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Abstract—In this paper we present a semi-automatic method 

for matching schema elements in the integration of structural 

pre-design schemata. In doing so we describe and present how 

element level matching (concept), structural level matching 

(neighborhood) and taxonomy-based matching can be 

combined into one workflow and method. The matching 

method is a composite schema-based matching method where 

several different approaches are used to receive one single 

matching result. Our contributions facilitate the otherwise 

complex task of matching schema elements during the 

integration of pre-design schemata and they also speed up the 

process due to automation of certain process steps. The 

research approach used within this work can be characterized 

as design science and our main contributions as a method and 

an instantiation (a prototype). 

Keywords-Semi-automaic Schema Integration; Pre-Design; 

Schema Matching; Implementation Neutral Design 

I.  INTRODUCTION  

In the early phases of information system development 
we deal with requirements that are described in natural 
language and suitable modeling languages, resulting in a 
number of documents and schemata. These schemata both 
illustrate structural (static) and behavioral (dynamic) aspects. 
The requirements, however, are not illustrated in one schema 
but in a set of schemata, each showing some small fraction of 
the information system being designed. To avoid problems 
and misunderstandings these schemata should be integrated 
into one blueprint of the information system. In other words, 
the source schemata are to be integrated into one global 
conceptual schema. The schema integration process is 
divided into at least four phases: it starts with a preparation 
phase, then moves on to a comparison phase, which is 
followed by a resolution phase and ends with a phase in 
which the schemata are superimposed and the global 
integrated schema is restructured. The focus of this paper is 
on the second of theses phases; i.e. how to recognize 
similarities and differences between the compared source 
schemata. In [1] we described a three-tier matching strategy 
for pre-design schema elements that facilitates the difficult 
task of pair-wise comparison of the source schemata while 
aiming to recognize similarities and differences between 
them. In this paper we present and describe a continuation 
and extension of that work. More precisely, this means that 
we present and describe a semi-automatic method for 
matching schema elements during the integration of 

structural pre-design schemata. The recognition of 
similarities and differences is one of the integration phases 
that can be automated, which is something we should aim 
for, because, as Doan et al. [2] express it, “schema matching 
today remains a very difficult problem.” (p. 11). 

One of the most quoted descriptions of ‘schema 
integration’ is given by Batini et al. [3], who state that 
schema integration is “the activity of integrating the schemas 
of existing or proposed databases into a global, unified 
schema.” (p. 323). Since schema integration is a very 
complex, error-prone and time-consuming task [4], 
computer-based applications and tools are needed to 
facilitate the process. Consequently, in this paper we present 
a semi-automatic method for matching schema elements in 
the integration of structural pre-design schemata. In this 
method focus is placed on automation with the main goal to 
consolidate different matching strategies and approaches in 
order to achieve semi-automatic recognition of similarities 
and differences between schemata. By it we always compare 
two source schemata since binary ladder integration is 
assumed [3][5]. Even though automatic schema integration is 
desirable, we agree with Stumptner et al. [6] who state in 
connection with dynamic schema integration, full automation 
is not feasible due to the complexity of the task. We also 
argue that domain experts are an important source of domain 
knowledge and therefore should be involved in the entire 
schema integration process. In this article the compared 
structural schemata only contain two types of primitives: 
concepts (including labels) and connections 
(dependency/relationship) between the concepts. Finally, our 
use of ‘pre-design’ refers to analysis and design on an 
implementation-independent level; i.e. focusing on 
describing the content (what) rather than the specific 
implementations of an information system (how). Besides 
schema integration, another application area for pre-design 
matching is the consolidation of project schemata during 
ontology engineering (see for instance [7]). 

The article is structured as follows: in section two we 
describe the applied research approach. In section three we 
address related work and distinguish it from our own. In 
section four we present the schema integration process and in 
section five this article’s main contribution is discussed: the 
proposed semi-automatic schema matching method. Finally, 
the paper closes with a summary and conclusions. 
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II. RESEARCH APPROACH 

The research approach used within this work can be 
characterized as design science. The big difference between 
the ‘behavioral science paradigm’ and the ‘design science 
paradigm’ is that behavior science “seeks to find ‘what is 
true’” while design science “seeks to create ‘what is 
effective’” [8]( p. 98). Design science in not a new research 
approach. It has been used for a rather long time in several 
disciplines such as Computer Science, Software Engineering 
and Information Systems [9]. In design science focus is on 
producing artifacts. Hevner et al. [8] describe it as follows: 
“The result of design-science research in IS is, by definition, 
a purposeful IT artifact created to address an important 
organizational problem.” (p. 82). In this quotation, Hevner et 
al. use IS as an acronym for ‘Information System.’ The 
produced artifacts can further be classified as constructs, 
models, methods and instantiations [8][10]. In Table 1, each 
type of artifact is briefly described quoting March & Smith 
[10]. 

TABLE I.  DESIGN SCIENCE ARTIFACTS ACCORDING TO [36] 

ARTIFACT DESCRIPTION 

Construct Construct or concepts form the vocabulary of a domain. 
They constitute a conceptualization used to describe 
problems within the domain and to specify their 
solutions. (p. 256) 

Model A model is a set of propositions or statements expressing 
relationships among constructs. In design activities, 
models represent situations as problem and solution 
statements. (p. 256) 

Method A method is a set of steps (an algorithm or guideline) 
used to perform a task. (p. 257) 

Instantiation An instantiation is the realization of an artifact in its 
environment. (p. 258) 

 
Finally, it is important to evaluate design science 

research contributions through one, or several, evaluation 
methods. In [8] Hevner et al. describe five such evaluation 
methods: observational, analytical, experimental, testing and 
descriptive. In Table 2, each evaluation method is shortly 
described quoting [8]. 

As will be addressed in section 5, our research has two 
types of contributions: we have developed a method and an 
instantiation (a prototype). To validate these research 
contributions several evaluation methods have been used: 
analytical, testing and descriptive evaluation methods. 

