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Abstract—In this paper, opportunistic object binding is pro-
posed to improve multi-modal localization. Object binding and
proximity detection will be realized using Bluetooth and Wireless
Sensor Networks. Multi-modal localization is created using an
opportunistic seamless localization system, fusing Wi-Fi, Blue-
tooth, Wireless Sensor Networks, GSM, GPS, RFID and inertial
sensors. In this paper object binding is used to locate devices
which can not be located without the help of bound objects.

Index Terms—object binding, localization, opportunistic lo-
calization, multi-modal localization, Bluetooth, WSN, Wi-Fi,
proximity detection.

I. INTRODUCTION

Today, location based services are widely spread and
already integrated in many applications such as GPS
navigation systems, Google Earth, track and trace systems,
Foursquare, etc. Outdoor localization is mostly accomplished
by means of GPS, but usually GPS does not work indoor
because there has to be a minimum of four satellites in line
of sight, which is usually not the case indoor. Indoors, we can
use Bluetooth [1], [2], Wi-Fi [3] or GSM [4], or even other
techniques such as Wireless Sensor Network (WSN) [5], [6]
and Ultra Wide Band (UWB) [7].

One big challenge is fusing these techniques into a single
system. Acquiring the sensor data of multiple sensors can be
realized because most mobile devices such as Personal Digital
Assistants (PDAs) and smart phones are very often equipped
with GSM, GPS, WiFi or a combination of these. A system
which combines this technologies is called Opportunistic
Seamless Localization System (OLS) [3].

The future of localization systems most likely will evolve
towards systems that can adapt and cope with any available
information provided by mobile clients without the need
to install any additional dedicated infrastructure. This type
of localization is called opportunistic localization. It is
defined as [8]: “An opportunistic localization system is a
system, which seizes the opportunity and takes advantage
of any readily available location related information in an
environment, network and mobile device for the estimation of

the mobile device absolute or relative position without relying
on the installation of any dedicated localization hardware
infrastructure.”

The OSL system combines the earlier mentioned
technologies together with the information of accelerometers,
compass and camera.

Currently, in OSL, the clients or ’trackable objects’ can
be any laptop running Windows or Linux, any smartphone
running Windows Mobile, Android or OpenMoko or dedicated
OSL Wi-Fi or Zigbee tags. The complete system overview is
shown in Figure 1.
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Fig. 1. The OSL system architecture

The clients send raw sensors data of the above mentioned
technologies to the server, where the communication interface
will parse these messages and send the appropriate data to the
localization engine which will calculate a position estimation.
This estimation is sent to the Service API which facilitates
the communication with 3rd party application to, for example,
visualize the positions on a map or trigger any events.

The localization engine seamlessly fuses the heterogeneous
sensor data using an adaptive observation model for the
particle filter, taking the availability of every technology and
sensor data into account. A particle filter [9] is a sequential
Monte Carlo based technique used for position estimation.
Since we are working with a real-time system, it is even
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harder to estimate the correct position therefore heavy and
numerous calculations are not recommended.

Limiting the number of particles is recommended in order
to avoid extensive time-consuming calculations. For example,
when the system is implemented in a large scale environment,
such as an airport where many devices are present, the system
might be delayed due to these calculations for all those
devices. Obviously, some objects will travel together such as
people traveling by bus. In such cases, it is not necessary
to calculate all their positions with different particle clouds.
Instead, we could combine all these objects and bind them
in one group, in which case we only have to calculate one
position for this group.

Besides from this optimization related reason for object
binding, object binding also enables the system to locate
objects which can not be located by its own.

Bluetooth, for example, is a useful technology to detect
other adjacent Bluetooth devices. Which would enable the pos-
sibility to detect whether people are moving together. Another
interesting reason to use Bluetooth may be the possibility to
locate unknown people. This can, for example, be useful to
estimate the amount of people in a given area.

Another technology, which can be used to detect the
proximity of one device towards another, is WSN.

