
distributed storage.

To compare a standard Eucalyptus installation with an
installation supported with the behaviour-inspired Data
Manager, we prepared a test case which focused on the read
operation to check the dynamically increasing replication
feature. In this scenario, we assume there are three files
stored in the Cloud of the same size which equals 5 GB. The
number and size of the files were selected to obviate the
cache mechanism of the storage resources. The files were
downloaded several times by a number of users
simultaneously. We ran the test case starting with 1 user and
ending with 10 users. Also, each test case was performed
three times and a mean value was calculated to abate
possible noises within the infrastructure during tests.

C. Evaluation results
The results obtained from the above described test case

are presented in Figure 6. The chart in this figure presents
overall data read time for each number of users. As long as

266

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the number of users is less than 5, the overall data read time
is similar for both Cloud installations: with and without
support from the Behaviour-inspired Data Manager. This
similarity is anticipated since the Data Manager reacts only
in the situations described by behaviour classes. In our case,
we only defined behaviour classes for read-only and write-
only data objects. Since the number of users, less than 5, do
not generate enough workload, the Data Manager was
virtually idle. . Then, for 5 users and more, the observed
usage of each data object is classified as relevant to the
read-only object. Thus, the Data Manager replicated data
objects among available storage resources. This operation
reduces data read time.

The mean gain from using the Behaviour-inspired Data
Manager for more than 5 users is about 10% which is pretty
high due to the limited throughput of physical network
interfaces in the Cloud installation. Moreover, the
measurements from different series for the same number of
users were very similar and repeatable which implies that
both presented solutions: support for distributed storage and
the Behaviour-inspired Data Manager are stable.

VII. FUTURE WORK
While the presented prototype is fully functional, there is

still some place for enhancements. From the conceptual point
of view, the approach lacks of a well-defined set of
behaviour classes along with related actions. However, these
classes will be crystallized during real life tests when the
behaviour of the real users will be observed and analyzed.

Also, the implementation of the described components
can be improved. The monitoring system will be extended
with analysis of semantic relationship between observed

storage-related operations. Such an analysis will lead to
detection of different performance issues. The Data Manager
will be extended by analysis of trends in storage-related
operations. An analysis of such trends will enable the Data
Manager to perform more suitable management actions.
Additionally, we plan to include some AI-based mechanisms
to discover new management actions based on the observed
behaviour.

VIII. CONCLUSIONS
Although, there are several open source Cloud solutions

available today, none of them provide a storage system
which would be able to adapt to the user needs
automatically. Instead, only basic functionality, e.g., storing
VM images or custom objects is supported. The approach
presented in the paper aims at providing a sophisticated data
management functionality which would be flexible enough
to be applicable to different Cloud solutions and which
would manage data according to observed behaviour of
Cloud users. We have presented the main assumptions of the
approach along with phases of the management process. As
an example of its implementation a prototype version of the
system based on Eucalyptus is described. Due to the limited
functionality of the Eucalyptus system, an extension which
provides a real distributed data storage to multiple locations
has been implemented.

The performed tests show positive influence of the
described components on the performance of the Cloud in
common use cases. The tests prove also the stability of the
implemented prototype.

Figure 6. Summary read time of 3 files (5 GB each) for each user for different number of users.

267

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENTS
This research is supported partly by the European

Regional Development Fund program no. POIG.02.03.00-
00-007/08-00 as part of the PL-Grid Project. The authors are
grateful to prof. Jacek Kitowski for valuable discussions.

REFERENCES
[1] Krol, D., Slota, R., Funika, W., „Behaviour-inspired Data

Management in the Cloud“, in: Proc. of CLOUD COMPUTING 2010
The First International Conference on Cloud Computing, GRIDs, and
Virtualization November 21-26, 2010 - Lisbon, Portugal, IARIA,
2010, pp. 98-103.

[2] Foster, I., and Kesselman, C. (Eds.), “The Grid: Blueprint for a New
Computing Infrastructure”. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[3] Cloud Computing – Google: The Best Cloud Computing Investment.
[on-line: http://www.cloudtweaks.com/2010/02/cloud-computing-
google-the-best-cloud-computing-investment/, as of June 13, 2011].

[4] Han, J.H., Lee, D.H., Kim, H., In, H. P., Chae, H.S., and Eom Y.I.,
“A situation-aware cross-platform architecture for ubiquitous game”,
Computing and Informatics, vol. 28(5) (2009) 619-
633.

[5] Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc., 2008,
[on-line: http://aws.amazon.com/ec2, as of June 13, 2011].

[6] Microsoft Windows Azure Platform (Windows Azure). Microsoft,
2010 [on-line: http://www.microsoft.com/windowsazure/, as of June
13, 2010].

[7] Google AppEngine. Google Inc., 2008 [on-line:
http://code.google.com/intl/pl-PL/appengine/, as of June 13, 2011].

[8] Google Apps website [online: http://www.google.com/apps/intl/en-
GB/business/index.html, as of June 13, 2011].

