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Abstract—The growing computerization in modern academic
and industrial sectors is generating huge volumes of electronic
data. Data mining is considered the key technology to extract
knowledge from these data. Grid and Cloud technologies
promise to meet the tremendously rising resource requirements
of heterogeneous, large-scale and distributed data mining ap-
plications. While most projects addressing these new challenges
have a strong focus on compute-intensive applications, we
introduce a new paradigm to support the development of
both compute- and data-intensive applications in heterogeneous
environments. Combined storage and compute resources form
the basis of this new approach as they allow programs to be
executed on resources storing the data sets and thus are the
key to avoid data transfer. A data-aware scheduling algorithm
was developed to efficiently utilize all available resources
and reduce data transfer of global data-intensive applications
as well as support compute-intensive applications. Based on
the results of the DataMiningGrid project we developed the
DataMiningGrid-Divide&Conquer system that combines this
approach with current Grid and Cloud technologies into a
general-purpose data mining system suited for the different
aspects of today’s data analysis challenges. The system forms
the core of the Fleet Data Acquisition Miner for analyzing the
data generated by the Daimler fuel cell vehicle fleet.

Keywords- data-intensive; data mining; Grid; MapReduce;
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I. INTRODUCTION

Increasing data volumes in many industrial and academic
sectors are fueling the need for novel data analysis solutions
[1]. The effective and efficient management and transforma-
tion of these data into information and knowledge is con-
sidered a key requirement for success in knowledge-driven
sectors. Data mining is the key methodology to address
these information needs through automated extraction of
potentially useful information from large volumes of data.
In the last decade there have been multitudes of efforts
to scale data mining algorithms for solving more complex
tasks, including peer-to-peer data mining, distributed data
stream mining and parallel data mining [2] [3].

Recently, data mining research and development has put
a focus on highly data-intensive applications. Google’s pub-
lications on MapReduce [4][5], a special incarnation of the
divide&conquer paradigm, inspired many projects working

on large data sets. MapReduce frameworks, like Hadoop
[6], simplify the development and deployment of peta-scale
data mining applications leveraging thousands of machines.
MapReduce frameworks are highly scalable because they
avoid data movement and rather send the algorithms to the
data. In contrast to other data mining environments these
frameworks restrict themselves to a certain programming
model, loosing some of the functionality provided by fully
featured distributed data mining systems.

Another branch of modern distributed data mining is
motivated by the sharing of heterogeneous, geographic dis-
tributed resources from multiple administrative domains to
support global organizations [7] [8] [9]. This field of active
research and development is generally referred to as data
mining in Grid computing environments. The DataMining-
Grid project addresses the requirements of modern data
mining application scenarios arising in Grid environments,
in particular those which involve sophisticated resource
sharing. The DataMiningGrid system is a service-oriented,
scalable, high performance computing system that supports
Grid interoperability standards and technology. It meets the
needs of a wide range of users, who may flexibly and
easily grid-enable existing data mining applications and de-
velop new grip-based approaches. The DataMiningGrid, like
most related Grid systems, focused on compute-intensive
applications following design principles that are correct for
compute-intensive, but not for data-intensive applications.
For compute-intensive application scenarios the main re-
source and the limiting factor is CPU-power and the focus of
the system is to provide a transparent integration of multiple
compute clusters. In these scenarios it is commonly assumed
that the time needed to transfer the input and output data
is relatively small compared to the overall execution time.
These assumptions lead to an architecture build on three
main components:
(1) Specialized storage servers to store input and output data
as well as executables. (2) A set of compute clusters from
different organizations each composed of multiple compute
nodes for running the algorithms. To provide a high level
of transparency, these clusters are treated as one multi-CPU
resource. (3) Grid management servers for accessing and



319

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

managing the storage and compute clusters of the local
organization.
In such environments data is stored on dedicated storage
servers and has to be transferred to the compute nodes prior
to execution. Though different scheduling algorithms have
been proposed to optimize the relation between data transfer
and execution time [10][11], for data-intensive applications
where the limiting factor is not CPU-power but rather
storage and network speed, data should not be moved at
all [12].

To bring the advantages of the MapReduce paradigm into
worldwide, heterogeneous computing environments we de-
veloped the DataMiningGrid-Divide&Conquer (DMG-DC)
[1] system based on the concepts and services of the
DataMiningGrid project. This article covers a detailed de-
scription of the scheduling algorithm and the Grid compo-
nents to implement this new approach that combines differ-
ent current data mining technologies into a single system.
This article is organized as follows: First, we briefly revise
MapReduce frameworks and introduce the more general
divide&conquer paradigm for data-intensive applications in
Grid environments. Then we describe the DataMiningGrid
and its successor, the DMG-DC system. We also introduce
a real-world data mining application based on the DMG-
DC: The Fleet Data Acquisition Miner (FDA-Miner) for
analyzing the data generated by the Daimler fuel cell vehicle
fleet. Finally, we present system evaluation results from the
FDA-Miner and discuss related technologies.

II. MAPREDUCE AND DATA-INTENSIVE
DIVIDE&CONQUER

The tremendous amount of data generated in modern
science and business applications require new strategies for
storing and analyzing. As the amount of data increases,
data can not be efficiently stored on a single storage server
but has to be distributed over multiple machines. Google’s
MapReduce[4] and its open-source implementations provide
frameworks to mine these distributed data sets.

The name MapReduce refers to the map and reduce func-
tions of functional programming languages. In the context
of a MapReduce framework, all applications consist of a
map and a reduce function [4]. The map function reads a
key/value pair and produces a set of new key/value pairs.
In an intermediate step all pairs are grouped by their key
values. A key and its values are presented to the reduce
function which produces a list of result values.
These functions are supposed to produce the same result
when applied to the whole data set or to the parts of the
data set.

