
410

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Semi-Automatic Method for Matching Schema Elements in the Integration of

Structural Pre-Design Schemata

Peter Bellström

Department of Information Systems

Karlstad University

Karlstad, Sweden

Peter.Bellstrom@kau.se

Jürgen Vöhringer

econob GmbH

Klagenfurt, Austria

 juergen.voehringer@econob.com

Abstract—In this paper we present a semi-automatic method

for matching schema elements in the integration of structural

pre-design schemata. In doing so we describe and present how

element level matching (concept), structural level matching

(neighborhood) and taxonomy-based matching can be

combined into one workflow and method. The matching

method is a composite schema-based matching method where

several different approaches are used to receive one single

matching result. Our contributions facilitate the otherwise

complex task of matching schema elements during the

integration of pre-design schemata and they also speed up the

process due to automation of certain process steps. The

research approach used within this work can be characterized

as design science and our main contributions as a method and

an instantiation (a prototype).

Keywords-Semi-automaic Schema Integration; Pre-Design;

Schema Matching; Implementation Neutral Design

I. INTRODUCTION

In the early phases of information system development
we deal with requirements that are described in natural
language and suitable modeling languages, resulting in a
number of documents and schemata. These schemata both
illustrate structural (static) and behavioral (dynamic) aspects.
The requirements, however, are not illustrated in one schema
but in a set of schemata, each showing some small fraction of
the information system being designed. To avoid problems
and misunderstandings these schemata should be integrated
into one blueprint of the information system. In other words,
the source schemata are to be integrated into one global
conceptual schema. The schema integration process is
divided into at least four phases: it starts with a preparation
phase, then moves on to a comparison phase, which is
followed by a resolution phase and ends with a phase in
which the schemata are superimposed and the global
integrated schema is restructured. The focus of this paper is
on the second of theses phases; i.e. how to recognize
similarities and differences between the compared source
schemata. In [1] we described a three-tier matching strategy
for pre-design schema elements that facilitates the difficult
task of pair-wise comparison of the source schemata while
aiming to recognize similarities and differences between
them. In this paper we present and describe a continuation
and extension of that work. More precisely, this means that
we present and describe a semi-automatic method for
matching schema elements during the integration of

structural pre-design schemata. The recognition of
similarities and differences is one of the integration phases
that can be automated, which is something we should aim
for, because, as Doan et al. [2] express it, “schema matching
today remains a very difficult problem.” (p. 11).

One of the most quoted descriptions of ‘schema
integration’ is given by Batini et al. [3], who state that
schema integration is “the activity of integrating the schemas
of existing or proposed databases into a global, unified
schema.” (p. 323). Since schema integration is a very
complex, error-prone and time-consuming task [4],
computer-based applications and tools are needed to
facilitate the process. Consequently, in this paper we present
a semi-automatic method for matching schema elements in
the integration of structural pre-design schemata. In this
method focus is placed on automation with the main goal to
consolidate different matching strategies and approaches in
order to achieve semi-automatic recognition of similarities
and differences between schemata. By it we always compare
two source schemata since binary ladder integration is
assumed [3][5]. Even though automatic schema integration is
desirable, we agree with Stumptner et al. [6] who state in
connection with dynamic schema integration, full automation
is not feasible due to the complexity of the task. We also
argue that domain experts are an important source of domain
knowledge and therefore should be involved in the entire
schema integration process. In this article the compared
structural schemata only contain two types of primitives:
concepts (including labels) and connections
(dependency/relationship) between the concepts. Finally, our
use of ‘pre-design’ refers to analysis and design on an
implementation-independent level; i.e. focusing on
describing the content (what) rather than the specific
implementations of an information system (how). Besides
schema integration, another application area for pre-design
matching is the consolidation of project schemata during
ontology engineering (see for instance [7]).

The article is structured as follows: in section two we
describe the applied research approach. In section three we
address related work and distinguish it from our own. In
section four we present the schema integration process and in
section five this article’s main contribution is discussed: the
proposed semi-automatic schema matching method. Finally,
the paper closes with a summary and conclusions.

411

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RESEARCH APPROACH

The research approach used within this work can be
characterized as design science. The big difference between
the ‘behavioral science paradigm’ and the ‘design science
paradigm’ is that behavior science “seeks to find ‘what is
true’” while design science “seeks to create ‘what is
effective’” [8](p. 98). Design science in not a new research
approach. It has been used for a rather long time in several
disciplines such as Computer Science, Software Engineering
and Information Systems [9]. In design science focus is on
producing artifacts. Hevner et al. [8] describe it as follows:
“The result of design-science research in IS is, by definition,
a purposeful IT artifact created to address an important
organizational problem.” (p. 82). In this quotation, Hevner et
al. use IS as an acronym for ‘Information System.’ The
produced artifacts can further be classified as constructs,
models, methods and instantiations [8][10]. In Table 1, each
type of artifact is briefly described quoting March & Smith
[10].

TABLE I. DESIGN SCIENCE ARTIFACTS ACCORDING TO [36]

ARTIFACT DESCRIPTION

Construct Construct or concepts form the vocabulary of a domain.
They constitute a conceptualization used to describe
problems within the domain and to specify their
solutions. (p. 256)

Model A model is a set of propositions or statements expressing
relationships among constructs. In design activities,
models represent situations as problem and solution
statements. (p. 256)

Method A method is a set of steps (an algorithm or guideline)
used to perform a task. (p. 257)

Instantiation An instantiation is the realization of an artifact in its
environment. (p. 258)

Finally, it is important to evaluate design science

research contributions through one, or several, evaluation
methods. In [8] Hevner et al. describe five such evaluation
methods: observational, analytical, experimental, testing and
descriptive. In Table 2, each evaluation method is shortly
described quoting [8].

As will be addressed in section 5, our research has two
types of contributions: we have developed a method and an
instantiation (a prototype). To validate these research
contributions several evaluation methods have been used:
analytical, testing and descriptive evaluation methods.

For a more detailed discussion and description of the
design science approach, please see Hevner & Chatterjee
[11].

TABLE II. DESIGN SCIENCE EVALUATION METHODS ACCORDING TO

[27]

EVALUATION METHOD DESCRIPTION

1. Observational Case Study: Study artifact in depth in
business environment
Field Study: Monitor use of artifact in
multiple projects (p. 86)

2. Analytical Static Analysis: Examine structure of
artifact for static qualities (e.g.,
complexity)
Architecture Analysis: Study fit of
artifact into technical IS architecture
Optimization: Demonstrate inherent
optimal properties of artifact or provide
optimality bounds on artifact behavior
Dynamic Analysis: Study artifact in use
for dynamic qualities (e.g.,
performance) (p. 86)

3. Experimental Controlled Experiment: Study artifact in
controlled environment for qualities
(e.g., usability)
Simulation - Execute artifact with
artificial data (p. 86)

4. Testing Functional (Black Box) Testing:
Execute artifact interfaces to discover
failures and identify defects
Structural (White Box) Testing: Perform
coverage testing of some metric (e.g.,
execution paths) in the artifact
implementation (p. 86)

5. Descriptive Informed Argument: Use information
from the knowledge base (e.g., relevant
research) to build a convincing
argument for the artifact’s utility
Scenarios: Construct detailed scenarios
around the artifact to demonstrate its
utility (p. 86)

III. PREVIOUS AND RELATED WORK

In the schema integration research field several
approaches and methods have been proposed during the last
thirty years. These can roughly be classified into three
approaches (see Bellström [12]): manual, formal and semi-
automatic. Manual means that everything is done by hand,
formal means that a formal modeling language is used and
semi-automatic means that at least one computer-based tool
(application) is used to support the manual steps in the
integration process. Our research is mainly placed within
semi-automatic, the last of these three approaches.
Previously we have both developed automation rules (see
[13][14]) and implemented a prototype (see [15][16]).
Besides that, we have also consolidated several matching
strategies into one applicable matching approach for pre-
design schema elements (see [1]). Our research focuses on
developing a modeling language-independent integration
method. Some preliminary results were given [17] in which
we proposed six generic integration guidelines:

• Performing schema integration on the pre-design
level

• Standardizing concept notions and utilizing them
during integration

• Using domain repositories for supporting the
integration process

• Neighborhood-based conflict recognition
• Pattern-based resolution of integration conflicts

412

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Computer supported integration with utilized user
feedback

This was followed by a proposal of a method for

modeling language-independent integration of dynamic
schemata (see [18]). Here we only focused on modeling
language-independent constructs. This means that the focus
was only on two primitives – processes and conditions –
with the proposed method being comprised of four phases:

• Preparation of the source schemata
• Recognition of conflicts and commonalties between

the source schemata
• Resolution of conflicts and commonalties between

the source schemata
• Merging the source schemata and restructuring the

global schema

In [18] we also mapped the generic integration strategies

proposed in [17] to these aforementioned phases.
As mentioned in the introduction, our research focused

on the implementation-neutral level; i.e. implementation-
neutral schemata (pre-design schemata) and modeling-
independent schema integration. In doing so the numbers of
conflicts that can arise are reduced since fewer modeling
concepts are needed [19]. Some specific ‘pre-design’ (user-
near) modeling languages do exist today; e.g. Klagenfurt
PreDesign Model (KCPM) [20] and Enterprise Modeling
(EM) [21]. It is still possible, however, to use any modeling
language for pre-design [17].

Looking at previous work in relation to traditional
modeling languages it can be concluded that the Entity-
Relationship Modeling Language (ERML) [22], or some
extension of it, has dominated schema integration research
[23] for a long time., Focus, lately, has shifted towards the
Unified Modeling Language (UML) [24]. Both the ERML
and the UML are modeling languages that are used to
illustrate implementation-dependent aspects of an
information system and are therefore not ideal for our
research where we focus on the implementation-independent
level; i.e. implementation-neutral design. This means that we
do not distinguish between entities (classes) and attributes
(see for instance [25] and [19]), which is something ERML
and UML do. Nor are we interested in implementation-
specific features, such as lists, that can be found in both
UML and in many programming languages. Instead, we are
interested in ‘what’ and therefore focus on content.

Having addressed previous and related work in relation
to traditional modeling languages we now turn to related
work in relation to semi-automatic approaches and methods.
By doing so, we address some semi-automatic approaches
and distinguish them from our own efforts.

Rahm & Bernstein [26] presents a survey on automatic
schema-matching approaches. They differentiate schema-
based and instance-based matching. Schema-based matching
can be performed on the element level (concept) and on the
structural level (neighborhood). Moreover, the matching can
be linguistic-based (depending on the similarity of names or
descriptions) or constraint-based (depending on meta-
information about concepts, such as data types and

cardinalities). Furthermore, Rahm & Bernstein [26] classify
combined approaches as either hybrid or composite
matchers. The difference between these two is that hybrid
matchers use different matching approaches independently,
whereas composite matchers use different approaches to
receive one single result.

Following the terminology of Rahm & Bernstein [26],
our own matching method can be classified as a composite
schema-based matching approach because we apply
element-level matching, structural-level matching and
taxonomy-based matching with the goal of receiving one
single result. Later on the results presented in [26] were
adapted, refined and modified by Shvaiko & Euzenat [27].

In Lee & Ling [28] and He & Ling [29], the authors
present algorithms for resolving different structural conflicts.
These are the conflicts between entity types and attributes, as
well as schematic discrepancy. He & Ling [29] express
schematic discrepancy as follows: “the same information is
modeled as data in one database, but metadata in another.”
(p. 245). In both [28] and [29] the authors work towards an
(semi-) automatic method in which structural conflicts and
schematic discrepancy are both resolved by transforming
attributes and metadata to entity types.

Our method does not distinguish between entity types
(classes) and attributes (properties) because our focus is on
implementation-neutral design.

Several algorithms for calculating concept similarity
have also been proposed. The Wu and Palmer [30] similarity
value is one such algorithm, which is calculated using
formula 1:

)2()1(

))2,1((*2

conceptdepthconceptdepth

conceptconceptLCSdepth
wup

In a first step the so called LCS (the Least Common

Subsumer) is determined; i.e. the first common parent of the
compared concepts in the taxonomy. The Wu and Palmer
similarity score is then derived from dividing the double of
the taxonomy depth of the LCS by the sum of the taxonomy
depths of the compared concepts. Further separation of the
concepts from their first common father concept means a
lower similarity score.

 The Hirst and St Onge [31] similarity value allows us to
measure the similarity between two concepts by determining
the length of the taxonomy path between them. The paths for
connecting concepts can be distinguished based on their
strength: extra-strong, strong and medium paths. Extra-
strong paths exist between two equivalent concepts; strong
paths are identified by a direct connection between two
concepts while medium-strong paths finally mean that two
concepts are indirectly connected. In the latter case the
number of path direction changes is relevant for determining
the concept similarity. Direction changes occur every time a
medium-strong connection switches between upwards-paths,
downward-paths and horizontal paths. More precisely, this
means generalization, specialization and other relationships
exist between the concepts. Frequent direction changes lower
the similarity score as shown by formula 2:

esctionChangnumberDirekpathLengthChso *

413

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The calculation returns the value zero if no path at all
exists between the concepts. In that case, the concepts are
interpreted as unrelated. C and k are constants used for
scaling the similarity value.

Finally, the Lesk similarity value [32] is a context-based
similarity score that does not require taxonomic structures.
Instead it presupposes a lexicon in which different word
senses are distinguished and detailed definitions for each
meaning are available. Because the WordNet [33] taxonomy
is freely available and contains definitions and examples for
each concept, it is a popular choice for this task. For
determining the Lesk similarity score the definitions of both
involved concepts must be provided so that a numerical
estimation of their degree of separation can then be
calculated by counting the word overlap.

Some techniques of our schema element-matching
method are similar to the ones used in the DIKE [34] and the
GeRoMeSuite [35] approaches, but both of these differ to
our own method in some key aspects. In contrast to the
DIKE approach we do not focus on any specific modeling
language nor do we focus on implementation-dependent
models, such as SQL, XML or OWL, which the
GeRoMeSuite does. It can therefore be concluded that our
method and the DIKE and GeRoMeSuite approaches are
complementary rather than exclusive.

IV. THE SCHEMA INTEGRATION PROCESS

Since schema integration is a very time consuming and
error-prone process it needs to be divided into a number of
phases (e.g. [3] [36]). Besides that, it is important that each
phase also has a clear purpose and resolves the problems it is
set up to deal with. In the rest of this section we present the
integration process as stated by Batini et al. [3]. There they
point out that the integration process – in this case
integration of structural schemata – is composed of the
following four phases (see Figure 1):

 Pre-Integration (A)

 Comparison of the schemata (B)

 Conforming the schemata (C)

 Merging and restructuring (D)

Figure 1.The Schema Integration Process adaped and modified from [7] (p.

20)

The arrows moving from left to right should be
interpreted as feed-forward while the arrows from right to
left are to be read as feed-back. Figure 1 also illustrates that
the schema integration process is highly iterative and that it
is possible to move back and forth between the phases. In
other words, it is possible to go back to an earlier phase,
make adjustments and then move forward again in the
integration process.