For a more detailed discussion and description of the 
design science approach, please see Hevner & Chatterjee 
[11]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II.  DESIGN SCIENCE EVALUATION METHODS ACCORDING TO 

[27]  

EVALUATION METHOD DESCRIPTION 

1. Observational Case Study: Study artifact in depth in 
business environment 
Field Study: Monitor use of artifact in 
multiple projects (p. 86) 

2. Analytical Static Analysis: Examine structure of 
artifact for static qualities (e.g., 
complexity) 
Architecture Analysis: Study fit of 
artifact into technical IS architecture 
Optimization: Demonstrate inherent 
optimal properties of artifact or provide 
optimality bounds on artifact behavior 
Dynamic Analysis: Study artifact in use 
for dynamic qualities (e.g., 
performance) (p. 86) 

3. Experimental Controlled Experiment: Study artifact in 
controlled environment for qualities 
(e.g., usability) 
Simulation - Execute artifact with 
artificial data (p. 86) 

4. Testing Functional (Black Box) Testing: 
Execute artifact interfaces to discover 
failures and identify defects 
Structural (White Box) Testing: Perform 
coverage testing of some metric (e.g., 
execution paths) in the artifact 
implementation (p. 86) 

5. Descriptive Informed Argument: Use information 
from the knowledge base (e.g., relevant 
research) to build a convincing 
argument for the artifact’s utility 
Scenarios: Construct detailed scenarios 
around the artifact to demonstrate its 
utility (p. 86) 

 

III. PREVIOUS AND RELATED WORK 

In the schema integration research field several 
approaches and methods have been proposed during the last 
thirty years. These can roughly be classified into three 
approaches (see Bellström [12]): manual, formal and semi-
automatic. Manual means that everything is done by hand, 
formal means that a formal modeling language is used and 
semi-automatic means that at least one computer-based tool 
(application) is used to support the manual steps in the 
integration process. Our research is mainly placed within 
semi-automatic, the last of these three approaches. 
Previously we have both developed automation rules (see 
[13][14]) and implemented a prototype (see [15][16]). 
Besides that, we have also consolidated several matching 
strategies into one applicable matching approach for pre-
design schema elements (see [1]). Our research focuses on 
developing a modeling language-independent integration 
method. Some preliminary results were given [17] in which 
we proposed six generic integration guidelines: 
 

• Performing schema integration on the pre-design 
level 

• Standardizing concept notions and utilizing them 
during integration 

• Using domain repositories for supporting the 
integration process 

• Neighborhood-based conflict recognition 
• Pattern-based resolution of integration conflicts 
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• Computer supported integration with utilized user 
feedback 

 
This was followed by a proposal of a method for 

modeling language-independent integration of dynamic 
schemata (see [18]). Here we only focused on modeling 
language-independent constructs. This means that the focus 
was only on two primitives – processes and conditions – 
with the proposed method being comprised of four phases: 

 
• Preparation of the source schemata 
• Recognition of conflicts and commonalties between 

the source schemata 
• Resolution of conflicts and commonalties between 

the source schemata 
• Merging the source schemata and restructuring the 

global schema 
 
In [18] we also mapped the generic integration strategies 

proposed in [17] to these aforementioned phases. 
As mentioned in the introduction, our research focused 

on the implementation-neutral level; i.e. implementation-
neutral schemata (pre-design schemata) and modeling-
independent schema integration. In doing so the numbers of 
conflicts that can arise are reduced since fewer modeling 
concepts are needed [19]. Some specific ‘pre-design’ (user-
near) modeling languages do exist today; e.g. Klagenfurt 
PreDesign Model (KCPM) [20] and Enterprise Modeling 
(EM) [21]. It is still possible, however, to use any modeling 
language for pre-design [17]. 

Looking at previous work in relation to traditional 
modeling languages it can be concluded that the Entity-
Relationship Modeling Language (ERML) [22], or some 
extension of it, has dominated schema integration research 
[23] for a long time., Focus, lately, has shifted towards the 
Unified Modeling Language (UML) [24]. Both the ERML 
and the UML are modeling languages that are used to 
illustrate implementation-dependent aspects of an 
information system and are therefore not ideal for our 
research where we focus on the implementation-independent 
level; i.e. implementation-neutral design. This means that we 
do not distinguish between entities (classes) and attributes 
(see for instance [25] and [19]), which is something ERML 
and UML do. Nor are we interested in implementation-
specific features, such as lists, that can be found in both 
UML and in many programming languages. Instead, we are 
interested in ‘what’ and therefore focus on content. 

Having addressed previous and related work in relation 
to traditional modeling languages we now turn to related 
work in relation to semi-automatic approaches and methods. 
By doing so, we address some semi-automatic approaches 
and distinguish them from our own efforts. 

Rahm & Bernstein [26] presents a survey on automatic 
schema-matching approaches. They differentiate schema-
based and instance-based matching. Schema-based matching 
can be performed on the element level (concept) and on the 
structural level (neighborhood). Moreover, the matching can 
be linguistic-based (depending on the similarity of names or 
descriptions) or constraint-based (depending on meta-
information about concepts, such as data types and 

cardinalities). Furthermore, Rahm & Bernstein [26] classify 
combined approaches as either hybrid or composite 
matchers. The difference between these two is that hybrid 
matchers use different matching approaches independently, 
whereas composite matchers use different approaches to 
receive one single result. 

Following the terminology of Rahm & Bernstein [26], 
our own matching method can be classified as a composite 
schema-based matching approach because we apply 
element-level matching, structural-level matching and 
taxonomy-based matching with the goal of receiving one 
single result. Later on the results presented in [26] were 
adapted, refined and modified by Shvaiko & Euzenat [27]. 

In Lee & Ling [28] and He & Ling [29], the authors 
present algorithms for resolving different structural conflicts. 
These are the conflicts between entity types and attributes, as 
well as schematic discrepancy. He & Ling [29] express 
schematic discrepancy as follows: “the same information is 
modeled as data in one database, but metadata in another.” 
(p. 245). In both [28] and [29] the authors work towards an 
(semi-) automatic method in which structural conflicts and 
schematic discrepancy are both resolved by transforming 
attributes and metadata to entity types. 

Our method does not distinguish between entity types 
(classes) and attributes (properties) because our focus is on 
implementation-neutral design.  

Several algorithms for calculating concept similarity 
have also been proposed. The Wu and Palmer [30] similarity 
value is one such algorithm, which is calculated using 
formula 1: 

 

)2()1(

))2,1((*2

conceptdepthconceptdepth

conceptconceptLCSdepth
wup

      
 
In a first step the so called LCS (the Least Common 

Subsumer) is determined; i.e. the first common parent of the 
compared concepts in the taxonomy. The Wu and Palmer 
similarity score is then derived from dividing the double of 
the taxonomy depth of the LCS by the sum of the taxonomy 
depths of the compared concepts. Further separation of the 
concepts from their first common father concept means a 
lower similarity score.

  The Hirst and St Onge [31] similarity value allows us to 
measure the similarity between two concepts by determining 
the length of the taxonomy path between them. The paths for 
connecting concepts can be distinguished based on their 
strength: extra-strong, strong and medium paths. Extra-
strong paths exist between two equivalent concepts; strong 
paths are identified by a direct connection between two 
concepts while medium-strong paths finally mean that two 
concepts are indirectly connected. In the latter case the 
number of path direction changes is relevant for determining 
the concept similarity. Direction changes occur every time a 
medium-strong connection switches between upwards-paths, 
downward-paths and horizontal paths. More precisely, this 
means generalization, specialization and other relationships 
exist between the concepts. Frequent direction changes lower 
the similarity score as shown by formula 2: 

 

esctionChangnumberDirekpathLengthChso *       
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The calculation returns the value zero if no path at all 
exists between the concepts. In that case, the concepts are 
interpreted as unrelated. C and k are constants used for 
scaling the similarity value. 