MapReduce frameworks build an environment for execut-
ing these map and reduce functions on a cluster. Data is split
up into small chunks and stored in a distributed file system
comprised of multiple standard machines acting as storage
and compute nodes [5]. A special manager node keeps

track of all data chunks and their locations in the cluster.
A master process manages the execution and minimizes
data movement by executing the functions on the nodes
containing the data to be mined. The master identifies the
nodes to use for execution by asking the distributed file
system manager for the location of the data chunks. If
multiple copies of a chunk are available the master schedules
the execution to the least used node.

Executing the functions on the nodes that contain the
data is the key to the high performance and scalability of
MapReduce frameworks. As not data, but algorithms are
transferred, MapReduce frameworks are perfectly suited for
Clouds because they do not require information about server
location and network bandwidth as traditional systems need
for data scheduling.

Restricting themselves to only two functions, MapReduce
frameworks are easy to program and simple to set up.
However, not all data-intensive applications can be decom-
posed into map and reduce functions. Especially the integra-
tion of existing data mining programs including compute-
intensive applications is sometimes impossible. In addition,
current MapReduce-Frameworks are implemented for clus-
ters within a single organization and are not suitable for
loosely-coupled environments comprised of heterogeneous,
geographic distributed resources from multiple administra-
tive domains.

A. Divide&Conquer for data-intensive Grid applications

Recent Grid implementations provide an ideal infrastruc-
ture for inter-domain resource sharing but, as mentioned
above, are geared towards compute-intensive applications.
To utilize Grid systems for a wide range of data- and
compute-intensive applications in such environments a dif-
ferent distributed computing paradigm is needed.

MapReduce can be viewed as a special form of the
divide&conquer paradigm, where a problem is split into
smaller sub problems that are easier to solve. Compute-
intensive applications also use a divide&conquer technique
to leverage the performance of compute clusters by split-
ting compute-intensive problems into smaller sub problems
and compute these sub problems on multiple resources
simultaneously. Compared to MapReduce, the general di-
vide&conquer paradigm does not impose any restrictions
on the functions or the number of processing steps and
is therefore more suitable for a general purpose distributed
data mining system. A data-intensive Divide&Conquer Grid
processing model DCG might be defined as follows:
(1) The data set D to be processed can be decomposed
into m subsets d1, . . . , dm (

⋃
i≤m di = D) and stored on

multiple storage resources.
(2) An arbitrary function ϕ is applied to all m subsets of
D in parallel. The execution of ϕ on resource r is denoted
with ϕr.
(3) Assuming that data transfer is expensive, the function ϕ
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is executed on a resource r which is closest to the storage
of di

ϕr(di) = ei, di ∈ D, r ∈ R, r closest to di

and the results E may be processed by another function ϕ′,

ϕ′q(ei, ej , ...) = hi, ei, ej , ... ∈ E, q ∈ R, q close to ei, ej , ...

generating the result set H , which again may be processed
by another function.
(4) A series of such execution steps can be represented by a
direct acyclic graph, where each node is a function and the
vertices symbolize the data flow between the functions.

We identified the need for three major conceptual en-
hancements to traditional Grids when applying the DCG ap-
proach to data-intensive applications in Grid environments:

1) Any storage or computational resource may become
a combined storage/compute resource. This resource
type forms the basis of scalable data-intensive applica-
tions as data can be processed directly on the storage
location. To increase storage capacity and speed, com-
putational resources of compute clusters may become
combined resources by storing data on their local
disks. It is important to point out that the combined
resources are suitable for data- and compute-intensive
applications as only new functionality is added. Com-
bined resources fundamentally differ from current
Grid concepts which impose a strict differentiation
between storage and compute resources.

2) A combined resource may provide Grid data transfer
mechanisms. As combined resource will mostly be
organized within a cluster, data transfer out of the clus-
ter is often not desired or not supported. This, again,
differs from traditional Grids where each Grid storage
has to implement Grid data transfer mechanisms (e.g.,
GridFTP).

3) A data processing methodology avoiding input data
to be transferred. The scalability of data-intensive
applications is mainly limited by two factors: the
storage and network speed. Combined resources are
the key to increase the overall storage speed of the
system as each combined resources contributes its
local storage. Avoiding input data transfer through pro-
cessing the data directly on the resources storing the
data, minimizes network traffic and therefore increases
the scalability for data-intensive applicaitons [12].

To illustrate the benefits of these concepts for data-intensive
applications, consider the example depicted in Figure 1
where a common Grid setup is shown on the left and
the new concepts on the right. In a traditional Grid setup
multiple clusters from different organisations are connected
through Grid servers hosting the Grid middleware. Each
compute cluster is treated as one single resource by the Grid
middleware and is managed by a local cluster management
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(a) Common Grid setup
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(b) DCG setup

Figure 1. A traditional Grid setup compared to the Divide&Conquer
concepts.

system like Condor, LSF or SGE. Dedicated storage systems
are used to store the input and output data of the compute
clusters. These storage systems are optimized to support
many concurrent connections for reading and writing to a
single large file. Cloud resources may also be integrated into
the local clusters to increase storage or compute capacity.
A setup like this fits the needs of many compute-intensive
applications: First an input file, or a part of it, is read by
each compute resource, then a model is computed for long
time and finally each compute resource writes its part of the
overall solution into the output file.

The situation changes in a Grid environment with multi-
ple compute clusters from different organisations or Cloud
providers. When a compute-intensive application should be
executed on a compute cluster in organisation A - or in the
Cloud C - and the input data is stored in organisation B
the data has to be transferred from the storage system in
B to the one in A or C because a cluster can not directly
access data on a storage system of another Grid site. The
required data input and output transfers are often handled via
special pre- and post-processing steps. As it is commonly
assumed that the data transfer time is small compared to the
execution time the transfer overhead is accepted. For most
data-intensive applications this assumption can not be hold.
In contrary, not CPU-power but storage speed is the limiting
factor of many data-intensive applications. When applying
the divide&conquer technique to data-intensive problems,
large data sets are split into smaller subsets and distributed
over multiple storage systems. An application may then
process all subsets in parallel and the overall processing
speed scales with the number of storage resources. In a
Grid environment with a strict distinction between compute
and storage resources, the only way of implementing this
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approach is to add new storage resources. New dedicated
storage resources not only increases costs but also the
network bandwidth becomes a limiting factor - especially
when resources from other Grid sites or the Cloud are used
- because data always have to be transferred from a storage
to a compute resource.