The phases proposed by Batini et al. [3] have influenced
many integration strategies (e.g. [18]) and have been used as

the basis for integration methods completely (e.g. [37] [38])
or in part (e.g. [39] [28]). Extensions of the integration
process, with an additional phase in between comparing and
conforming the schemata, have also been suggested by
Bellström [40]. For a more detailed discussion and
description of the integration process, please see [12].

A. Pre-Integration

The first phase in the schema integration process is pre-
integration. According to Song [23], this phase includes at
least three sub-tasks: (1) translating all schemata into the
chosen modeling language (e.g. KCPM or EM), (2) checking
for similarities and differences in each schema (e.g.
homonyms) and (3), selecting integration strategies (e.g.
binary or n-ary integration).

B. Comparison of the schemata

The second phase in the schema integration process is
comparison of the schemata. According to Johannesson [41],
this phase also includes at least three sub-tasks: (1)
recognition of name conflicts (e.g. synonyms and
homonyms), (2) recognition of structural conflicts (e.g. when
using ERML one concept is described as an entity type in
one schema and as an attribute in another) and (3),
recognition of inter-schema properties (e.g. hypernyms-
hyponyms and holonyms-meronyms). Schema comparison
has been mentioned as an important (see [23]) and difficult
(see [42] and [28]) phase of schema integration. During the
comparison of schemata, several tasks can be automated
successfully.

C. Conforming the schemata

The third phase in the schema integration process is
conforming the schemata. The main task of this phase is to
resolve the conflicts and inter-schema properties recognized
in the former phase. This phase has also been mentioned as
the most critical one (see [28]) and the key issue (see [39]) in
schema integration. It should be noted that, during the
resolution of conflicts and inter-schema properties, no
concepts and dependencies that are important for domain
experts must be lost. Losing concepts or dependencies causes
semantic loss [43], a problem that in the long run leads to
interpretation problems in the integration process.

D. Merging and restructuring

The fourth and last phase in the schema integration
process is merging and restructuring. This phase includes at
least two tasks: (1) merging the schemata into one schema
and (2), restructuring the integrated schema with the aim to
remove redundancy. It is not, however, always clear which
dependencies are redundant; i.e. can they be derived from
other dependencies as dependencies might have different
meanings for different domain experts [44]. Therefore,
whenever a slight uncertainty exists whether a concept
and/or dependency is redundant, it should be kept in the
integrated schema since removing a not truly redundant
concept and/or dependency would cause semantic loss [43].
In relation to schema restructuring, the integrated schema
should also be checked against several schema qualities such
as completeness, minimality and understandability [3] [5].

Pre-

Integration

Comparison

of the

Schemata

Conforming

the Schemata

Merging and

Restructuring

414

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. A SEMI-AUTOMATIC METHOD FOR MATCHING PRE-

DESIGN SCHEMA ELEMENTS

As indicated in the former section, the schema integration
process includes several phases starting with schema
preprocessing (pre-integration) moving on to schema
matching (comparison and conforming the schemata) and
finally ending with schema consolidation (merging and
restructuring) (cf. with section IV).

In this article, we view schema preprocessing as a phase
in which six activities are carried out:

 Translate the schemata into the chosen modeling
language

 Schema element name adaption

 Schema element disambiguation

 Recognition and resolution of inner-schema conflicts

 Introduction of missing relationships

 Selecting the integration strategy

Translate the schemata into the chosen modeling

language is the first activity to perform within the
preprocessing phase. This activity is applicable when the
information system is modeled using several modeling
languages. It is, however, very important that the chosen
modeling languages “have an expressiveness which is equal
to or greater than that of any of the native models” [41](p.
15). For integration of structural pre-design schemata this
should not be a problem since concepts and connections
between concepts are the only modeling constituents that are
used.

Schema element name adaption is the second activity to
perform within schema preprocessing. It is a mandatory
activity at least in its basic form; i.e. the reduction of words
to their base forms using stemmers or lemmatizers. The use
of naming guidelines (e.g. [17]) for its modeling elements
can further improve a schema. This step is optional because
it presupposes an individual set of naming guidelines, which
depend at least on the used language.

Schema element disambiguation is an optional, but
recommended, step. It constitutes an easy way of improving
schema matching and integration on the pre-design level.
Word senses are either assigned manually by domain experts
or automated suggestions are made based on domain
ontologies and general-purpose lexicons.

Recognition and resolution of inner-schema conflicts is
mandatory in its basic form; i.e. the same designations are
not allowed for different schema elements in static pre-
design schemata. It is also recommended to perform an
enhanced search for potential homonym and synonym
conflicts by using context matching (cf. with section V.B.).

Introduction of missing relationships is optional provided
domain ontology, or taxonomy, is available for identifying
possible gaps in the schema.

Selecting the integration strategy is the final activity to
perform in schema preprocessing and it is a mandatory one.
In this activity it must be decided whether binary or n-ary
integration should be used [5]. If binary integration is chosen
then a further decision must be made whether binary ladder
or binary balanced integration (see [3][45]) should be used.

For n-ary integration the two options n-ary one-shot, or n-ary
iterative (see [3][46]), integration exist. For our method, we
have decided to use binary ladder integration.

After schema preprocessing the matching phase starts,
which itself consists of several sub phases. We first
discussed in detail [25] how the several matching techniques
are utilized in a common workflow. An extended and
updated version of this process is structured as follows:

Step 1: Preparation for schema element-matching

 Step 1.1: Find linguistic base form of schema
elements

 Step 1.2: Find schema element pairs to be matched

Step 2: Matching on the element level

 Step 2.1: Direct element name matching

 Step 2.2: Application of linguistic rules

 Step 2.3: Domain ontology-based comparison

Step 3: Matching on the structural level

 Step 3.1: Determine schema element neighborhood

 Step 3.2: Domain ontology-based comparison for
all pairs of neighbors

 Step 3.3: Rule-based comparison for all pairs of
neighbors

Step 4: Taxonomy-based matching

Step 5: Decision on matching results

 Step 5.1: Present matching proposals

 Step 5.2: Get user feedback

 Step 5.3: Finalize matching decisions

In the first schema matching step – preparation for

schema element-matching – all combinations of schema
element pairs from the two source schemata are prepared for
comparison. The eventual goal in schema matching is to
decide whether an element pair matches. The possible
outcomes are:

 Matching

 Related

 Dissimilar

The matching method and workflow are as follows:
every schema element pair is first matched on the element
level using the direct comparison of the base form and the
application of linguistic rules. This step results in a
preliminary matching decision. If the result is “dissimilar”
and domain ontology is available, then information about
potential connections between the elements can be looked up
in the ontology. Schema element pairs that are classified as
“dissimilar” or “matching” then undergo structural matching,
which aims to identify potential conflicts based on the
neighbors of the compared elements. If such conflicts are
identified, a respective warning is added to the preliminary
matching decisions. Finally, taxonomy-based matching – in
our case the Lesk algorithm – can be optionally performed
for schema element pairs, which are assumed “dissimilar,” in

415

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

order to detect hidden relatedness. This is especially
recommended if at least one of the compared schema
elements is as yet unknown in the domain ontology. The
final matching proposals, including any warnings, are
presented to domain experts who then have the chance to
accept the proposals or override them. For instance, they can
decide if and how potential differences and similarities, such
as homonyms and synonyms, should be resolved. If no
domain expert is available the default proposals are pursued.
Based on the matching results specific integration proposals
are made in the schema consolidation phase. The three
different matching steps, which our method is comprised of,
are discussed in more detail in the following sections (V.A –
V.C).