Finally, the Lesk similarity value [32] is a context-based 
similarity score that does not require taxonomic structures. 
Instead it presupposes a lexicon in which different word 
senses are distinguished and detailed definitions for each 
meaning are available. Because the WordNet [33] taxonomy 
is freely available and contains definitions and examples for 
each concept, it is a popular choice for this task. For 
determining the Lesk similarity score the definitions of both 
involved concepts must be provided so that a numerical 
estimation of their degree of separation can then be 
calculated by counting the word overlap. 

Some techniques of our schema element-matching 
method are similar to the ones used in the DIKE [34] and the 
GeRoMeSuite [35] approaches, but both of these differ to 
our own method in some key aspects. In contrast to the 
DIKE approach we do not focus on any specific modeling 
language nor do we focus on implementation-dependent 
models, such as SQL, XML or OWL, which the 
GeRoMeSuite does. It can therefore be concluded that our 
method and the DIKE and GeRoMeSuite approaches are 
complementary rather than exclusive. 

IV. THE SCHEMA INTEGRATION PROCESS 

Since schema integration is a very time consuming and 
error-prone process it needs to be divided into a number of 
phases (e.g. [3] [36]). Besides that, it is important that each 
phase also has a clear purpose and resolves the problems it is 
set up to deal with. In the rest of this section we present the 
integration process as stated by Batini et al. [3]. There they 
point out that the integration process – in this case 
integration of structural schemata – is composed of the 
following four phases (see Figure 1): 

 

 Pre-Integration (A) 

 Comparison of the schemata (B) 

 Conforming the schemata (C) 

 Merging and restructuring (D) 
 

 
Figure 1.The Schema Integration Process adaped and modified from [7] (p. 

20) 

The arrows moving from left to right should be 
interpreted as feed-forward while the arrows from right to 
left are to be read as feed-back. Figure 1 also illustrates that 
the schema integration process is highly iterative and that it 
is possible to move back and forth between the phases. In 
other words, it is possible to go back to an earlier phase, 
make adjustments and then move forward again in the 
integration process.  

The phases proposed by Batini et al. [3] have influenced 
many integration strategies (e.g. [18]) and have been used as 

the basis for integration methods completely (e.g. [37] [38]) 
or in part (e.g. [39] [28]). Extensions of the integration 
process, with an additional phase in between comparing and 
conforming the schemata, have also been suggested by 
Bellström [40]. For a more detailed discussion and 
description of the integration process, please see [12]. 

A. Pre-Integration 

The first phase in the schema integration process is pre-
integration. According to Song [23], this phase includes at 
least three sub-tasks: (1) translating all schemata into the 
chosen modeling language (e.g. KCPM or EM), (2) checking 
for similarities and differences in each schema (e.g. 
homonyms) and (3), selecting integration strategies (e.g. 
binary or n-ary integration). 

B. Comparison of the schemata 

The second phase in the schema integration process is 
comparison of the schemata. According to Johannesson [41], 
this phase also includes at least three sub-tasks: (1) 
recognition of name conflicts (e.g. synonyms and 
homonyms), (2) recognition of structural conflicts (e.g. when 
using ERML one concept is described as an entity type in 
one schema and as an attribute in another) and (3), 
recognition of inter-schema properties (e.g. hypernyms-
hyponyms and holonyms-meronyms). Schema comparison 
has been mentioned as an important (see [23]) and difficult 
(see [42] and [28]) phase of schema integration. During the 
comparison of schemata, several tasks can be automated 
successfully.  

C. Conforming the schemata 

The third phase in the schema integration process is 
conforming the schemata. The main task of this phase is to 
resolve the conflicts and inter-schema properties recognized 
in the former phase. This phase has also been mentioned as 
the most critical one (see [28]) and the key issue (see [39]) in 
schema integration. It should be noted that, during the 
resolution of conflicts and inter-schema properties, no 
concepts and dependencies that are important for domain 
experts must be lost. Losing concepts or dependencies causes 
semantic loss [43], a problem that in the long run leads to 
interpretation problems in the integration process. 

D. Merging and restructuring 

The fourth and last phase in the schema integration 
process is merging and restructuring. This phase includes at 
least two tasks: (1) merging the schemata into one schema 
and (2), restructuring the integrated schema with the aim to 
remove redundancy. It is not, however, always clear which 
dependencies are redundant; i.e. can they be derived from 
other dependencies as dependencies might have different 
meanings for different domain experts [44]. Therefore, 
whenever a slight uncertainty exists whether a concept 
and/or dependency is redundant, it should be kept in the 
integrated schema since removing a not truly redundant 
concept and/or dependency would cause semantic loss [43]. 
In relation to schema restructuring, the integrated schema 
should also be checked against several schema qualities such 
as completeness, minimality and understandability [3] [5]. 

Pre-

Integration

Comparison 

of the 

Schemata

Conforming 

the Schemata

Merging and 

Restructuring
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V. A SEMI-AUTOMATIC METHOD FOR MATCHING PRE-

DESIGN SCHEMA ELEMENTS 

As indicated in the former section, the schema integration 
process includes several phases starting with schema 
preprocessing (pre-integration) moving on to schema 
matching (comparison and conforming the schemata) and 
finally ending with schema consolidation (merging and 
restructuring) (cf. with section IV). 

In this article, we view schema preprocessing as a phase 
in which six activities are carried out: 

 

 Translate the schemata into the chosen modeling 
language 

 Schema element name adaption 

 Schema element disambiguation 

 Recognition and resolution of inner-schema conflicts 

 Introduction of missing relationships 

 Selecting the integration strategy 
 
Translate the schemata into the chosen modeling 

language is the first activity to perform within the 
preprocessing phase. This activity is applicable when the 
information system is modeled using several modeling 
languages. It is, however, very important that the chosen 
modeling languages “have an expressiveness which is equal 
to or greater than that of any of the native models” [41](p. 
15). For integration of structural pre-design schemata this 
should not be a problem since concepts and connections 
between concepts are the only modeling constituents that are 
used. 

Schema element name adaption is the second activity to 
perform within schema preprocessing. It is a mandatory 
activity at least in its basic form; i.e. the reduction of words 
to their base forms using stemmers or lemmatizers. The use 
of naming guidelines (e.g. [17]) for its modeling elements 
can further improve a schema. This step is optional because 
it presupposes an individual set of naming guidelines, which 
depend at least on the used language.  