Here the combined resources of the DCG come into the
picture. As shown on the right of Figure 1, storing data
subsets on the compute nodes of a cluster saves costs,
because existing resources are utilized, and increases storage
space as well as the overall storage speed. In addition,
data can be processed and stored on a single resource
making data transfer superfluous. The combined resources
are still managed by the grid middleware and the local
cluster management system so that both data- and compute-
intensive applications may run simultaneously on the same
cluster.

The following example illustrates the differences between
a setup with separated storage and compute resources (1)
and with combined resources (2): An application needs to
scan through 20TB to find special patterns in the data.
(1) The data is stored on storage resource S11. So the input
data has to be transferred to one of the compute clusters C11,
C21 or the Cloud. The scheduler decides to use the local
cluster C11 as the connections to the other Grid instance
and the Cloud have limited bandwidth and the network
load is not known exactly. The cluster management system
starts the data analysis program on all available resources
of C11. At best all 100 compute resources start reading a
portion (200GB) of the input data. As the storage system
S11 provides a maximum speed of 2GB/s, each resource
processes about 20MB/s. The overall time for processing
the 20TB is roughly 2.8 hours.
(2) The data was split into 20GB chunks and distributed over
the 300 combined resources of the cluster C11 and C21 each
now providing 1TB of storage with a speed of 100MB/s. For
redundancy each chunk is stored on at least two different
resources halving the overall storage space to about 150TB.
To scan through the 20TB the scheduler advices the cluster
management system to start the analysis program for each
data chunk on a resource of C11 or C21 storing the data
subset. In this setup the scheduler can choose resources
from different Grid sites or the Cloud for processing as
the input data has not to be transferred at all. At best 100
combined resources immediately start processing the locally
stored data chunk at a speed of 100MB/s each and a total
speed of 10GB/s. The overall time for processing the 20TB
with combined resources comes down to about 0.6 hours.

B. A scheduling algorithm for DCG

The described data-intensive divide&conquer processing
model requires not only new functionality to manage com-
bined resources but also a method to schedule the execution
of a program to a resource that is closest to the data. As

there was no algorithm available to schedule programs close
to data sets within a Grid, we developed the flexible DCG
scheduling algorithm, which only needs information about
the compute and storage power of the combined resources.

The inputs of the DCG scheduling algorithm depicted in
Figure 2 are the set of input data D, the program p, the
data locality weights λ1, λ2, the data transfer scheduling
weights α1 to α4 and the data to compute ratio weights
β1, β2. First, the scheduler obtains the current grid status and
sorts the data sets of D in descending order. The ordering
of D assures that the larger data sets are scheduled first
and the scheduler may therefore choose among more free
resources. After this init phase, the algorithm schedules each
data subset d of the ordered input data D′. The main goal of
the scheduler is to find a resource tuple (r̂, ŝ) where: r̂ ∈ R
is the best (highest compute speed gc) available execution
resource that is able to execute p; and ŝ ∈ Rd is the storage
resource storing d with a minimal data transfer overhead
to r̂. Due to the special properties of the Data Distance
Function fs used to compute the data transfer overhead, the
algorithm only needs to consider four execution resources
per storage resource s. These four execution resources are:
the storage resource s itself, the best resource within the
same cluster rc, the best resource within the same grid rg
and the best resource outside the local grid instance ra.
From the resulting 4 · |Rd| candidate (r, s) resource tuples
the scheduler chooses the one with the highest priority as
computed by the Normed Priority Function fp.

The algorithm and functions are based on the following
definitions:
P := all programs available in the Grid;
R := {r1, . . . , rn} is the set of all n resources of the grid;
D := {d1, ..., dm} is the m data sets of the job;
Q := {(r, s)|r, s ∈ R, r and s can exchange data directly};
Rd := { r | r ∈ R stores d ∈ D };
Dr := { d | d ∈ D is stored on r ∈ R };
δc : R → {1, . . . , nc} assigns a unique number to each of
the nc clusters;
δg : R → {1, . . . , ng} assigns a unique number to each of
the ng grid sites;
gs(Z, d, r) is the storage speed of resources r with respect
to d defined as gs(Z, d, r) ≥ 0 if d is stored on r;
and gc(Z, p, r) is the compute power of resource r with
respect to program p defined as gc(Z, p, r) ≥ 0 if r fulfills
all requirements of p. Different properties of a resource may
be used to define the computing and storage power of a
resource, but at least the current usage - included in the
overall system state Z - has to be taken into account.