A. Matching on the element level

A.1 Element name comparison (Step 2.1 and 2.2)
In our matching method element-level matching (concept

matching) is the first activity. In element-level matching
static schema elements are directly compared via their names
(direct element name matching). Two elements which have
matching names are automatically interpreted as equal for
the moment although this decision can be amended later
when matching on the structure level is performed. For
example, let’s assume that schema A and schema B both
come from the university domain. The static elements
“students” in schema A and “student” in schema B have the
same base form: “student.” Therefore, the elements match on
the element-level; they supposedly describe the same
concept.

If one, or both, of the compared schema element names
consist of compound words the compounds are
deconstructed. For endocentric compounds – the most
common ones in the English language according to
Bloomfield [47] – the rightmost element of the word is its
head. Thus the following two percolative rules (application
of linguistic rules) are applicable:

a. If the compared schema elements have names in the

form of A and AB (i.e. A corresponds to the
compound AB minus the head B), then the
relationship “AB belongs/related to A” can be
assumed between the elements.

b. If the compared schema elements have names in the

form B and AB (i.e. A is the head of the compound
AB), then the relationship “AB is a B” can be
assumed between the elements.

To exemplify the first rule (a), an element named “car

manufacturer” is identified as a potential attribute of an
element named “car” (“car manufacturer” belongs to “car”)
while an element “student social security number” is
identified as an attribute candidate for the element “student”
(“student social security number” belongs to “student”).
However the relationship “belongs to” is usually interpreted
as an inverse aggregation, which is not always the intended
meaning. For instance “blood pressure” is defined as “the
pressure of the circulating blood against the walls of [a
person’s] blood vessels.” Thus it can be preferable to

interpret “blood pressure” as an attribute of “person” rather
than an attribute of “blood.” A more general association
named “related to” is preferable in such cases; e.g. blood
pressure” related to “blood.”

Regarding (b), the second rule, the exemplary element-
pair “patient” and “dialysis patient” is interpreted as “dialysis
patient” is a “patient,” while the concepts “blood pressure
measurement” and “measurement” have the relationship
“blood pressure measurement” is a (specific form of)
“measurement.” The “is a” relationship obviously applies to
all endocentric compounds, because their head is modified
by the rest of the composite (consequently called the
modifier) per definition.

A.2 Domain ontology-based comparison (Step 2.3)

The strategy to perform schema element-matching solely
based on their names and definitions is not always sufficient.
While correlations of element names might indicate a
possible matching, the meanings of the involved words
might still differ. Moreover, in practice sufficient concept
definitions are not always available. Lastly, even if
definitions are available for both compared elements they
might not be detailed enough to decide whether the schema
elements actually match or not. Thus it is optimal to have
ontology of the domain at one’s disposal.

On the supposition that the compared schema element
pair has been preliminarily identified as dissimilar in the
prior element-level matching step, the matching process
proceeds by looking up concepts that fit to the schema
element pair in the domain ontology. If both schema
elements correspond to concepts in the domain ontology
these are again compared on the element-level with the
typical outcomes related and dissimilar. If one of the schema
elements is missing no additional information about the
elements’ relationship can be derived. Nevertheless, the
missing elements can still be candidates for new ontology
concepts. On the other hand, if both schema elements are
found in the domain ontology, then the ontology can be
utilized to recognize additional similarity as follows:

 If the elements are directly related by an association
in the domain ontology, then their relationship is
assumed as “related” and this new relationship is
introduced into the integrated schema. If, according
to the ontology, both elements are synonymous this
is denoted by the special relationship “is synonym
of” or “mutual inheritance.”

 If the elements are connected indirectly via
relationships up to a certain restrictable degree of
separation, they may also be assumed as “related.”
Besides path length, relationship type is also a
criterion for whether an indirect connection is
interpreted as relatedness. The criteria of path length
and relationship type may also be combined when
evaluating indirect relationships. In order to
correctly depict the connection between the
indirectly connected schema elements the missing
concepts and relationships from the ontology need to
be introduced to the integrated schema.

416

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 If no direct relationship, or indirect path, of the
required length and/or type is found in the domain
ontology between the compared schema elements,
then they are assumed to be dissimilar or
independent.

B. Matching on the structural level

B.1 Determine schema element neighborhood (Step 3.1)
The previously described element-based schema

matching techniques only take into account the names and
definitions of the compared concepts. Matching results
obtained in such a way might still be erroneous, however, as
both synonym and homonym conflicts are possible (see also
Figure 2 and Figure 3).

Matching on the structure level (see [26]) is likely to
improve the outcome of element-level matching namely by
taking the schema elements’ neighborhood into account.
Using neighborhood for deriving concept meanings isn’t a
new approach (e.g. [34]), although it usually is utilized for
word-disambiguation in full texts instead of schema element-
matching. For instance, Koeling & McCarthy et al. [48]
suggest word sense disambiguation based on context and
give an example: if the word “plant” has the sense ’industrial
plant,’ it tends to occur in the neighborhood of words like
“factory,” “industry,” “facility,” “business,” “company” and
“engine.” Its other meaning, ’flora,’ is often hinted at by
neighbors like “tree,” “crop,” “flower,” “leaf,” “species,”
“garden,” “field,” “seed” and “shrub.” Heylen et al. [49]
describe similar word matching techniques where 1

st
 and 2

nd

order bag-of-word-models are used for context-based word
matching; i.e. it is determined whether words in the close
proximity of the compared target words match. In 1

st
 order

models the target words are identified as similar if their
neighbors match to a certain degree while in 2

nd
 order

models a two-level matching process takes place as the
context of the neighbor words themselves are again
compared. Context-based word disambiguation techniques,
which are applied on natural language texts, usually aim at
finding the meaning of single words in the text. Based on
context a decision is derived, which out of several possible
word definitions is the correct, or most likely, one. This is
slightly different from schema matching where word pairs
are compared with the goal of identifying possible conflicts.
Finding the meaning of each involved concept is the first
step towards identifying conflicts and commonalities.

Regarding the notion of neighborhood in natural
language text documents, the relevant neighborhood is
typically defined by context windows that span a defined
number of (content) words before and after the
disambiguated word. Additional boundaries are provided by
sentence delimiters. When adapting structure-based
matching techniques on conceptual schemata, different
definitions for the notions of “neighborhood” and “context”
are needed. Typically, the context, or neighborhood, of a
static schema element encompasses all surrounding directly
connected elements. Sometimes it is helpful for the sake of
matching and integration algorithms to extend the notion of
context so that it also encompasses indirectly connected
schema elements up to a certain level of separation.

B.2 Domain Ontology-Based Neighborhood Comparison
(Step 3.2)

Essentially neighborhood matching acts as a security
check whether the preliminary results from the element level
are trustworthy, or if conflicts, such as homonyms or
synonyms, are likely. If the neighborhood comparison
supports the result of the element-level matching then the
integration process continues. But when the neighborhood
comparison yields different results than the element-level
comparison, however, a contradiction is at hand and the
domain experts must be notified by displaying a warning that
the current schema element pair has a potential conflict. For
the purpose of recognizing conflict candidates two threshold
values are defined: the homonymy threshold and the
synonymy threshold. These thresholds are reference values
and adaptable so that they can fit the needs of different
projects. It is possible for the two thresholds to congregate
on the same value, but the homonymy threshold must not be
greater than the synonymy threshold.