Schema element disambiguation is an optional, but 
recommended, step. It constitutes an easy way of improving 
schema matching and integration on the pre-design level. 
Word senses are either assigned manually by domain experts 
or automated suggestions are made based on domain 
ontologies and general-purpose lexicons. 

Recognition and resolution of inner-schema conflicts is 
mandatory in its basic form; i.e. the same designations are 
not allowed for different schema elements in static pre-
design schemata. It is also recommended to perform an 
enhanced search for potential homonym and synonym 
conflicts by using context matching (cf. with section V.B.). 

Introduction of missing relationships is optional provided 
domain ontology, or taxonomy, is available for identifying 
possible gaps in the schema. 

Selecting the integration strategy is the final activity to 
perform in schema preprocessing and it is a mandatory one. 
In this activity it must be decided whether binary or n-ary 
integration should be used [5]. If binary integration is chosen 
then a further decision must be made whether binary ladder 
or binary balanced integration (see [3][45]) should be used. 

For n-ary integration the two options n-ary one-shot, or n-ary 
iterative (see [3][46]), integration exist. For our method, we 
have decided to use binary ladder integration.  

After schema preprocessing the matching phase starts, 
which itself consists of several sub phases. We first 
discussed in detail [25] how the several matching techniques 
are utilized in a common workflow. An extended and 
updated version of this process is structured as follows: 

 
Step 1: Preparation for schema element-matching 

 Step 1.1: Find linguistic base form of schema 
elements 

 Step 1.2: Find schema element pairs to be matched 
 

Step 2: Matching on the element level 

 Step 2.1: Direct element name matching 

 Step 2.2: Application of linguistic rules 

 Step 2.3: Domain ontology-based comparison 
 

Step 3: Matching on the structural level 

 Step 3.1: Determine schema element neighborhood 

 Step 3.2: Domain ontology-based comparison for 
all pairs of neighbors 

 Step 3.3: Rule-based comparison for all pairs of 
neighbors 

 
Step 4: Taxonomy-based matching 
 
Step 5: Decision on matching results 

 Step 5.1: Present matching proposals 

 Step 5.2: Get user feedback 

 Step 5.3: Finalize matching decisions 
 
In the first schema matching step – preparation for 

schema element-matching – all combinations of schema 
element pairs from the two source schemata are prepared for 
comparison. The eventual goal in schema matching is to 
decide whether an element pair matches. The possible 
outcomes are: 

 

 Matching 

 Related 

 Dissimilar 
 

The matching method and workflow are as follows: 
every schema element pair is first matched on the element 
level using the direct comparison of the base form and the 
application of linguistic rules. This step results in a 
preliminary matching decision. If the result is “dissimilar” 
and domain ontology is available, then information about 
potential connections between the elements can be looked up 
in the ontology. Schema element pairs that are classified as 
“dissimilar” or “matching” then undergo structural matching, 
which aims to identify potential conflicts based on the 
neighbors of the compared elements. If such conflicts are 
identified, a respective warning is added to the preliminary 
matching decisions. Finally, taxonomy-based matching – in 
our case the Lesk algorithm – can be optionally performed 
for schema element pairs, which are assumed “dissimilar,” in 
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order to detect hidden relatedness. This is especially 
recommended if at least one of the compared schema 
elements is as yet unknown in the domain ontology. The 
final matching proposals, including any warnings, are 
presented to domain experts who then have the chance to 
accept the proposals or override them. For instance, they can 
decide if and how potential differences and similarities, such 
as homonyms and synonyms, should be resolved. If no 
domain expert is available the default proposals are pursued. 
Based on the matching results specific integration proposals 
are made in the schema consolidation phase. The three 
different matching steps, which our method is comprised of, 
are discussed in more detail in the following sections (V.A – 
V.C). 

A. Matching on the element level 

A.1 Element name comparison (Step 2.1 and 2.2) 
In our matching method element-level matching (concept 

matching) is the first activity. In element-level matching 
static schema elements are directly compared via their names 
(direct element name matching). Two elements which have 
matching names are automatically interpreted as equal for 
the moment although this decision can be amended later 
when matching on the structure level is performed. For 
example, let’s assume that schema A and schema B both 
come from the university domain. The static elements 
“students” in schema A and “student” in schema B have the 
same base form: “student.” Therefore, the elements match on 
the element-level; they supposedly describe the same 
concept.  

If one, or both, of the compared schema element names 
consist of compound words the compounds are 
deconstructed. For endocentric compounds – the most 
common ones in the English language according to 
Bloomfield [47] – the rightmost element of the word is its 
head. Thus the following two percolative rules (application 
of linguistic rules) are applicable:  

 
a. If the compared schema elements have names in the 

form of A and AB (i.e. A corresponds to the 
compound AB minus the head B), then the 
relationship “AB belongs/related to A” can be 
assumed between the elements. 

 
b. If the compared schema elements have names in the 

form B and AB (i.e. A is the head of the compound 
AB), then the relationship “AB is a B” can be 
assumed between the elements. 

 
To exemplify the first rule (a), an element named “car 

manufacturer” is identified as a potential attribute of an 
element named “car” (“car manufacturer” belongs to “car”) 
while an element “student social security number” is 
identified as an attribute candidate for the element “student” 
(“student social security number” belongs to “student”). 
However the relationship “belongs to” is usually interpreted 
as an inverse aggregation, which is not always the intended 
meaning. For instance “blood pressure” is defined as “the 
pressure of the circulating blood against the walls of [a 
person’s] blood vessels.” Thus it can be preferable to 

interpret “blood pressure” as an attribute of “person” rather 
than an attribute of “blood.” A more general association 
named “related to” is preferable in such cases; e.g. blood 
pressure” related to “blood.” 

Regarding (b), the second rule, the exemplary element-
pair “patient” and “dialysis patient” is interpreted as “dialysis 
patient” is a “patient,” while the concepts “blood pressure 
measurement” and “measurement” have the relationship 
“blood pressure measurement” is a (specific form of) 
“measurement.” The “is a” relationship obviously applies to 
all endocentric compounds, because their head is modified 
by the rest of the composite (consequently called the 
modifier) per definition. 
 
A.2 Domain ontology-based comparison (Step 2.3) 

The strategy to perform schema element-matching solely 
based on their names and definitions is not always sufficient. 
While correlations of element names might indicate a 
possible matching, the meanings of the involved words 
might still differ. Moreover, in practice sufficient concept 
definitions are not always available. Lastly, even if 
definitions are available for both compared elements they 
might not be detailed enough to decide whether the schema 
elements actually match or not. Thus it is optimal to have 
ontology of the domain at one’s disposal. 