The data transfer overhead of a candidate resource tuple
r, s is computed by the Data Distance Function fs which
assigns the weights α1 to α4 to the storage power of s
according to the distance between s and r: α1 if d is
stored on the resource itself r = s; α2 if d is stored
on a resource on the same cluster δc(r) = δc(s); α3 if
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FUNCTION DCG (p ∈ P , D, α1−4, β1−2, λ1−2)
Z ← current state of the grid
D′ ← D ordered by size
Ĉ ← ∅
for all d ∈ D′ do
C

′ ← ∅
for all s ∈ Rd do
rc with gc(Z, p, rc) = max{gc(Z, p, r) | r ∈ R ∧ δc(rc) = δc(r)}
rg with gc(Z, p, rg) = max{gc(Z, p, r) | r ∈ R ∧ δg(rg) = δg(r)}
ra with gc(Z, p, ra) = max{gc(Z, p, r) | r ∈ R ∧ δg(ra) 6= δg(r)}
C ← C ∪ { (s, s, fs(Z, d, s, s), gc(Z, p, s)),

(s, rc, fs(Z, d, s, rc), gc(Z, p, rc)),
(s, rg, fs(Z, d, s, rg), gc(Z, p, rg)),
(s, ra, fs(Z, d, s, ra), gc(Z, p, ra)) }

end for
Find ĉ ∈ C with fp(ĉ) = max{fp(c) | c ∈ C}
if fp(ĉ) ≤ 0 then

print Could not schedule d
else
Ĉ ← Ĉ ∪ {ĉ}
Z ← current State of Z after choosing ĉ

end if
end for
return Ĉ #Return schedule Ĉ containing the choices ĉ for each scheduled data set

END FUNCTION

Figure 2. DCG algorithm for scheduling a program for each data set

d is on the same Grid instance δg(r) = δg(s); and α4

if d is on another Grid instance δg(r) 6= δg(s). In case
both resources are not able to exchange data directly, each
resource needed to transfer the data set d from s to r is also
considered.
FUNCTION fs(Z, d ∈ D, s ∈ Rd, r ∈ R)
t ← t∞
if (r, s) ∈ Q then
t ← |d|/gs(Z, s)

else if ∃ s1, . . . , sp with (s, s1), . . ., (sp−1, sp), (sp, r)
∈ Q then

Choose shortest s1, . . . , sq with (s, s1), . . . (sq, r) ∈ Q
t ← |d|/gs(Z, s) +

∑q
i=1 |d|/gs(Z, si)

end if
if r = s then
t ← α1 · t

else if δc(r) = δc(s) then
t ← α2 · t

else if δg(r) = δg(s) then
t ← α3 · t

else
t ← α4 · t

end if
return t

END FUNCTION
As can easily be seen the data transfer scheduling weights α1

to α4 may be used to enforce specific data transfer policies:

• α1 > 0, α2 = α3 = α4 = t∞ forces the scheduler to
choose a resource storing the data set d regardless of
its speed.

• α1 ≤ α2, α3 = α4 = t∞ forces the scheduler to
choose a resource storing the data set d or a resource
in the same cluster.

• α1 ≤ α2 ≤ α3, α4 = t∞ forces the scheduler to
choose a resource belonging to the same Grid instance
favoring resources storing the data or resources in the
same cluster.

• With α1 ≤ α2 ≤ α3 ≤ α4 the scheduler may choose
any resource in the Grid, but prefers resources close to
the data storage location d.

The Normed Priority Function is used to compute the
priority of each resource as its data transfer overhead and
its compute power. In addition, a data locality may be
included into the priority calculation. The priority of each
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tuple (s, r) is the linear combinaton of the weighted transfer
time (fs(Z, d, s, r)), the compute speed (gc(Z, p, r)) and the
cluster and grid data locality factors (uclu, ugrid). To control
the influence of each value on the scheduling the values are
normed to [0 : 1] using a non-linear norming function gn and
multiplied with a weight, where β1 describes the importance
of the data, β2 the weight of the compute power and λ1, λ2
control the influence of the data locality in the scheduling
process. The data locality factors uclu, ugrid describe how
much of the input data D is stored within the cluster or
grid of the resource r and how fast the storage is. The
factors are especially useful if the results of the execution
will be combined by a subsequent step of the execution
graph.
FUNCTION fp(r ∈ R,Sr ∈ RD, tr ∈ <, vr ∈ <)

if tr ≥ t∞ ∨ vr ≤ 0 then
return 0

end if
uclu ←

∑
d∈D

∑
s∈Rd∧δc(r)=δc(s)

|d|
|D| · gs(Z, s)

ugrid ←
∑
d∈D

∑
s∈Rd∧δg(r)=δg(s)

|d|
|D| · gs(Z, s)

q ← β1 ·gn(tr)+β2 ·gn(vr)+λ1 ·gn(uclu)+λ2 ·gn(ugrid)
return q

END FUNCTION
Figure 3 shows the more general DCG-MD scheduling

algorithm for applications requiring multiple input data sets.
In this scenario all data sets have to be available on one
execution resource. First, the algorithm produces the set of
candidate execution resources as the best (highest compute
speed gc) resources from all nc clusters in the Grid and all
resources storing one of the data sets d ∈ D. For each of
these resources the set of storage resources with minimal
transfer overhead with regard to D is generated. From all
candidates the scheduler chooses the one with the highest
priority fp.

In order to support a wide range of data- and compute-
intensive Grid applications without re-implementing every-
thing from scratch it was decided to integrate the developed
DCG approach into an existing grid-based data mining
system. As the DataMiningGrid system described in the next
section already provides many functionalities for grid-based
data mining it was chosen as a basis for the DMG-DC
system. Because of the missing support for data-intensive
DCG applications it had to be enhanced with: (1) A dis-
tributed data registry to store, manage and locate all data
subsets. (2) A resource broker implementing the scheduling
algorithm described in this section. (3) A workflow manager
to coordinate multiple dependant execution steps.

III. DATA MINING IN THE GRID: DATAMININGGRID

In general, a grid-enabled data mining system should sup-
port the seamless and efficient sharing of data, data mining
application programs, processing units and storage devices in

heterogeneous, multi-organizational environments. As data
mining is used by a wide variety of users and organiza-
tions such a system should not only address the technical
issues but also pay attention to the unique constraints and
requirements of data mining users and applications. In the
DataMiningGrid[7] project, use case scenarios from a wide
range of application areas were analyzed to identify the
key requirements of grid-based data mining that can be
summarized as follows:

• A grid-based data mining environment should offer
benefits like increased performance, high scalability to
serve more users and more demanding applications,
possibilities for creation of novel data mining appli-
cations and improved exploitation of existing hardware
and software resources.