In order to calculate a matching result that can be
compared against the threshold values the structure-level
matching of neighbor schema elements is itself performed on
the element level. The neighbor elements are counted as
matching if one of the following conditions is fulfilled:

 They have the same name and/or definitions

 A synonymy relationship exists between them
according to the domain ontology

 The schema element pair has a taxonomy-based
similarity score above a certain threshold

Including more than just the direct neighbors in the

decision process achieves a more thorough matching, but it is
slower due to several more elements to compare. To
determine the neighborhood matching of schema element-
pairs the percentage of corresponding neighbors is calculated
using the matching criteria listed above. For this purpose the
following intuitive formula (subsequently referenced as
Degree of Neighborhood Matching (DNM)) can be used:

2/1*
ma2))ntFromScheount(Eleme(NeighborCma1)ntFromScheount(eleme(NeighborC

ountmaElementCighborScheMatchingNe

Formula 3 calculates the percentage of matches among

the average neighbor count. The resulting DNM value is
compared against the thresholds. Schema elements that have
been classified as “matching” on the element level must have
a DNM above the defined homonymy threshold. If the DNM
is below the threshold a homonym warning is issued by the
matching application. Similarly, an element pair that has
been classified as “dissimilar” on the element level should be
below the provided synonymy threshold. If that isn’t the case
a synonymy warning is issued by the matching application.

Figures 2 and 3 give examples how analyses of the
compared schema elements’ context may point towards
hidden homonym and synonym conflicts in static pre-design
schemata. In Figure 2 the element “course” occurs in both
source schemata, but upon nearer inspection of the neighbors

417

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it becomes apparent that the two elements have disjunctive
neighborhoods.

Figure 2. Recognition of homonym conflict [11] (p.113)

Figure 3. Recognition synonym conflict [11] (p. 114)

This raises the suspicion of homonymy. Indeed, the left
schema describes a course served during a meal while the
right hand schema describes a university course. It must be
noted that severe homonym conflicts as shown in Figure 2
are unlikely to occur if the source schemata come from the
same domain. Most remaining homonym conflicts occur
between concepts that have less pronounced semantic
differences; e.g. see the more extensive example in Figure 4
when the vocabulary of terms is small [3] and when
incomplete concept names are used [50].

A synonym conflict is shown in Figure 3. The schema
elements “registration” and “participation” have been
classified as dissimilar on the element level, but several
neighbors match: two of two adjacent elements for the
schema element “registration” and two of three neighbors for
the schema element “participation.” In spite of the small
number of neighbors this implies that the elements
“participation” and “registration” are used synonymously
here. In actuality a student’s participation in an exam is
modeled in both cases. Synonym conflicts frequently occur
when different groups, or departments, are involved who
might use different nomenclature for the same concept that’s
specific to their point of view.

participation

student

have

assistant

lecturer

examcourse

manager

be

account

have

teaching

position

being paid

have

course

have

apply to

registration

belong to

have

belong to

subject

have

registrationexist for

have

examiner

student

make

solution

have

specification have

task

have

solution partexist for consist of

exam

certificate have

belong to

Figure 4. Homonym conflict example [49] (p. 56)

Figure 4 shows an example of a homonym conflict. Since
the element “registration” occurs in both source schemata the
schema element pair is preliminarily categorized as
equivalent on the element level. Comparing the immediate
context of the neighborhoods of “registration” the elements
show the two registrations as actually being different
concepts. Students are involved in both cases, but in the left-
hand schema students register to a course, while in the right-
hand-schema students register to an exam. In the latter case
the students’ exam solution is related to their registration too.
The result value according to the default DNM formula
given above is 0.4, which, depending on the threshold, might
be enough to issue a homonym conflict warning by the
matching application.

A way of further refining the DNM formula and
improving its results is the additional consideration of
schema elements that only appear in the neighborhood of one
element although they are available in both schemata. Since
these elements are expected, but not actual neighbors, in one
of the schemata, they could be included in that schema’s
neighbor count. Naturally, however, the match count stays
the same so the resulting DNM score is always lowered
when missing expected neighbors are taken into
consideration.

B.3 Rule-based Neighborhood Comparison (Step 3.3)

In the third and last activity in structural-level matching
we use two types of “IF THEN” rules: those for equivalent
element names and others for similar element names (see
also [13] and [14]). For this case equivalent means that
matching on the element level resulted in two equivalent
element names. Size, for instance, is an element within both
schema 1 and schema 2. On the other hand, similar means
that the element names are not equivalent but still have
something in common; e.g. Order Line in schema 1 and
Order in schema 2. Our method uses at least six rules for
equivalent element names and three rules for similar element
names. Our rules for equivalent element names can be stated
as:

IF the comparison of concept names yields equivalent

and the comparison of concept neighborhoods yields:

 Equivalent, THEN equivalent concepts are most
likely recognized (E1)

 Different, THEN homonyms are most likely
recognized (E2)

 Similar, AND one concept in each schema is named
differently, THEN synonyms are most likely
recognized (E3)

418

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Similar, AND one concept name is a composite of
another concept name with a following addition
AND the cardinality is indicating 1:1, THEN an
association between the two concepts is most likely
recognized (E4)

 Similar, AND one concept name is a composite of
another concept name with a prior addition, THEN a
hypernym-hyponym pair is most likely recognized
(E5)

 Similar, AND one concept name is a composite of
another concept name with a following addition
AND the cardinality is indicating 1:M with or
without uniqueness, THEN a holonym-meronym
pair is most likely recognized (E6)

Examples of rules E5 and E6 are illustrated in Figure 5
and Figure 6.

Figure 5. Recognition of a hypernym-hyponym dependency based on rule

[10] (p. 184)

Figure 6. Recognition of a holonym-meronym dependency based on rule

[10] (p. 185)

Our rules for similar concept names can be stated as:
IF the comparison of concept names yields:

 Similar, AND one concept name is a composite of
another concept name with a following addition
AND the comparison of concept neighborhoods
yields similar or equivalent with an indication to a
1:1 cardinality, THEN an association between the
two concepts is most likely recognized

 Similar, AND one concept name is a composite of
another concept name with a following addition
AND the comparison of concept neighborhoods
yields similar or equivalent with or without an
indication to a unique 1:M cardinality, THEN a
holonym-meronym pair is most likely recognized

 Similar, AND one concept name is a composite of
another concept name with a prior addition AND
the comparison of concept neighborhoods yields
similar or equivalent, THEN a hypernym-hyponym
pair is most likely recognized

One last remark is needed before moving on to the Lesk
algorithm. The rules addressed above were applied in [13]

and [14] while using the Karlstad Enterprise Modeling
approach [21]. On the other hand, we do not focus here on
any specific modeling language. We have therefore refined
and adapted the rules to be useful for any modeling
language; in other words, the rules are now modeling
language-independent and can be used on the
implementation -neutral level.

C. Taxonymy-based matching - The Lesk Metric (Step 4)

C.1 The Lesk approach in structure-based matching
The Lesk metric [32] is a domain-independent similarity

score that doesn’t require taxonomic structures (cf. [30]
[31]). Instead, it presupposes a lexicon in which different
word senses are distinguished and detailed definitions for
each meaning are provided. Because the WordNet [33]
taxonomy contains definitions and examples for each
concept it is a popular choice for this kind of task. The Lesk
approach is a context-based similarity measurement strategy
and requires neither the LCS (Least Common Subsumer) nor
the path length unlike other WordNet-based similarity
measures (cf. [30] [31]). For determining the Lesk similarity
score the definitions of both involved concepts must be
provided and then a numerical estimation of their degree of
separation is calculated by counting the word overlap.

In Banerjee & Pederson et al. [32] and Ekedahl & Golub
et al. [51] specific implementations of the Lesk-algorithm are
discussed for disambiguating words in full texts using
WordNet [33]. In their approach a context window
containing an equal number of words on both sides of the
observed word is defined after which all available definitions
for the observed concept and the other content words in the
context window are examined and compared. The word
sense that has the greatest overlap with the definitions from
the surrounding text is assumed to be the correct one. Non-
content words, like pronouns or articles, are excluded from
the overlap count. Although the Lesk algorithm was
originally designed for word disambiguation in full texts a
similar approach can be applied to schemata by comparing
not only concept notions, but also the definitions of concepts
and those of their neighbors. This application of the Lesk
algorithm for disambiguation purposes is similar to schema
matching on the structure level although concept definitions
rather than concept names are matched.