On the supposition that the compared schema element 
pair has been preliminarily identified as dissimilar in the 
prior element-level matching step, the matching process 
proceeds by looking up concepts that fit to the schema 
element pair in the domain ontology. If both schema 
elements correspond to concepts in the domain ontology 
these are again compared on the element-level with the 
typical outcomes related and dissimilar. If one of the schema 
elements is missing no additional information about the 
elements’ relationship can be derived. Nevertheless, the 
missing elements can still be candidates for new ontology 
concepts. On the other hand, if both schema elements are 
found in the domain ontology, then the ontology can be 
utilized to recognize additional similarity as follows: 
 

 If the elements are directly related by an association 
in the domain ontology, then their relationship is 
assumed as “related” and this new relationship is 
introduced into the integrated schema. If, according 
to the ontology, both elements are synonymous this 
is denoted by the special relationship “is synonym 
of” or “mutual inheritance.” 

 

 If the elements are connected indirectly via 
relationships up to a certain restrictable degree of 
separation, they may also be assumed as “related.” 
Besides path length, relationship type is also a 
criterion for whether an indirect connection is 
interpreted as relatedness. The criteria of path length 
and relationship type may also be combined when 
evaluating indirect relationships. In order to 
correctly depict the connection between the 
indirectly connected schema elements the missing 
concepts and relationships from the ontology need to 
be introduced to the integrated schema. 
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 If no direct relationship, or indirect path, of the 
required length and/or type is found in the domain 
ontology between the compared schema elements, 
then they are assumed to be dissimilar or 
independent. 

B. Matching on the structural level 

B.1 Determine schema element neighborhood (Step 3.1) 
The previously described element-based schema 

matching techniques only take into account the names and 
definitions of the compared concepts. Matching results 
obtained in such a way might still be erroneous, however, as 
both synonym and homonym conflicts are possible (see also 
Figure 2 and Figure 3). 

Matching on the structure level (see [26]) is likely to 
improve the outcome of element-level matching namely by 
taking the schema elements’ neighborhood into account. 
Using neighborhood for deriving concept meanings isn’t a 
new approach (e.g. [34]), although it usually is utilized for 
word-disambiguation in full texts instead of schema element-
matching. For instance, Koeling & McCarthy et al. [48] 
suggest word sense disambiguation based on context and 
give an example: if the word “plant” has the sense ’industrial 
plant,’ it tends to occur in the neighborhood of words like 
“factory,” “industry,” “facility,” “business,” “company” and 
“engine.” Its other meaning, ’flora,’ is often hinted at by 
neighbors like “tree,” “crop,” “flower,” “leaf,” “species,” 
“garden,” “field,” “seed” and “shrub.” Heylen et al. [49] 
describe similar word matching techniques where 1

st
 and 2

nd
 

order bag-of-word-models are used for context-based word 
matching; i.e. it is determined whether words in the close 
proximity of the compared target words match. In 1

st
 order 

models the target words are identified as similar if their 
neighbors match to a certain degree while in 2

nd
 order 

models a two-level matching process takes place as the 
context of the neighbor words themselves are again 
compared. Context-based word disambiguation techniques, 
which are applied on natural language texts, usually aim at 
finding the meaning of single words in the text. Based on 
context a decision is derived, which out of several possible 
word definitions is the correct, or most likely, one. This is 
slightly different from schema matching where word pairs 
are compared with the goal of identifying possible conflicts. 
Finding the meaning of each involved concept is the first 
step towards identifying conflicts and commonalities. 

Regarding the notion of neighborhood in natural 
language text documents, the relevant neighborhood is 
typically defined by context windows that span a defined 
number of (content) words before and after the 
disambiguated word. Additional boundaries are provided by 
sentence delimiters. When adapting structure-based 
matching techniques on conceptual schemata, different 
definitions for the notions of “neighborhood” and “context” 
are needed. Typically, the context, or neighborhood, of a 
static schema element encompasses all surrounding directly 
connected elements. Sometimes it is helpful for the sake of 
matching and integration algorithms to extend the notion of 
context so that it also encompasses indirectly connected 
schema elements up to a certain level of separation.  

 
B.2 Domain Ontology-Based Neighborhood Comparison 
(Step 3.2) 

Essentially neighborhood matching acts as a security 
check whether the preliminary results from the element level 
are trustworthy, or if conflicts, such as homonyms or 
synonyms, are likely. If the neighborhood comparison 
supports the result of the element-level matching then the 
integration process continues. But when the neighborhood 
comparison yields different results than the element-level 
comparison, however, a contradiction is at hand and the 
domain experts must be notified by displaying a warning that 
the current schema element pair has a potential conflict. For 
the purpose of recognizing conflict candidates two threshold 
values are defined: the homonymy threshold and the 
synonymy threshold. These thresholds are reference values 
and adaptable so that they can fit the needs of different 
projects. It is possible for the two thresholds to congregate 
on the same value, but the homonymy threshold must not be 
greater than the synonymy threshold.  

In order to calculate a matching result that can be 
compared against the threshold values the structure-level 
matching of neighbor schema elements is itself performed on 
the element level. The neighbor elements are counted as 
matching if one of the following conditions is fulfilled: 

 

 They have the same name and/or definitions 

 A synonymy relationship exists between them 
according to the domain ontology 

 The schema element pair has a taxonomy-based 
similarity score above a certain threshold 

 
Including more than just the direct neighbors in the 

decision process achieves a more thorough matching, but it is 
slower due to several more elements to compare. To 
determine the neighborhood matching of schema element-
pairs the percentage of corresponding neighbors is calculated 
using the matching criteria listed above. For this purpose the 
following intuitive formula (subsequently referenced as 
Degree of Neighborhood Matching (DNM)) can be used: 

 

2/1*
ma2))ntFromScheount(Eleme(NeighborCma1)ntFromScheount(eleme(NeighborC

ountmaElementCighborScheMatchingNe
      

 
Formula 3 calculates the percentage of matches among 

the average neighbor count. The resulting DNM value is 
compared against the thresholds. Schema elements that have 
been classified as “matching” on the element level must have 
a DNM above the defined homonymy threshold. If the DNM 
is below the threshold a homonym warning is issued by the 
matching application. Similarly, an element pair that has 
been classified as “dissimilar” on the element level should be 
below the provided synonymy threshold. If that isn’t the case 
a synonymy warning is issued by the matching application. 

Figures 2 and 3 give examples how analyses of the 
compared schema elements’ context may point towards 
hidden homonym and synonym conflicts in static pre-design 
schemata. In Figure 2 the element “course” occurs in both 
source schemata, but upon nearer inspection of the neighbors 
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it becomes apparent that the two elements have disjunctive 
neighborhoods. 