[9] Amazon EC2 instances [on-line: http://aws.amazon.com/ec2/instance-
types/, as of June 13, 2011].

[10] Eucalyptus Systems Inc. [on-line: http://www.eucalyptus.com/,
as of July 24, 2010]/

[11] Amazon Simple Storage Service (Amazon S3). Amazon Inc. [on-line:
http://aws.amazon.com/s3/, as of June 13, 2011].

[12] Apache Axis website [on-line: http://ws.apache.org/axis/, as of June
13, 2011].

[13] Google Web Toolkit website [on-line: http://code.google.com/intl/pl-
PL/webtoolkit/, as of June 13, 2011].

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, and
A. Warfield, "Xen and the art of virtualization," in SOSP '03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles. New York, NY, USA: ACM, 2003, pp. 164-177
[on-line: http://dx.doi.org/10.1145/945445.945462, as of June 13,
2011]

[15] Kernel-based Virtual Machine project wiki [on-line:
http://www.linux-kvm.org/page/Main_Page, as of June 13, 2011].

[16] Lustre filesystem wiki [on-line:
http://wiki.lustre.org/index.php/Main_Page, as of June 13, 2011].

[17] Oracle Cluster File System 2 (OCFS2) project website [on-line:
http://oss.oracle.com/projects/ocfs2/, as of June 13, 2011].

[18] Eucalyptus Enterprise version website [on-line:
http://www.eucalyptus.com/products/eee, as of June 13, 2011].

[19] Introduction to Storage Area Networks, IBM redbook, [on-
line: http://www.redbooks.ibm.com/abstracts/sg245470.html?
Open, as of April 16, 2011].

[20] Kielmann, T., “Cloud computing with Nimbus”, March 2009, EGEE
User Forum/OGF25 & OGF Europe's 2nd International Event.

[21] Globus Alliance website [on-line: http://www.globus.org/, as of June
13, 2010].

[22] Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., and
Weerawarana, S., “Modeling Stateful Resources with Web Services”,
2004 [on-line: http://www.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, as of June 13, 2010].

[23] NASA Nebula website [on-line: http://nebula.nasa.gov/, as of
April 16, 2011].

[24] RackSpace CloudFiles solution website [on-line:
http://www.rackspace.com/cloud/cloud_hosting_products/files/, as of
April 16, 2011].

[25] OpenStack project website [on-line: http://www.openstack.org, as of
April 16, 2011].

[26] G. Behrmann, P. Fuhrmann, M. Gronager, and J. Kleist, “A
distributed storage system with dCache”, in G .Behrmann et al
Journal of Physics: Conference Series, 2008.

[27] Flash Cloud web. [on-line: http://www.flashcloudstorage.com/, as of
June 13, 2010]

[28] Spring Framework website [on-line: http://www.springsource.org/, as
of June 13, 2010].

[29] Java database website [on-line: http://developers.sun.com/javadb/, as
of June 13, 2010].

[30] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, "Capacity
Leasing in Cloud Systems using the OpenNebula Engine." Cloud
Computing and Applications 2008 (CCA08), 2009.

[31] VMware website [on-line: http://www.vmware.com, as of June 13,
2010].

[32] RESERVOIR project website [on-line: http://62.149.240.97/, as of
June 13, 2010].

[33] F. Hupfeld, T. Cortes, B. Kolbeck, E. Focht, M. Hess, J. Malo, J.
Marti, J. Stender, and E. Cesario. “XtreemFS - a case for object-based
file systems in Grids.”, In: Concurrency and Computation: Practice
and Experience. vol. 20(8) (2008).

[34] VMware Virtual Appliances website [on-line:
http://www.vmware.com/appliances/getting-started/learn/, as of June
13, 2010].

[35] Network File System version 4 protocol specification [on-line:
http://tools.ietf.org/html/rfc3530, as of June 13, 2010].

[36] Logical Volume Management 2 (LVM2) website [on-line:
http://sourceware.org/lvm2/, as of June 13, 2011].

[37] Internet Small Computer Interface (iSCSI) RFC document [on-line:
http://www.ietf.org/rfc/rfc3720.txt, as of June 13, 2011].

[38] Web Distributed Authoring and Versioning (WebDAV)
RFC document [on-line: http://www.ietf.org/rfc/rfc3744.txt, as of
June 13, 2011].

[39] EVault Data Backup Software website [on-line:
http://www.i365.com/products/data-backup-software/evault-backup-
software/, as of June 13, 2011].

[40] The MySQL database website [on-line: http://www.mysql.com/].
[41] Slota, R., Nikolow, D., Kuta, M., Kapanowski, M., Skalkowski, K.,

and Kitowski, J., “Replica Management for National Data Storage”,
Proceedings PPAM09, LNCS6068, Springer, 2010, in print.

[42] Slota, R., Nikolow D., Polak, S., Kuta, M., Kapanowski, M. , and
Kitowski, J., "Prediction and Load Balancing System for Distributed
Storage", Scalable Computing Practice and Experience, 2010, in
print.