C.2 Calculation and performance of the Lesk score

In our method we adopt the Lesk algorithm as presented
by Vöhringer & Fliedlet al. in [15]. The following glosses
are interpreted for each compared word: the examples and
the definitions of the hypernyms, hyponyms, meronyms,
holonyms and the word itself. Table III lists the glosses for
the concept “bus#n#1” as extracted from WordNet. The
underlined words are not part of the actual gloss value but
added for clarity reasons because they denote the
corresponding concepts of the gloss.

Permutations of the various glosses are tested for
overlaps; i.e. example “car#n#1”- glos “bus#n#1,” glos
“car#n#1”- glos “bus#n#1” etc. (see table IV). In order to
prioritize longer matches, the score for each gloss-pair is
defined as the sum of the squared word count of each

Customer

Product OrderItem

Order

Name

Product

High Priority

Order

OrderItem

Hypernym-Hyponym

Schema 1 Schema 2

Compared

Concepts

Neighbor

Match

No Neighbor

Match

Priority

Name

Product OrderItem

Order Name

Product

OrderItem

Schema 1 Schema 2

Holonym-Meronym

Compared

Concepts

Neighbor

Match

No Neighbor

Match

419

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overlap. The total Lesk similarity score is defined as the
accumulated score of all gloss-combinations.

TABLE III. TYPICAL WORDNET GLOSSES FOR THE CONCEPT

“BUS#N#1“

Gloss

Type

Description Gloss Value

Example Example of

usage

"he always rode the bus to work"

Glos Word sense
definition

bus: a vehicle carrying many passengers;
used for public transport;

Hype glos Bus is a kind

of…

public transport: conveyance for

passengers or mail or freight

Hypo glos … Is a kind
of bus

minibus: a light bus (4 to 10 passengers)
school bus: a bus used to transport children

to or from school

trolleybus: a passenger bus with an electric
motor that draws power from overhead

wires

Holo glos Bus is a part
of…

fleet: group of motor vehicles operating
together under the same ownership

Mero glos … Is a part of

bus

roof: protective covering on top of a

motor vehicle

window: a transparent opening in a vehicle
that allows vision out of the sides or back;

usually is capable of being opened

Table IV lists the overlaps and the resulting scores for the

word pair “car#n#“1 – “bus#n#1“; only gloss permutations
with at least one overlap are shown. As for the calculation of
the overlap scores, comparing the example gloss of
“car#n#1” and the (descriptive) gloss of “bus#n#1” yields a
single overlap of the length 1. The score for this overlap is
therefore 1

2
; i.e. 1. The hyponym gloss of “car#n#1” and the

(descriptive) gloss of “bus#n#1” have four overlaps. Three of
them have the length 1 while one of the overlaps (“a
vehicle”) consists of two words; i.e. it has the length 2. The
score is thus calculated as follows: 3*1

2
+1*2

2
; i.e. 7. The

total similarity score for car#n#1 and bus#n#1 is 615.

TABLE IV. EXAMPLE OF STANDARD LESK OVERLAPS

Tracing Lesk Comparison car#n#1 – bus#n#1

car#n#1 Bus#n#1 Overlap Score

Example Glos 1 x "a" 1

Glos Glos 1 x "a"

1 x "vehicle"

2

Glos mero glos 1 x "usually"
1 x "a motor

vehicle"

10

hypo glos Glos 1 x
"passengers"

1 x "a vehicle"

1 x "for"
1 x "used"

7

Mero glos mero glos 1 x "a

transparent
opening in a

vehicle that

allows vision
out of the sides

or back; usually

is capable of
being opened"

1 x "protective

covering on top
of a motor

vehicle"

505

Total score 615

Generally, two concepts are more closely related the

higher the Lesk score is. The Lesk metric, however, is
dependent on the number and size of the available glosses.
Like other similarity measures, the Lesk score needs
reference values to which it can be compared. In other
words, the Lesk score needs a threshold value to be
meaningful.

Table V compares the Lesk scores for the three word
pairs “car#n#1”-“bicycle#n#1,” “car#n#1”-
“motorcycle#n#1” and “car#n#1-“bus#n#1”.

TABLE V. UNINTUITIVE RANKING OF CONCEPTS WITH THE LESK

SCORE

Pair Score Rank

car – bicycle 300 2

car – motorcycle 237 3

car – bus 739 1

Ranking the scored pairs shows that cars and buses are

identified as the most similar pair followed by cars and
bicycles while cars and motorcycles are identified as the
least similar pair. Furthermore, choosing a relevance
threshold of 300 implies that cars and bicycles and cars and
buses are similar, but cars and motorcycles are not. These
results are unintuitive as, following intuition, at least cars
and motorcycles should be interpreted as more similar than
cars and bicycles since both are motorized vehicles. When
regarding shape and function motorcycles and bicycles are
similar. This example demonstrates that the Lesk score
requires some optimizations to become more meaningful.
Optimizations of the Lesk Algorithm are therefore addressed
in the following section.

420

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C.3 Optimizations of the Lesk Algorithm
As discussed by Vöhringer & Fliedl et al. in [15], the

standard Lesk algorithm has optimization potential in regard
to not only internal factors but also in regard to external
factors. Optimization of the internal factors means that the
Lesk algorithm itself is updated and improved while in the
optimization of the external factors the environment is
adapted but the algorithm stays unchanged. The underlying
lexicon, in particular, can be optimized regarding contents
and structure. Possible optimization strategies include:

 Internal factors:
o Partial filtering of stop words
o Word reduction via stemming
o Normalization based on gloss length

 External factors:
o Improvement of glossary quality and quantity

via completion and substitution of certain
keywords

o Restructuring of taxonomy
o Guidelines for gloss extension in specific

domains

Stop word-based enhancements of the Lesk strategy are,

for example, discussed in [32]. A stop word list generated
from WordNet can be used for filtering word grams that
contain a certain empirically motivated percentage of non-
content words. Gloss overlaps above a predefined percentage
of stop words are ex-filtrated. Since single stop word
overlaps have a 100% stop word quotient they are
obligatorily filtered out. For identifying matches of inflected
word variants, stemming is proposed. In a prototype
implementation of the Lesk algorithm, a version of the
extended Porter stemmer is used for this purpose [52].

Other Lesk optimization strategies include normalization
by gloss sizes. Using the standard additive calculation of
gloss overlap scores the availability of extensive glosses is
naturally favored. If, in contrast, gloss size normalization
was used overlap scores would yield the proportional rate of
overlaps in a gloss instead of the absolute numbers.

Lesk optimizations with respect to external factors; e.g.
by filling gaps in WordNet glosses or restructuring the
WordNet taxonomy, are a difficult process. Although there
are apparent gaps and suboptimal taxonomies in WordNet
that are seemingly easy to improve one must be wary of side
effects. The easiest least intrusive change on the external
level is the filling of prominent gloss gaps; in particular
missing hypernyms, hyponyms, meronyms and holonyms.
This can be done either manually or by transferring these
definitions from other related words. For instance, the two
WordNet entries “motorcycle” and “bicycle” miss several
fitting meronyms that exist for the related word “car.”
Motorcycles, like cars, have an engine, a mirror and a horn.
Likewise, “mirror” and “horn” are parts of bicycles too.

As shown in table VI, these already existing glosses are
transferred to “motorcycle” and “car” by entering the
respective meronyms.