 

 
Figure 2. Recognition of homonym conflict [11] (p.113) 

 

 
Figure 3. Recognition synonym conflict [11] (p. 114) 

This raises the suspicion of homonymy. Indeed, the left 
schema describes a course served during a meal while the 
right hand schema describes a university course. It must be 
noted that severe homonym conflicts as shown in Figure 2 
are unlikely to occur if the source schemata come from the 
same domain. Most remaining homonym conflicts occur 
between concepts that have less pronounced semantic 
differences; e.g. see the more extensive example in Figure 4 
when the vocabulary of terms is small [3] and when 
incomplete concept names are used [50]. 

A synonym conflict is shown in Figure 3. The schema 
elements “registration” and “participation” have been 
classified as dissimilar on the element level, but several 
neighbors match: two of two adjacent elements for the 
schema element “registration” and two of three neighbors for 
the schema element “participation.” In spite of the small 
number of neighbors this implies that the elements 
“participation” and “registration” are used synonymously 
here. In actuality a student’s participation in an exam is 
modeled in both cases. Synonym conflicts frequently occur 
when different groups, or departments, are involved who 
might use different nomenclature for the same concept that’s 
specific to their point of view.  
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examcourse 
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teaching 

position

being paid

have

course

have

apply to

registration

belong to

have

belong to

subject

have

registrationexist for

have

examiner

student

make

solution

have

specification have
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solution partexist for consist of

exam

certificate have
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Figure 4. Homonym conflict example [49] ( p. 56) 

Figure 4 shows an example of a homonym conflict. Since 
the element “registration” occurs in both source schemata the 
schema element pair is preliminarily categorized as 
equivalent on the element level. Comparing the immediate 
context of the neighborhoods of “registration” the elements 
show the two registrations as actually being different 
concepts. Students are involved in both cases, but in the left-
hand schema students register to a course, while in the right-
hand-schema students register to an exam. In the latter case 
the students’ exam solution is related to their registration too. 
The result value according to the default DNM formula 
given above is 0.4, which, depending on the threshold, might 
be enough to issue a homonym conflict warning by the 
matching application. 

A way of further refining the DNM formula and 
improving its results is the additional consideration of 
schema elements that only appear in the neighborhood of one 
element although they are available in both schemata. Since 
these elements are expected, but not actual neighbors, in one 
of the schemata, they could be included in that schema’s 
neighbor count. Naturally, however, the match count stays 
the same so the resulting DNM score is always lowered 
when missing expected neighbors are taken into 
consideration. 

 
B.3 Rule-based Neighborhood Comparison (Step 3.3) 

In the third and last activity in structural-level matching 
we use two types of “IF THEN” rules: those for equivalent 
element names and others for similar element names (see 
also [13] and [14]). For this case equivalent means that 
matching on the element level resulted in two equivalent 
element names. Size, for instance, is an element within both 
schema 1 and schema 2. On the other hand, similar means 
that the element names are not equivalent but still have 
something in common; e.g. Order Line in schema 1 and 
Order in schema 2. Our method uses at least six rules for 
equivalent element names and three rules for similar element 
names. Our rules for equivalent element names can be stated 
as: 

 
IF the comparison of concept names yields equivalent 

and the comparison of concept neighborhoods yields: 

 Equivalent, THEN equivalent concepts are most 
likely recognized (E1) 

 Different, THEN homonyms are most likely 
recognized (E2) 

 Similar, AND one concept in each schema is named 
differently, THEN synonyms are most likely 
recognized (E3) 
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 Similar, AND one concept name is a composite of 
another concept name with a following addition 
AND the cardinality is indicating 1:1, THEN an 
association between the two concepts is most likely 
recognized (E4) 

 Similar, AND one concept name is a composite of 
another concept name with a prior addition, THEN a 
hypernym-hyponym pair is most likely recognized 
(E5) 

 Similar, AND one concept name is a composite of 
another concept name with a following addition 
AND the cardinality is indicating 1:M with or 
without uniqueness, THEN a holonym-meronym 
pair is most likely recognized (E6) 

 
Examples of rules E5 and E6 are illustrated in Figure 5 
and Figure 6. 
 

 
Figure 5. Recognition of a hypernym-hyponym dependency based on rule  

[10] ( p. 184) 

 
Figure 6. Recognition of a holonym-meronym dependency based on rule  

[10] (p. 185) 

Our rules for similar concept names can be stated as:  
IF the comparison of concept names yields: 

 Similar, AND one concept name is a composite of 
another concept name with a following addition 
AND the comparison of concept neighborhoods 
yields similar or equivalent with an indication to a 
1:1 cardinality, THEN an association between the 
two concepts is most likely recognized 

 Similar, AND one concept name is a composite of 
another concept name with a following addition 
AND the comparison of concept neighborhoods 
yields similar or equivalent with or without an 
indication to a unique 1:M cardinality, THEN a 
holonym-meronym pair is most likely recognized 

 Similar, AND one concept name is a composite of 
another concept name with a prior addition AND 
the comparison of concept neighborhoods yields 
similar or equivalent, THEN a hypernym-hyponym 
pair is most likely recognized 

 
One last remark is needed before moving on to the Lesk 
algorithm. The rules addressed above were applied in [13] 

and [14] while using the Karlstad Enterprise Modeling 
approach [21]. On the other hand, we do not focus here on 
any specific modeling language. We have therefore refined 
and adapted the rules to be useful for any modeling 
language; in other words, the rules are now modeling 
language-independent and can be used on the 
implementation -neutral level. 
 

C. Taxonymy-based matching - The Lesk Metric (Step 4) 

C.1 The Lesk approach in structure-based matching 
The Lesk metric [32] is a domain-independent similarity 

score that doesn’t require taxonomic structures (cf. [30] 
[31]). Instead, it presupposes a lexicon in which different 
word senses are distinguished and detailed definitions for 
each meaning are provided. Because the WordNet [33] 
taxonomy contains definitions and examples for each 
concept it is a popular choice for this kind of task. The Lesk 
approach is a context-based similarity measurement strategy 
and requires neither the LCS (Least Common Subsumer) nor 
the path length unlike other WordNet-based similarity 
measures (cf. [30] [31]). For determining the Lesk similarity 
score the definitions of both involved concepts must be 
provided and then a numerical estimation of their degree of 
separation is calculated by counting the word overlap. 

In Banerjee & Pederson et al. [32] and Ekedahl & Golub 
et al. [51] specific implementations of the Lesk-algorithm are 
discussed for disambiguating words in full texts using 
WordNet [33]. In their approach a context window 
containing an equal number of words on both sides of the 
observed word is defined after which all available definitions 
for the observed concept and the other content words in the 
context window are examined and compared. The word 
sense that has the greatest overlap with the definitions from 
the surrounding text is assumed to be the correct one. Non-
content words, like pronouns or articles, are excluded from 
the overlap count. Although the Lesk algorithm was 
originally designed for word disambiguation in full texts a 
similar approach can be applied to schemata by comparing 
not only concept notions, but also the definitions of concepts 
and those of their neighbors. This application of the Lesk 
algorithm for disambiguation purposes is similar to schema 
matching on the structure level although concept definitions 
rather than concept names are matched. 