• Grid-enabling data mining applications should not re-
quire modification of their source code. The system
should not be restricted to specific data mining pro-
grams, tools, techniques, algorithms or application do-
mains and should support various types of data sources,
including database management systems (relational and
XML) and data sets stored in flat files and directories.

• To support the different user groups, intricate tech-
nological details of the Grid should be hidden from
domain-oriented users, but at the same time users with
a deep knowledge of Grid and data mining technology
should be able to define, configure and parameterize
details of the data mining application and the Grid
environment.

In order to address these requirements, the DataMiningGrid
system was designed according to three principles: services-
oriented architecture (SOA), standardization and open tech-
nology. The early adoption of two important distributed com-
puting standards, the Open Grid Service Architecture[13]
(OGSA) and the Web Services Resource Framework[14]
(WSRF)were essential for succeeding projects, like the
one presented in this article. The OGSA is a distributed
interaction and computing architecture based on the concept
of a Grid computing service, assuring interoperability on
heterogeneous systems so that different types of resources
can communicate and share information. The WSRF refers
to a collection of standards which endorse the SOA and
proposes a standard way of associating Grid resources with
web services to build stateful web services required by the
OGSA.

Following these principles, the DataMiningGrid project
implemented various components based on existing open
technology: Data management, security mechanisms, exe-
cution management and other services commonly needed in
Grid systems are provided by the Globus Toolkit 4 (GT 4)
Grid middleware.

Three higher-level components for data, information and
execution management form the core of the DataMiningGrid
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FUNCTION DCG-MD (p ∈ P , R, D, α1−4, β1−2, λ1−2)
Z ← current state of the grid
Rmax ← {r̂i |∀i ≤ nc : r̂i ∈ R ∧ δc(r̂i) = i ∧ gc(Z, p, r̂i) = max{gc(Z, p, r)|r ∈ R ∧ δc(r) = i} }
Rsp ← { r | ∀d ∈ D : r ∈ Rd ∧ gc(Z, p, r) > 0 }
C ← ∅
for all r ∈ Rmax ∪Rsp do
Z ′ ← Z , td ← 0 , S ← ∅
for all d ∈ D do

Find ŝ ∈ Rd with fs(Z ′, d, ŝ, r) = min{fs(Z ′, d, s, r)|s ∈ Rd}
td ← td + fs(Z

′, d, ŝ, r)
S ← S ∪ {ŝ}
Z ′ ← current State of Z ′ after choosing ŝ

end for
C ← C ∪ {( r, S, td, gc(Z ′, p, r) )}

end for
Find ĉ ∈ C with fp(ĉ) = max{fp(c) | c ∈ C}
return ĉ

END FUNCTION

Figure 3. DCG algorithm for scheduling a program with multiple data sets

system. The data components offer several data transforma-
tion and transportation capabilities to support typical data
operations for data mining applications based on OGSA-
DAI[15] and the Globus Toolkit data management com-
ponents. The Information Service collects and manages all
information about the data mining programs available in the
system. The Resource Broker is responsible for matching
available resources to job requests, global scheduling of the
matched jobs and executing, managing and monitoring of
jobs, including data stage in and out operations.

The main user interface of the system is the Triana
workflow environment [16]. Triana provides a workflow
editor and manager to design and execute complex work-
flows. Several DataMiningGrid workflow components build
the interface to the GT 4 Grid infrastructure services as
well as the DataMiningGrid services. The most important
components allow the users to search for an application,
configure its parameters, select and transform the input data
sets and finally execute the configured task on the Grid.

The DataMiningGrid Application Description Schema
(ADS) is the link between these DataMiningGrid compo-
nents. An ADS instance covers the complete life-cycle of
a data mining task. The XML document is devided into
four parts: A description, information about the executable,
requirements as well as monitoring and accounting informa-
tion. The description contains data mining specific informa-
tion about the implemented algorithm following the CRISP-
DM standard and is mainly used for discovering. The next
section contains all information regarding the executables

implementing the algorithm, including the required libraries,
options and parameters for configuring the executables.
The requirements section holds the hardware and software
restrictions imposed by the implementation of the executable
or the user. Throughout the execution the ADS contains
monitoring information and after the execution is finished,
the ADS instance also stores all information related to the
execution environment.

Although the necessity to address data-intensive applica-
tions was recognized in the DataMiningGrid project, due
to time constraints, the project focused more on compute-
intensive applications. Hence, three functionalities needed
for DCG jobs are not available in the DataMiningGrid and
related systems:

1) There is no server-side workflow execution component
to coordinate the steps of DCG jobs.

2) There is no specialized data registry that could be used
for scheduling data-intensive applications.

3) The Resource Broker [17], like other Grid resource
brokers, does not provide a scheduling mechanism for
combined resources and is only able to schedule and
execute jobs on a clusters level. As a consequence,
jobs can not be placed directly on combined stor-
age/compute resources inside a cluster, as required by
DCG jobs.

The following section describes the changes made to the
DataMiningGrid system as well as the new components and
features of the DMG-DC system to natively support data-
intensive applications in Grid environments.
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IV. DATAMININGGRID DIVIDE&CONQUER SYSTEM

The DMG-DC system is designed to support the differ-
ent aspects of today’s data analysis challenges, including
compute- and data-intensive applications. Combined storage
and compute resources form the basis of the DMG-DC
system, allowing data to be stored and processed on any
machine in a Grid. With this approach there is no need to
transfer the input data from a storage server to a compute
node prior to execution, which can significantly speed up
data-intensive applications.