A third way of using object binding is to combine multiple
tags or devices which are related to one object, for example,
a person having a laptop and a smartphone. In this case
the location data of the two devices has to be analyzed.
Two possibilities can happen, first the object can be merged,
for example, when the laptop and the smartphone are both
in the neigbhourhood of each other and most probably
also in the neighbourhood of the person. Alternatively,
heuristics can determine that the two devices are not at
the same place, for example, when the laptop is still in
the office but the person is walking with his smartphone
through the building. In this case the position of the laptop
can not be connected with the position of the person anymore.

This paper is structured as follows: at first, Bluetooth object
binding is discussed, where the scanning method for Bluetooth
is analyzed followed by some real experiments to determine
the operational range of Bluetooth devices. Thereafter,
Bluetooth signal strength values are discussed. This is then
followed by a short introduction about opportunistic seamless
localization and the explanation of the Bluetooth measurement
model. Afterwards, WSN proximity detection is discussed
with some corresponding experiments. Finally, before the
conclusion, multiple device binding is explained.
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II. BLUETOOTH OBJECT BINDING

In this section, the use of Bluetooth for object binding and
the localization algorithm will be explained.

A. Bluetooth

Bluetooth [10] is a technology developed by Ericsson.
This universal radio interface in the 2.45 GHz band makes it
possible to connect portable wireless devices with each other.
Bluetooth uses frequency hopping to avoid interference with
other devices, which also use the license-free 2.45 GHz band.

1) Discovering: There are two ways of discovering [11]
devices when using Bluetooth. The first, and mostly used
method, is inquiry-based tracking. In case of inquiry-based
tracking, the base station needs to scan for devices and to
page all present devices in order to find them. All devices
need to be detectable but they need not to be identified in
advance.

Scanning for devices absorbs a relatively large amount of
time because primarily every base station sends a search-
packet on all 32 radio channels. Every detectable device that
receives this packet will answer. To avoid collision, every
device will send his packet with a random delay. This is
the reason why an inquiry has to run for at least 10.24 s
to be reliable. Many devices are undiscoverable in order to
increase the security and privacy of the owner. This is another
technical problem that could occur and consequently it is not
possible to find these devices by scanning the area.

A second method of tracking is the connection-based
tracking. With connection-based tracking, devices are
considered to be in a close range when one device has
the possibility to connect with another device. All devices
have to be paired with each other and this is a major
problem when using the Radio Frequency Communications
(RFCOMM) layer [12] connections with connection-based
tracking. Practically, this requires human input which is
time-consuming. Although, some communication services do
not require this, it is still necessary that one of both devices
knows the other one exists.

In practice, the creation of an Asynchronous Connectionless
Link (ACL) [12] and a basic Logical Link Control and
Adaptation Protocol (L2CAP) layer [12] connection is
universal and authorization-free. These connections are
limited but they are in compliance with the requirements
for tracking usage. It is only necessary to know whether a
connection is possible and if this is the case, these 2 devices
are in the same range. This connection also supports some
low-level tasks such as RSSI measurements and L2CAP echo
requests.

Both tracking techniques have their own advantages and
disadvantages and they are both not ideal. Choosing the
correct technique will depend on the situation. When using
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inquiry-based tracking, it is possible to find every detectable
device without the need of knowing the devices in advance.
The major disadvantage will be the relatively long scan time.
When we choose the other option, connection-based tracking,
the time to find the devices will be shorter and there is also
the possibility to find undiscoverable devices. The major
disadvantage here is the requirement that at least one party
knows about the existence of the other one.

Another option could be a combination of both techniques.
Combining these two techniques will not decrease the
relatively long scan time because we always need to
take the longest scan time in account. The advantage of
combining both techniques is the possibility to find known
’undiscoverable’ devices as well as unknown discoverable
devices.

In this paper, the first option is chosen because inquiry-
based tracking has the possibility to track unknown devices,
which will be useful for object binding.

2) Range: Bluetooth devices can be divided in three
different classes. Generally, class 1 and class 2 are used
instead of class 3, which is due to the very short operating
range of class 3.

Class | Maximum Power Operating Range
1 100 mW (20 dBm) | Up to 100 m

2 2.5 mW (4 dBm) Up to 10 m

3 1 mW (0 dBm) Uptolm

These operating ranges are frequently used to estimate a
position since signal strength is not always a good parameter
due to effects like reflection and multi-path propagation [13] .