 
C.2 Calculation and performance of the Lesk score 

In our method we adopt the Lesk algorithm as presented 
by Vöhringer & Fliedlet al. in [15]. The following glosses 
are interpreted for each compared word: the examples and 
the definitions of the hypernyms, hyponyms, meronyms, 
holonyms and the word itself. Table III lists the glosses for 
the concept “bus#n#1” as extracted from WordNet. The 
underlined words are not part of the actual gloss value but 
added for clarity reasons because they denote the 
corresponding concepts of the gloss. 

Permutations of the various glosses are tested for 
overlaps; i.e. example “car#n#1”- glos “bus#n#1,” glos 
“car#n#1”- glos “bus#n#1” etc. (see table IV). In order to 
prioritize longer matches, the score for each gloss-pair is 
defined as the sum of the squared word count of each 

Customer

Product OrderItem

Order

Name

Product

High Priority 

Order

OrderItem

Hypernym-Hyponym

Schema 1 Schema 2

Compared 

Concepts

Neighbor 

Match

No Neighbor 

Match

Priority

Name

Product OrderItem

Order Name

Product

OrderItem

Schema 1 Schema 2

Holonym-Meronym

Compared 

Concepts

Neighbor 

Match

No Neighbor 

Match



419

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overlap. The total Lesk similarity score is defined as the 
accumulated score of all gloss-combinations. 

TABLE III.  TYPICAL WORDNET GLOSSES FOR THE CONCEPT 

“BUS#N#1“ 

Gloss 

Type 

Description Gloss Value 

Example Example of 

usage 

"he always rode the bus to work" 

Glos Word sense 
definition 

bus: a vehicle carrying many passengers; 
used for public transport; 

Hype glos Bus is a kind 

of… 

public transport: conveyance for 

passengers or mail or freight 

Hypo glos … Is a kind 
of bus 

minibus: a light bus (4 to 10 passengers) 
school bus: a bus used to transport children 

to or from school  

trolleybus: a passenger bus with an electric 
motor that draws power from overhead 

wires 

Holo glos Bus is a part 
of… 

fleet: group of motor vehicles operating  
together under the same ownership 

Mero glos … Is a part of 

bus 

roof: protective covering on top of a  

motor vehicle  

window: a transparent opening in a vehicle 
that allows vision out of the sides or back; 

usually is capable of being opened 

 
Table IV lists the overlaps and the resulting scores for the 

word pair “car#n#“1 – “bus#n#1“; only gloss permutations 
with at least one overlap are shown. As for the calculation of 
the overlap scores, comparing the example gloss of 
“car#n#1” and the (descriptive) gloss of “bus#n#1” yields a 
single overlap of the length 1. The score for this overlap is 
therefore 1

2
; i.e. 1. The hyponym gloss of “car#n#1” and the 

(descriptive) gloss of “bus#n#1” have four overlaps. Three of 
them have the length 1 while one of the overlaps (“a 
vehicle”) consists of two words; i.e. it has the length 2. The 
score is thus calculated as follows: 3*1

2
+1*2

2
; i.e. 7. The 

total similarity score for car#n#1 and bus#n#1 is 615. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV.  EXAMPLE OF STANDARD LESK OVERLAPS 

Tracing Lesk Comparison car#n#1 – bus#n#1 

car#n#1 Bus#n#1 Overlap Score 

Example Glos 1 x "a" 1 

Glos Glos 1 x "a"  

1 x "vehicle" 

2 

Glos mero glos 1 x "usually"   
1 x "a motor 

vehicle" 

10 

hypo glos Glos 1 x 
"passengers"   

1 x "a vehicle"   

1 x "for"   
1 x "used" 

7 

Mero glos mero glos 1 x "a 

transparent 
opening in a 

vehicle that 

allows vision 
out of the sides 

or back; usually 

is capable of 
being opened"   

1 x "protective 

covering on top 
of a motor 

vehicle" 

505 

Total score 615 

 
Generally, two concepts are more closely related the 

higher the Lesk score is. The Lesk metric, however, is 
dependent on the number and size of the available glosses. 
Like other similarity measures, the Lesk score needs 
reference values to which it can be compared. In other 
words, the Lesk score needs a threshold value to be 
meaningful. 

Table V compares the Lesk scores for the three word 
pairs “car#n#1”-“bicycle#n#1,” “car#n#1”-
“motorcycle#n#1” and “car#n#1-“bus#n#1”. 

TABLE V.  UNINTUITIVE RANKING OF CONCEPTS WITH THE LESK 

SCORE 

Pair Score Rank 

car – bicycle 300 2 

car – motorcycle 237 3 

car – bus 739 1 

 
Ranking the scored pairs shows that cars and buses are 

identified as the most similar pair followed by cars and 
bicycles while cars and motorcycles are identified as the 
least similar pair. Furthermore, choosing a relevance 
threshold of 300 implies that cars and bicycles and cars and 
buses are similar, but cars and motorcycles are not. These 
results are unintuitive as, following intuition, at least cars 
and motorcycles should be interpreted as more similar than 
cars and bicycles since both are motorized vehicles. When 
regarding shape and function motorcycles and bicycles are 
similar. This example demonstrates that the Lesk score 
requires some optimizations to become more meaningful. 
Optimizations of the Lesk Algorithm are therefore addressed 
in the following section. 
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C.3 Optimizations of the Lesk Algorithm 
As discussed by Vöhringer & Fliedl et al. in [15], the 

standard Lesk algorithm has optimization potential in regard 
to not only internal factors but also in regard to external 
factors. Optimization of the internal factors means that the 
Lesk algorithm itself is updated and improved while in the 
optimization of the external factors the environment is 
adapted but the algorithm stays unchanged. The underlying 
lexicon, in particular, can be optimized regarding contents 
and structure. Possible optimization strategies include: 

 

 Internal factors: 
o Partial filtering of stop words 
o Word reduction via stemming 
o Normalization based on gloss length 

 

 External factors: 
o Improvement of glossary quality and quantity 

via completion and substitution of certain 
keywords 

o Restructuring of taxonomy 
o Guidelines for gloss extension in specific 

domains 
 
Stop word-based enhancements of the Lesk strategy are, 

for example, discussed in [32]. A stop word list generated 
from WordNet can be used for filtering word grams that 
contain a certain empirically motivated percentage of non-
content words. Gloss overlaps above a predefined percentage 
of stop words are ex-filtrated. Since single stop word 
overlaps have a 100% stop word quotient they are 
obligatorily filtered out. For identifying matches of inflected 
word variants, stemming is proposed. In a prototype 
implementation of the Lesk algorithm, a version of the 
extended Porter stemmer is used for this purpose [52]. 