TABLE VI. FILLING GAPS IN WORDNET GLOSSES

Concept Extension of WordNet standard glosses for

meronyms

Car WordNet standard glosses (not extended)

Bus WordNet standard glosses (not extended)

Motorcycle WordNet standard glosses extended by

 motorcycle engine: the engine that propels a

motorcycle

 motorcycle horn: a device on a motorcycle for

making a warning noise

 motorcycle mirror: a mirror that the driver of a
motorcycle

 gasoline engine: an internal-combustion engine
that burns gasoline

Bicycle WordNet standard glosses extended by

 bicycle horn: a device on a bicycle for making a
warning noise

 bicycle mirror: a mirror that the driver of a bicycle
can use

To demonstrate the effects of internal and external Lesk

optimizations the exemplary word pairs from table V
(“car#n#1”-“bicycle#n#1,” “car#n#1”-“motorcycle#n#1” and
“car#n#1-“bus#n#1”) have also been tested with updated
versions of the Lesk algorithm (see tables VII and VIII).
While the original Lesk score listed “car”-“bicycle” as more
similar than “car”-“motorcycle” (a score of 300 vs. 237), the
internally optimized Lesk implementation yields the scores
115 for the word pair “car”-“bicycle” and 181 for the word
pair “car”-“motorcycle.” Thus the improved algorithm using
the strategies discussed above better reflects the greater
similarity between “car” and “motorcycle.”

TABLE VII. RESULTS OF THE INTERNALLY OPTIMIZED LESK

ALGORITHM

Pair Score Rank

Car-Bicycle 115 3

Car-Motorcycle 181 2

Car-Bus 688 1

TABLE VIII. RESULTS OF THE INTERNALLY & EXTERNALLY OPTIMIZED

LESK ALGORITHM

Pair Score Rank

Car-Bicycle 198 3

Car-Motorcycle 321 2

Car-Bus 688 1

Summarized results of the internal and external Lesk

optimizations are shown in tables VII and VIII. Obviously,
the results in table V don’t adequately reflect the intuitive
similarity-ranking concerning form and functionality of the
involved entities. Table VII shows that internal optimization
already establishes the correct ranking. Table VIII shows the
scoring results after filling obvious lexicon gaps with
adjusted score distances. The experiment’s results suggest
that the outcomes using the optimized Lesk algorithm are
more meaningful than the standard Lesk score.

D. Decision on matching results (Step 5)

In short, the following strategies are applied in step 5’s
decision on matching results. Both equality and synonymy
mean that the compared schema elements match. The

421

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration proposal “matching” is therefore an indication for
merging these elements though semantic loss must be
avoided under any circumstances. This can be done by
storing the original schemata and concept names for
traceability reasons. Unrelated schema elements are
“dissimilar” and therefore transferred independently to the
integrated schema. For (directly) “related” schema elements
both elements are transferred to the integrated schema and a
relationship between them is introduced. Schema elements
are indirectly related when they have no direct connecting
relationship in the domain, but are connected via several
other concepts. For example, two elements might have a
common neighbor concept with which they are connected
via generalization- or aggregation-relationships. It is
principally possible to also transfer such more complex
relationships – including all intermediate concepts – to the
integrated schema as a proper connection for the indirectly-
related schema elements.

A central requirement says that the integration process
should be automatized. This means that domain experts
should be supported by preferably accurate proposals and the
tool should generate a default-integrated schema even when
no user input is made at all. For this purpose an option is
provided in the integration tool that allows adjusting the
preferred degree of automatization. At its most rigid setting a
rough solution is automatically calculated using the matching
methods as described in the previous sections if user
feedback is absent? The proposals’ quality is influenced by
the correctness and completeness of the available domain
ontology. If ambiguity conflicts arise they are resolved by
automatically choosing the most probable word meaning.
While fully automatic integration without any manual input
is fast and convenient the quality of the proposed solution is
likely to be lower than when user feedback is available. On
the other hand, the prototype also allows a setting where the
matching and integration is performed stepwise and domain
experts need to accept, or reject, the proposals for each
schema element pair and each integration step. This setting
naturally allows the most direct influence for the user, but it
is also the slowest and most laborious. Our recommended
strategy is to strike a balance between these two extremes.
This can be done by automating the process, but asking the
domain experts to provide missing definitions to resolve
conflicts like word ambiguities, or contradictions, and to
evaluate the end results of the integration.

VI. SUMMARY AND CONCLUSION

In this paper, we have presented a semi-automatic
method for matching schema elements in the integration of
structural pre-design schemata. Following Rahm & Bernstein
et al. [26], our own method can be classified as a composite
schema-based matching method. Our approach uses element-
level (concept) matching – structural-level (neighborhood)
matching and taxonomy-based matching – and combines
these parts to one workflow resulting in the proposed
integrated schema. The research approach used within this
work can be characterized as design science and our main
contributions as a method and an instantiation; i.e. a
prototype application. When applied in schema integration,
our matching method should facilitate the recognition of

similarities and differences between two structural source
schemata.

REFERENCES

[1] P. Bellström and J. Vöhringer, “A Three-Tier Matching
Strategy for Predesign Schema Elements,” Proceedings of
The Third International Conference on Information, Process,
and Knowledge Management (eKNOW 2011), 2011, pp. 24-
29.

[2] A. Doan, F.N. Noy and A.Y. Halevy, “Introduction to the
Special Issue on Semantic Integration,” SIGMOD Record,
Vol. 33, No. 4, 2004, pp. 11-13.

[3] C. Batini, M.Lenzerini, and S.B. Navathe, “A Compartive
Analysis of Methodologies for Database Schema Integration,”
ACM Computing Surveys, vol. 18(4), 1986, pp. 323-364.

[4] S. Navathe, R. Elmasri and J. Larson, “Integrating User
Views in Database Design,” IEEE Computer 19(1), 1986, 50–
62.

[5] Batini, C., S. Ceri and S.B. Navathe, Conceptual Database
Design An Entity-Relationship Approach, The
Benjamin/Cummings Publishing Company Inc., Redwood
City California, 1992.

[6] M. Stumptner, M. Schrefl and G. Grossmann, “On the Road
to Behavior-Based Integration,” Proceedings of the 1st
APCCM Conference, 2004, pp. 15-22.

[7] A. Bachmann, W. Hesse, A. Russ, C. Kop, H.C., Mayr, and J.
Vöhringer J., “OBSE – An Approach to Ontology-Based
Software Engineering in the practice,” Proceedings of
EMISA, 2007, pp. 129–142.

[8] A.R. Hevner, S.T. March and J. Park, “Design Science in
Information Systems Research,” MIS Quarterly, 28 (1), 2004,
pp. 75-105.

[9] J. Iivari, “A Paradigmatic Analysis of Information Systems
As a Design Science,” Scandinavian Journal of Information
Systems, 19 (2), 2007, pp. 39-64.

[10] S.T. March and G.F. Smith “Design and Natural Science
Research on Information Technology,” Decision Support
Systems, 15, 1995, pp. 251-266.

[11] A. Hevner and S. Chatterjee, Design Research in Information
Systems Theory and Practice, New York, Springer (2010).

[12] P. Bellström, View Integration in Conceptual Database
Design – Problems, Approaches and Solutions, Licentiate
Thesis, Karlstad University Studies 2006:5, 2006.

[13] P. Bellström, Schema Integration – How to Integrate Static
and Dynamic Database Schemata, Dissertation, Karlstad
University, Karlstad University Studies 2010:12, 2010.

[14] P. Bellström, “A Rule-Based Approach for the Recognition of
Similarities and Differences in the Integration of Structural
Karlstad Enterprise Modeling Schemata,” Proceedings of the
3rd IFIP WG 8.1 Working Conference on The Practice of
Enterprise Modeling (PoEM 2010), 2010, pp. 177-189.