V. DMG-DC

Unfortunately, as discussed in the previous sections, cur-
rent grid-based systems do not provide the functionality
to support these combined resources because of the focus
on compute-intensive applications. As a consequence, there
are two different approaches to design a Grid system for
combined resources that supports both, compute- and data-
intensive applications: (1) Implement all needed functional-
ity as a set of new services from scratch; (2) use or enhance
existing systems and services where possible.
The architecture proposed in this article follows the later
approach and builds on the DataMiningGrid system in
combination with standard Grid infrastructure services. This
not only reduces the implementation time but also ensures
the compatibility of the system with newer versions of the
Grid infrastructure.

The DataMiningGrid project already implements many
features needed for grid-based data mining. The flexible
and extendable design of the DataMiningGrid system made
it easy to integrate the missing functionality to support
data-intensive applications. Consequently, the architecture
of the DMG-DC, depicted in Figure 4, does not differ
significantly from the DataMiningGrid architecture [7]. The
client components, the Triana workflow environment and
two web-based applications, are build on top of the DMG-
DC services and may also directly interact with the Grid
infrastructure services. The DMG-DC services, the Infor-
mation Integrator Service (IIS), the Data Registry Service
(DRS) and the Workflow Resource Broker (WRB), provide
all additional functionality to support DCG jobs in a standard
Grid environment. The IIS manages all available data-mining
algorithms as ADS instances and provides an interface to
add and remove ADS descriptions. The DRS and the WRB
services are the main building blocks to execute DCG jobs.
The DRS manages all information about each data set in the
Grid, including the storage location, and provides powerful
functions to search for data sets. The WRB schedules and
manages multiple Grid jobs in the correct sequence. In
combination with the DRS the matchmaking and scheduling
functions of the WRB are able to execute data-intensive jobs
directly on the Grid nodes storing the data. The DRS and
WRB are build on top of the Grid layer and use various
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Figure 5. The DMG-DC Data Registry Service architecture

GT 4 Grid services like the MDS4, the RFT or the WS-
GRAM [18]. The Grid layer also provides all functionality
to integrate the resources of the different organisations into a
single virtual organisation. In most setups all resources of an
organisation are managed by one Grid server instance that is
connected to the grid servers of all other organisations. Mul-
tiple compute or combined resources within an organisation
are typically controlled by a cluster management system like
Condor, Sun Grig Enging or LSF.

A. Data Registry Service

The data registry is the central component for executing
DCG jobs in a Grid, as it provides the locations of all data
sets to the Resource Broker. Without this information the
Resource Broker would not be able to schedule jobs to
the nodes containing the data to be mined. The developed
distributed registry consists of a number of WSRF-compliant
Data Registry Services that store user-defined metadata
describing the data sets available in the Grid. In contrast
to the distributed file system of a MapReduce framework,
the DRS only stores information about the data, leaving
the actual storage to database management or file systems.
Therefore, DCG jobs can process data stored in any storage
system and are not limited to a specific distributed file
system.

The DRS stores metadata in user-defined categories which
specify a list of logical and physical attributes describing the
data. Logical attributes hold information about the content or
creation process of the data set, whereas physical attributes
include storage location, size or data format information.
When a new data set is registered with a category, a logical
and a physical object is created with unique object names.
These objects contain the logical/physical attributes of that
data set and are used to model replication: A logical object
references one or more physical objects.

A single DRS may store the metadata information of all
data sets in the Grid. To improve reliability and performance
several DRS may run on different sites in the Grid. As
depicted in figure 5 multiple DRS automatically form a
peer-to-peer network, forwarding client search requests and
category information to the appropriate DRS.
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As many data analysis applications need mechanisms to
select and process arbitrary subsets of the data stored in the
Grid, the DRS provides an advanced search enabling clients
to search for data using multiple attributes within a single
query. This distinctive feature of the DRS is not available
in other Grid data registries like the Globus Toolkit Replica
Location Service [19].

B. Workflow Resource Broker

The new requirements arising from DCG jobs led to the
development of the DMG-DC Workflow Resource Broker.
The WRB was designed not only to support DCG jobs but
also to include all features of current Grid resource brokers
like the DataMiningGrid Resource Broker [17]. The two

central new features of the WRB are the workflow execution
manager and the advanced job scheduler, able to schedule
jobs close to the data.

As depicted in Figure 6, the WRB consist of 5 components
communicating through well-defined interfaces:
Clients connect to the workflow manager to submit work-
flows, monitor and manage workflow execution. A work-
flow consists of one or more jobs, each described by an
ADS instance, and dependencies between these jobs. The
workflow manager is responsible for executing all jobs as
specified in the workflow. To start the execution of a single
job, the workflow manager sends the corresponding ADS
instance to the ADS execution component. The execution
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component analyzes the ADS instance and connects to the
data locator to get the locations of all data sets specified
in the ADS instance. The data locator acts as an interface
to different data registries, although currently only DRS
is supported. The execution component combines the data
locations with the ADS definitions and generates a Condor-
G job description. In addition to the standard job description
parameters, like executable and arguments, the generated
description also contains a Condor-G representation of the
developed scheduling algorithm enabling DCG jobs to run
on nodes storing the selected data sets.

Condor-G [20] is a powerful Grid task broker providing
advanced scheduling, execution and managing capabilities
as well as an uniform interface to different Grid execution
management systems. A key feature of Condor-G is its
ClassAd mechanism to describe jobs and compute resources
with specific ClassAd attributes for jobs and compute re-
sources. Based on these descriptions jobs can be matched
and scheduled to suitable compute resources. ClassAds can
also be used to implement various different scheduling poli-
cies through defining requirements and rank expressions.
As current Grid implementations do not provide resource
information as ClassAds we developed the information
manager. The information manager collects all information
for each computational resource from the Grid informa-
tion system - currently only an interface to the Globus
Toolkit Monitoring and Discovery System (MDS4) is im-
plemented - and translates it into ClassAds. To implement
the Divide&Conquer scheduling algorithm the information
manager adds two new ClassAds for combined resources:
the ClusterInstance and the GridInstance. With these
new ClassAds, each combined resource can be uniquely
identified and directly used for scheduling.
When receiving a job, Condor-G matches the job with all
available resources, as defined by the respective resource
and job ClassAds. DCG jobs contain special requirements
and rank expressions that configure the Condor-G scheduler
according to the scheduling algorithm described above. After
the matchmaking step, the job is submitted to the execution
management service - in case of the Globus Toolkit, the
WS-GRAM - of the Grid instance providing the best match.