Other Lesk optimization strategies include normalization 
by gloss sizes. Using the standard additive calculation of 
gloss overlap scores the availability of extensive glosses is 
naturally favored. If, in contrast, gloss size normalization 
was used overlap scores would yield the proportional rate of 
overlaps in a gloss instead of the absolute numbers. 

Lesk optimizations with respect to external factors; e.g. 
by filling gaps in WordNet glosses or restructuring the 
WordNet taxonomy, are a difficult process. Although there 
are apparent gaps and suboptimal taxonomies in WordNet 
that are seemingly easy to improve one must be wary of side 
effects. The easiest least intrusive change on the external 
level is the filling of prominent gloss gaps; in particular 
missing hypernyms, hyponyms, meronyms and holonyms. 
This can be done either manually or by transferring these 
definitions from other related words. For instance, the two 
WordNet entries “motorcycle” and “bicycle” miss several 
fitting meronyms that exist for the related word “car.” 
Motorcycles, like cars, have an engine, a mirror and a horn. 
Likewise, “mirror” and “horn” are parts of bicycles too. 

As shown in table VI, these already existing glosses are 
transferred to “motorcycle” and “car” by entering the 
respective meronyms. 

 

TABLE VI.  FILLING GAPS IN WORDNET GLOSSES 

Concept Extension of WordNet standard glosses for 

meronyms 

Car WordNet standard glosses (not extended) 

Bus WordNet standard glosses (not extended) 

Motorcycle WordNet standard glosses extended by 

 motorcycle engine: the engine that propels a 

motorcycle  

 motorcycle horn: a device on a motorcycle for 

making a warning noise  

 motorcycle mirror: a mirror that the driver of a 
motorcycle  

 gasoline engine: an internal-combustion engine 
that burns gasoline 

Bicycle WordNet standard glosses extended by  

 bicycle horn: a device on a bicycle for making a 
warning noise  

 bicycle mirror: a mirror that the driver of a bicycle 
can use 

 
 
To demonstrate the effects of internal and external Lesk 

optimizations the exemplary word pairs from table V 
(“car#n#1”-“bicycle#n#1,” “car#n#1”-“motorcycle#n#1” and 
“car#n#1-“bus#n#1”) have also been tested with updated 
versions of the Lesk algorithm (see tables VII and VIII). 
While the original Lesk score listed “car”-“bicycle” as more 
similar than “car”-“motorcycle” (a score of 300 vs. 237), the 
internally optimized Lesk implementation yields the scores 
115 for the word pair “car”-“bicycle” and 181 for the word 
pair “car”-“motorcycle.” Thus the improved algorithm using 
the strategies discussed above better reflects the greater 
similarity between “car” and “motorcycle.” 

TABLE VII.  RESULTS OF THE INTERNALLY OPTIMIZED LESK 

ALGORITHM 

Pair Score Rank 

Car-Bicycle 115 3 

Car-Motorcycle 181 2 

Car-Bus 688 1 

TABLE VIII.  RESULTS OF THE INTERNALLY & EXTERNALLY OPTIMIZED 

LESK ALGORITHM 

Pair Score Rank 

Car-Bicycle 198 3 

Car-Motorcycle 321 2 

Car-Bus 688 1 

 
Summarized results of the internal and external Lesk 

optimizations are shown in tables VII and VIII. Obviously, 
the results in table V don’t adequately reflect the intuitive 
similarity-ranking concerning form and functionality of the 
involved entities. Table VII shows that internal optimization 
already establishes the correct ranking. Table VIII shows the 
scoring results after filling obvious lexicon gaps with 
adjusted score distances. The experiment’s results suggest 
that the outcomes using the optimized Lesk algorithm are 
more meaningful than the standard Lesk score. 

D. Decision on matching results (Step 5) 

In short, the following strategies are applied in step 5’s 
decision on matching results. Both equality and synonymy 
mean that the compared schema elements match. The 
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integration proposal “matching” is therefore an indication for 
merging these elements though semantic loss must be 
avoided under any circumstances. This can be done by 
storing the original schemata and concept names for 
traceability reasons. Unrelated schema elements are 
“dissimilar” and therefore transferred independently to the 
integrated schema. For (directly) “related” schema elements 
both elements are transferred to the integrated schema and a 
relationship between them is introduced. Schema elements 
are indirectly related when they have no direct connecting 
relationship in the domain, but are connected via several 
other concepts. For example, two elements might have a 
common neighbor concept with which they are connected 
via generalization- or aggregation-relationships. It is 
principally possible to also transfer such more complex 
relationships – including all intermediate concepts – to the 
integrated schema as a proper connection for the indirectly-
related schema elements.  

A central requirement says that the integration process 
should be automatized. This means that domain experts 
should be supported by preferably accurate proposals and the 
tool should generate a default-integrated schema even when 
no user input is made at all. For this purpose an option is 
provided in the integration tool that allows adjusting the 
preferred degree of automatization. At its most rigid setting a 
rough solution is automatically calculated using the matching 
methods as described in the previous sections if user 
feedback is absent? The proposals’ quality is influenced by 
the correctness and completeness of the available domain 
ontology. If ambiguity conflicts arise they are resolved by 
automatically choosing the most probable word meaning. 
While fully automatic integration without any manual input 
is fast and convenient the quality of the proposed solution is 
likely to be lower than when user feedback is available. On 
the other hand, the prototype also allows a setting where the 
matching and integration is performed stepwise and domain 
experts need to accept, or reject, the proposals for each 
schema element pair and each integration step. This setting 
naturally allows the most direct influence for the user, but it 
is also the slowest and most laborious. Our recommended 
strategy is to strike a balance between these two extremes. 
This can be done by automating the process, but asking the 
domain experts to provide missing definitions to resolve 
conflicts like word ambiguities, or contradictions, and to 
evaluate the end results of the integration. 

VI. SUMMARY AND CONCLUSION 

In this paper, we have presented a semi-automatic 
method for matching schema elements in the integration of 
structural pre-design schemata. Following Rahm & Bernstein 
et al. [26], our own method can be classified as a composite 
schema-based matching method. Our approach uses element-
level (concept) matching – structural-level (neighborhood) 
matching and taxonomy-based matching – and combines 
these parts to one workflow resulting in the proposed 
integrated schema. The research approach used within this 
work can be characterized as design science and our main 
contributions as a method and an instantiation; i.e. a 
prototype application. When applied in schema integration, 
our matching method should facilitate the recognition of 

similarities and differences between two structural source 
schemata. 
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