The operating range of a Bluetooth device can be defined
by the maximum allowable path loss which can be calculated
with Equation 1:

Liotar = 20 xlogyo(f) + N *logyo(d) + Ly(n) — 2¥1)
Liotar = 40+ 20 x logo(d) 2
where N is the Distance Power Loss Coefficient, f is the

Frequency (Mhz), d is the distance (meters) between the
nodes , L is the Floor Penetration Loss Factor (dB) and n is
the number of floors penetrated.

When working in an open-air environment, Equation 2
which is the simplified version of Equation 1, can be
used [14].

As operating ranges will be used to estimate a position,
some tests were done in order to decide which maximum
range will be used. A Dell XPS M1530 laptop has been set
up as a base station. The two test devices were a Samsung
E250 mobile phone (test device 1) and a Samsung F450
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mobile phone (test device 2). All devices, including the
base station are devices of class 2. The measurements were
started at a distance of one meter away from the base
station and afterwards extended by steps of one meter. Every
measurement was repeated five times in order to have reliable
results.

S )

Fig. 2.

&

Experiment 1

The first experiment, as shown in Figure 2, was done in
open space in which the two test devices are in line-of-sight
of the base station.

Both test devices could easily bridge a distance of 9 m.
Once the distance was increased, test device 1 was not longer
detectable. Test device 2 was detectable until we reached a
distance of 12 m.

—6

Fig. 3.
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Experiment 2

&

In the next experiment, the influence of obstacles between
the base station and the test devices was tested. This
experiment was firstly done with a window between the base
station and the test devices. Secondly the experiment was
repeated with a 14 cm thick brick wall instead of a window,
see Figure 3.

Theoretically, obstacles comparable to a wall should
significantly decrease the Bluetooth signal or even make it
impossible to connect with devices behind such obstacles.
According to [?] the attenuation of a 2.4 Ghz signal through
a brick wall of 8.9 cm is 6 dBi, of a concrete wall of 45 cm is
17 dBi and the attenuation of an exterior single pane window
is 7 dBi. It is very hard to predict the attenuation because
the exact material of the obstacle is generally not know. Our
test with a window started showing problems with detecting
test device 1 at a distance of 4 m. Test device 2 remained
detectable up to 7 m and at larger distances it started to show
some discontinuities.

The following test with a wall instead of a windowpane
showed these results: at a distance of 4 m, test device 1 started
to disappear and at larger distances, test device 1 was rarely
detected. Test device 2 on the other hand, was much longer
visible. In a range up to 7 m, test device 2 was still detectable.

These results, as can be seen in Figure 4, show a general
range of 10 m when the base station and test device reside
in the same area hence we are working in an open space.
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Fig. 4. Results

Obstacles like walls obviously have some influence on this
range. Generally we can decrease the range down to 5 m.

oy

Fig. 5. Range

Consequently, when a Bluetooth device detects another
Bluetooth device, this estimation will be located in a circular
area with a radius up to 10 m in open space. Walls will limit
the radius up to 5 m.

3) Signal Strength: RSSI values are often used in order
to estimate the proper distance between 2 devices because
Bluetooth does not offer an interface to extract the real
received signal strength directly [15]. Theoretically, RSSI
values should vary exponentially with the real distance but in
practice this is not always the case [16].

Although there is no deterministic relationship between
distance and RSSI, due to fading, reflection etc., there is a
correlation: when the RSSI value decreases, we know the
distance becomes longer and conversely; when the RSSI
value increases, the distance diminishes. This information can
be used to discover whether devices move away from each
other, towards each other or together.

Hallberg and Nillson [17] show that using RSSI values
for calculating the distance between 2 devices is not reliable.
Nevertheless, RSSI values could be useful to implement
object binding. Object binding should only be realized when
2 or more objects are very close. At this point, the RSSI
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values will be higher. Nonetheless, these values will fluctuate.
In this way, it is necessary to use a range of RSSI values in
order to decide whether objects should be bound or not.

In this paper, RSSI values are not used because they
bring up another disadvantage: a device needs to set up a
connection with the other device and this will increase the
scanning time. Considering the fact that we are working with
a real-time system, the scanning time should be as short as
possible.