The job submitted to the WS-GRAM contains an element
instructing the WS-GRAM to produce a job description
for the local cluster management system - currently only
Condor is supported - that insures the job is only started
on the chosen resource. The WS-GRAM of this instance
then submits the job to the cluster management system that
manages the chosen resource. Figure 7 shows the interaction
of all components while executing a single DCG job: (1)
A client searches for suitable algorithms in the MDS4 and
receives an ADS description. (2) The client configures the
algorithm parameters, the input/ouptut data and optionally
the scheduler parameters αx and λ. Input data can be
specified by logical object names or a search query. Steps
(1) and (2) may be repeated several times to compose a
complex workflow. (3) The client submits a single ADS or
a workflow description to the WRB. (4) The WRB parses the
workflow and starts processing of the root ADS descriptions
of the workflow. First it retrieves the current status of all
compute resources from the MDS4. Then it queries the DRS
for the physical attributes, including the storage location,
of all input data. Based on this information it configures
a Condor-G job description implementing the developed
scheduling algorithm and starts the scheduling. For each of
the 4 data subsets the scheduler initiates the execution on
one of the combined resources storing the data. (5) As the
4 chosen resources are located in the organisations A and B
Condor-G creates WS-GRAM job descriptions and submits
them to the WS-GRAMs. (6-7) The WS-GRAMs parses the
description and initiates the transfer of the executables from
organisation D to the local storage. (8) The WS-GRAM
translates the job description to the format of the local
cluster management system and submits it. (9-10) The local
cluster management system parses the job description with
the restriction to only use the chosen resources and starts
the execution on these resources. (11a - 11c) The local
cluster management system monitors the execution. The
WS-GRAM periodically polls the status of the job from the
local cluster management system. Condor-G in turn polls the
WS-GRAMs and provides the information to the WRB. (12-
13) As the user specified a storage resource in organisation
C as the output data location, the WS-GRAM initiates the
transfer of the results.

VI. FDA-MINER

The presented DMG-DC system forms the basis of the
Fleet Data Acquisition Miner (FDA-Miner) for analyzing
the data generated by the Daimler fuel cell vehicle fleet.
The Daimler AG has been involved in fuel cell technology
for more than 15 years and has released the largest fleet
of zero emission fuel cell vehicles in the world with more
than 100 vehicles [21]. The purpose of these operations is
to test these vehicles in the hands of selected customers
in everyday operations under varying climatic conditions,
traffic conditions and driving styles in different locations
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worldwide. In order to gain the most experience for future
fuel cell vehicle development, a fleet data acquisition system
has been developed which continuously records all relevant
parameters of vehicle operation, such as the fuel cell voltage,
current and temperatures. The enormous amount of world-
wide distributed data produced by the fleet - over 4 million
kilometers have been recorded - and the needs for compute-
intensive data analysis methods were the key drivers behind
the development of the DMG-DC system [22].

The FDA-Miner provides a user friendly web-based data
analysis application for mining the fuel cell data. In addition
to specialized visualization and reporting features, it offers
a flexible front end to configure customized data mining
tasks. The application uses the services of the DMG-DC
to retrieve information about the available data and analysis
programs. For each user defined task, the application creates
the appropriate ADS instances and workflow definitions and
submits it to the WRB.

The FDA-Miner programming toolbox supports users
implementing specialized DCG data mining algorithms. The
toolbox provides Perl and C modules to read the fuel cell
data sets and templates for parallel data processing and
combination steps.

A common usage scenario of the FDA-Miner is the gener-
ation and testing of models for different key components of
the fuel cell system. First the user defines a model, e.g., an
Artificial Neural Network, to analyze or simulate a specific
component then the data to train the model is selected. In
most cases only data points with special properties are of
interest. In a first data-intensive processing step these data
points have to be filtered out of all available data by a
DCG job. The resulting training data is relatively small and
is transferred to a fast machine for the compute-intensive
model training. In the next step the model is applied to a
subset or the complete data set to evaluate the model.
As model definition - model training - model evaluation is
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an iterative process and new data is recorded constantly,
this process is repeated frequently. With its ability to ef-
ficiently execute data- and compute-intensive programs the
FDA-Miner helps reducing the overall processing time of
such applications and therefore enables shorter development
cycles of fuel cell vehicle components.

VII. EVALUATION

The FDA-Miner has been already heavily used in pro-
duction and successfully computed thousands of data- and
compute-intensive jobs. The following evaluation therefore
focuses on the advantages of the DCG functionality of the
DMG-DC system compared to traditional Grid systems, like
the DataMiningGrid, with dedicated storage servers. The
evaluation setup consisted of 9 dual quad core machines with
direct attached storage connected over a 1 GBit Ethernet
network. To measure the performance of the DCG function-
ality, a subset of the fuel cell data was randomly distributed
over all 9 machines and each file was placed on at least two
machines. Traditional Grid systems were represented by a
representative scenario with 1 storage server serving the data
to 8 compute nodes.

A typical FDA-Miner data-intensive analysis job - filtering
the data and computing various statistical properties - was
executed on both setups. Figure 8 shows the overall time
for performing this job while varying the number of CPUs
and the size of the data set. The results demonstrate that the
DMG-DC (blue curve), like MapReduce systems, scales well
for data-intensive analysis jobs. When the number of CPUs
is increased more machines and their storage are utilized,
leading to a higher overall data throughput. As no input data
is transferred, there is no transfer overhead and the CPUs
can leverage the complete storage speed of the machine.