[15] J. Vöhringer and G. Fliedl, “Adapting the Lesk Algorithm for
Calculating Term Similarity in the Context of Ontology
Engineering,” in Information Systems DevelopmentBusiness
Systems and Services: Modeling and Development, 2011, pp.
781-790.

[16] J. Vöhringer, Schema Integration on the Predesign Level,
Dissertation, Alpen-Adria-Universität Klagenfurt, 2010.

[17] P. Bellström, J. Vöhringer and C. Kop, “Guidelines for
Modeling Language Independent Integration of Dynamic
Schemata,” Proceedings of the IASTED International
Conference on Software Engineering, 2008, pp. 112-117.

[18] P. Bellström, J. Vöhringer, and C. Kop, “Towards Modeling
Language Independent Integration of Dynamic Schemata,” in
Information Systems Development Toward a Service
Provision Socity, Heidelberg: Springer, 2009, pp. 21-29.

422

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] P. Bellström, J. Vöhringer, and A. Salbrechter, “Recognition
and Resolution of Linguistic Conflicts: The Core to a
Successful View and Schema Integration,” in Advances in
Information Systems Development New Methods and
Practice for the Networked Society, Vol. 2, 2007, pp. 77-87.

[20] G. Fliedl, C. Kop, H.C. Mayr, W. Mayerthaler and C.
Winkler, “Linguistically based requirements engineering –
The NIBA project,” Data & Knowledge Engineering, 35,
2000, 111-120.

[21] R. Gustas and P. Gustiené, “Towards the Enterprise
Engineering Approach for Information System Modelling
Across Organisational and Technical Boundaries,” in
Enterprise Information Systems V, Dordrecht: Kluwer, 2004,
pp. 204-215.

[22] P. Chen, “The Entity-Relationship Model – Toward a Unified
View of Data,” ACM Transactions on Database Systems, vol.
1(1), 1976, pp. 9-36.

[23] W. Song, Schema Integration – Principles, Methods, and
Applications, Dissertation, Stockholm University, 1995.

[24] Object Management Group, OMG Unified Modeling
Language (OMG UML), Superstructure, [Electronic],
Available:
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
[20120126], 2010.

[25] P. Bellström and J. Vöhringer, “Towards the Automation of
Modeling Language Independent Schema Integration,”
Proceedings of the International Conference on Information,
Process, and Knowledge Management (eKNOW 2009), 2009,
pp. 110-115.

[26] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” The VLDB Journal, vol. 10,
2001, pp. 334–350.

[27] P. Shvaiko and J. Euzenat, “A Survey of Schema-Based
Matching Approaches,” Journal of Data Semantics, vol. 4,
2005, pp. 146-171.W.

[28] M.L., Lee and T.W. Ling, “A Methodology for Structural
Conflict Resolution in the Integration of Entity-Relationship
Schemas,” Knowledge and Information System. 5, 2003, 225-
247.

[29] Q. He and T.W. Ling, “Resolvning Schematic Descrepancy in
the Integration of Entity-Relationship Schemas,” in:
Proceedings of ER 2004, Heidelberg: Springer, pp. 245-258.

[30] Z. Wu and M. Palmer, “Verb semantics and lexical selection,”
in Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics, 1994, pp. 133-
138.

[31] G. Hirst and D. St-Onge, “Lexical chains as representations of
context for the detection and correction of malapropisms,” in
WordNet: An Electronic Lexical Database (Language,
Speech, and Communication), 1998.

[32] S. Banerjee and T. Pederson, “An Adapted Lesk Algorithm
for Word Sense Disambiguation Using WordNet,”
Proceedings of the 3rd International Conference on Intelligent
Text Processing and Computational Linguistics (CICLing
2002), 2002, pp. 136–145.

[33] Wordnet, WordNet A lexical database for English
[Electronic], Available: http://wordnet.princeton.edu/
[20120126]

[34] L. Palopoli, G. Terracina, and D. Ursino, “DIKE; A System
Supporting the Semi-Automatic Construction of Cooperative
Information Systems From Heterogeneous Databases,”
Software–Practice and Experiences, vol. 33, 2003, pp. 847-
884.

[35] D. Kensche, C. Quix, X. Li, and Y. Li, “GeRoMeSuite: A
System for Holistic Generic Model Mangement,” Proceedings
of the 33rd International Conference on Very Large Data,
2007, pp. 1322-1325.

[36] H. Frank and K. Eder, “Towards an Automatic Integration of
Statecharts,” Proceedings of ER’99, Springer, 1999, pp. 430-
445.

[37] P. Shoval, “A Methodology for Integration of Binary-
Relationship Conceptual Schemas,” International Conference
on Databases, Parallel Architectures and Their Applications,
1990, pp. 435–437.

[38] T.J. Teorey, Database Modeling & Design, Morgan
Kaufmann Publishers Inc, USA, 1999.

[39] S. Spaccapietra and C. Parent, “View Integration: a Step
Forward in Solving Structural Conflicts,” IEEE Transactions
on Knowledge and Data Engineering, Vol. 6, No. 2, 1994, pp.
258–274.

[40] P. Bellström, “Bridging the Gap between Comparison and
Conforming the Views in View Integration,” Local
Proceedings of the 10th ADBIS Conference, 2006, pp. 184-
199.

[41] P. Johannesson, Schema Integration, Schema Translation, and
Interoperability in Federated Information Systems.
Dissertation Stockholm University, Royal Institute of
Technology, 1993.

[42] L. Ekenberg and P. Johannesson, “A Formal Basis for
Dynamic Schema Integration,” Conceptual Modeling –
ER’96, Springer, 1996, . pp. 211-226.

[43] P. Bellström, “On the Problem of Semantic Loss in View
Integration,” in Information Systems Developent Challenges
in Practice, Theory, and Education, Vol. 2, Heidelberg:
Springer, 2009, pp. 963-974.

[44] D. Dey, V.C. Story and T.M. Barron, “Improving Database
Design through the Analysis of Relationships,” ACM
Transactions on Database Systems, 24 (4), 1999, pp. 453-486.

[45] C. Batini and M.Lenzerini, “A Methodology for Data Schema
Integration in the Entity-Relationship Model,” IEEE
Transactions on Software Engineering, 10 (6), 1984, pp. 650–
664.

[46] S.B. Navathe and S.U. Gadgil, “A Methodology for View
Integration in Logical Database Design,” Proceedings of the
Eighth International Conference on Large Data Bases,
Morgan Kaufmann, 1982, pp. 142–164.

[47] Bloomfield, L. (1933). Language. Chicago - London: The
University of Chicago Press.

[48] R. Koeling and D. McCarthy, “From Predicting Predominant
Sense to Local Context for Word Sense Disambiguation,”
Proceedings of the 2008 Conference on Semantics in Text
Processing (STEP’08), 2008, pp. 103-114.

[49] K. Heylen, Y. Peirsman, D. Geeraerts and D. Speelman,
“Modelling Word Similarity: An Evaluation of Automatic
Synonymy Extraction Algorithms,” Proceedings of the 6th
International Conference on Language Resource and
Evaluation (LREC’08), 2008, pp. 3243-3249.

[50] W. Kim and J. Seo, “Classifying Schematic and Data
Heterogeneity in Multidatabase Systems,” IEEE Computer,
24, 1991, pp. 12–18.

[51] J. Ekedahl and K. Golub, Word sense disambiguation using
WordNet and the Lesk algorithm. Projektarbeten 2004:
Språkbehandling och datalingvistik Lunds Universitet,
Institutionen för Datavetenskap, 2005, pp. 17-22.

[52] P. Willet, “The Porter stemming algorithm: then and now,”
Electronic Library and Information Systems, 40 (3), 2006, pp.
219-223. ISSN 0033-0337.