Traditional Grid systems (orange curve) on the other
hand have to send the data to the compute nodes first.
This not only introduces an additional overhead but also
limits the processing performance to the storage speed of
the file server. Depending on the network bandwidth and
the storage speed the transfer time may, for simple data
filtering operations, even exceed the time for data processing.
Scaling of these systems is also limited by the number of
concurrent connections the storage server can handle without
dropping network throughput. In the presented evaluation
setup a single storage server can only deliver enough data to
server about 20 CPUs and therefore does not scale above that
point. Adding additional dedicated storage servers is the only
way to increase the system performance. Then distributed
file systems like Lustre[23] have to be used if a single file
system is required.

VIII. RELATED WORK

Recently, various systems and approaches to grid-based
data mining and MapReduce have been reported in the
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literature. Some of those, that are particularly relevant to
the DMG-DC system, are briefly reviewed here.

The GridBus resource broker [24] provides functions
for scheduling data- and compute-intensive applications. In
combination with the Storage Resource Broker[25] GridBus
is able schedule data-intensive jobs based on various dif-
ferent metrics, including network bandwidth and utilization.
As GridBus follows the common separation between storage
and compute resources, data has to be transferred prior to
execution and therefore it does not provide DCG or similar
functionality at the moment. In addition GridBus is not
compatible with current grid standards, in particular WSRF.

The Cactus [26] broker was developed to support
compute-intensive numerical calculations in Grid environ-
ments. It is based on MPICH-G and the Globus Toolkit and
requires that applications have to be written in MPI. This
restriction makes it almost impossible to integrate existing
data mining applications. In addition Cactus is not WSRF-
compliant and does not provide any notion of data aware
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scheduling to support data-intensive DCG applications.
The GridWay Meta-Scheduler [27] is the built in resource

broker of the Globus Toolkit. GridWay provides common re-
source brokering functions including data aware scheduling.
Storage and compute resources are treated separately so that
data has to be transferred prior to execution and there is no
support for DCG processing.

Data Mining Grid Architecture (DMGA) [28] focuses on
the main phases of a data mining process: pre-processing,
data analysis and post-processing. The proposed architecture
is composed of generic data Grid and specific data mining
services. WekaG is an implementation of DMGA based on
the data mining toolkit Weka and the Globus Toolkit 4. The
DMGA itself is a flexible architecture to build grid-based
data mining system. But its only implementation WekaG is
restricted to Weka. The service based approach offers high
flexibility but implies resource utilization issues as a service
can only use the local resources and WekaG provides no
DCG or similar functionality at the moment.

Anteater [2] is a web-service-based system to handle large
data sets and high computational loads. Anteater applications
have to be implemented in a filter-stream structure. This
processing concept and its capability to distribute fine-
grained parallel task make it a highly scalable system. Due
to the restriction on a filter-stream structure Anteater shares
some downsides of MapReduce frameworks: Applications
have to be ported to this platform which makes it almost
impossible to integrate existing applications.

GridMiner [9] is designed to support data mining and
online-analytical processing in distributed computing envi-
ronments. GridMiner implements a number of common data
mining algorithms, some as parallel versions, and supports
various text mining tasks. Two major differences between
GridMiner and DMG-DC are the DCG functionality and that
the latter complies with the recent trend towards WSRF.

Knowledge Grid (K-Grid) [8] is a service-oriented system
providing grid-based data mining tools and services. The K-
Grid system can be used for a wide range of data mining
and related tasks such as data management and knowledge
representation. The system architecture is organized into a
high-level K-Grid services and a core-level K-Grid service
layer, which are built on top of a basic Grid services layer.
K-Grid incorporates some interesting features for distributed
data mining but no DCG or similar functionality is available
at the moment.

Hadoop [6] is the most well known open source im-
plementation of Google’s MapReduce paradigm. Hadoop’s
MapReduce framework is build on top of the Hadoop
distributed file system (HDFS) containing all data to be
mined. The map and reduce functions are typically written in
Java, but also executables can be integrated via a streaming
mechanism. MapReduce frameworks like Hadoop do not of-
fer the functionality to efficiently execute compute-intensive
applications on a cluster, making them unsuitable for a

general-purpose data mining system. Hadoop On Demand
in combination with the SUN Grid Engine try to overcome
these limitations by running Hadoop on top of a cluster
management system, thus adding another layer of complex-
ity. Still, the resources to use for MapReduce are reserved
exclusively for Hadoop and can not be used by other jobs.
Hadoop and similar MapReduce frameworks simplify the
development and deployment of data-intensive applications
on local clusters and cloud resources but, in contrast to the
DMG-DC system, these frameworks are currently not suited
for large-scale, heterogeneous environments comprised of
multiple independent organizations.

IX. CONCLUSION

In this article, we introduced the DCG, a divide&conquer
approach for data-intensive applications in Grid environ-
ments. The new concept of combined Grid resources in com-
bination with the developed data location aware scheduling
algorithm provides an infrastructure to build scalable data-
intensive applications in worldwide, heterogeneous environ-
ments. The scheduling algorithm and the implemented Re-
source Broker also support compute-intensive applications
so that both data- and compute-intensive applications can
be implemented in one single system. The developed DMG-
DC system not only provides the functionality to run diverse
data- and compute-intensive data mining applications but
also supports the complete data mining process end-to-end.

The FDA-Miner, a real world data analysis application,
uses the distinct features of the DMG-DC system to ef-
ficiently mine the data of the whole Daimler fuel cell
vehicle fleet. The FDA-Miner evaluation results highlight
the advantages of the DMG-DC compared to traditional Grid
systems.

Future work may include the integration of other data
management systems like the Globus Toolkit Data Replica-
tion Service[29] or the Storage Resource Broker, adding sup-
port for other local cluster management system than Condor
and a generalized version of the FDA-Miner programming
toolbox.
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