B. Opportunistic Seamless Localization and Bluetooth Object
Binding

The opportunistic seamless localization system combines
all location related information readily available from multiple
technologies such as Wi-Fi, GSM, GPS, accelerometers [18]
etc. In this paper we propose a novel method, which allows
taking into account object binding via a Bluetooth link to
other devices as an additional source of location related
information which may be successfully used by the OSL
system for further improvement on location estimation
reliability and accuracy. As presented by Hallberg et al. [2],
the Bluetooth link connectivity on its own does not provide
sufficiently accurate location information for most of the
mobile applications. Therefore, to successfully fuse the
Bluetooth connectivity information for locating Bluetooth
enabled devices, a specific method described in this paper
has been developed for efficient incorporation into the OSL
system fusion location data engine. The OSL fusion engine
is based on the recursive Bayesian estimation implemented
as a particles filter, therefore, also a likelihood observation
function used for the particles weighting was developed.

1) Communication: Firstly, the client scans for all nearby
devices. The MAC address of every found Bluetooth device is
sent to the server. In the mean time, the client keeps scanning
for devices and will regularly send an update.

At the server side, every incoming MAC address will
be compared to a list of known MAC addresses. In this
list all primarily known Bluetooth devices are saved. Every
Bluetooth measurement has 4 arguments, at first the MAC
address, secondly a boolean to indicate whether the device is
fixed or mobile, thirdly the coordinates when the device has
a fixed place and at last every mobile device has an ID.

When a match between incoming MAC address and a
MAC address in the list is found, these MAC addresses are
saved in a list.

2) Measurement Model: The Bluetooth measurement
model is designed to deal with different situations. A
complete overview of this measurement model can be found
in Figure 6.
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Fig. 6. Flowchart

There are 3 possible options when one or more Bluetooth
devices are found. The first option happens when the found
devices are unknown. These devices can not be used to
localize the client device. Though, these devices can give
some interesting information, such as how many devices were
present at a certain time in a certain place. This is already
implemented at some places such as Brussels Airport [19].
Every Bluetooth device that is discoverable will be detected
by fixed antennas. In this way it is possible to measure
the time necessary to move from one point to another and
consequently it will be possible to calculate the waiting time
to pass for example through the safety zone. When the found
device is known, there are 2 options left: this device can be
a fixed device, this is the second option, or a mobile device
which is the third option.

Dealing with the second option, returns a fixed position
with the exact coordinates of the fixed device. With the
knowledge that a Bluetooth device is only visible within a
certain area around that device, the weight of all particles
from the client can be adapted.

Calculating the euclidean distance between every particle
and the fixed device is the first step. After having calculated
the distance between one particle and the fixed device, there
will be a wall check. A wall has a big influence on the signal
strength and for that reason it is important to know whether
there is a wall between the fixed device and the particle. The
choice to work with a larger or smaller range depends on the
absence or presence of a wall. Based on this range, the new
particle weight will be calculated.
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If the third option occurs, a known mobile device is
found. This device does not show exact coordinates since the
location of every mobile device is predicted with a particle
cloud. Depending on the situation, a particle cloud can consist
out of 100 particles up to 1000 particles. Comparing every
particle of the found device with every particle of the client
device would be too heavy for a real-time system. For this
reason, 10 percent of random particles from the found device
are compared to all particles of the client device. Choosing
10 percent still gives us a reliable amount of particles. The
coordinates of these particles are loaded and the distance
between these particles and the client device particles is
calculated. Again, we need to check if there is no wall
between the particles. Based on this information, the particle
weight can be calculated.

Obviously, it is possible that more than one device is
found. For all those devices, previously mentioned options
will be looked at and for every device, the correct option
will be chosen. Working with multiple found devices, all
calculated particle weights are multiplied for every client
particle. In this way all found devices are brought into the
calculation and the result becomes more accurate.

3) Particle Weight: According to the test results in the
section 'Range’, a range of 10 m will be used in open space
and there will be a range of 5 m when there is an intersection
of a wall. It would be inaccurate to assume that discovered
devices are always in a range of 10 m with equal chances
to be everywhere in that circle. For this reason, using the
sigmoid function gives a more realistic image. In this case,
the following functions are used:

1

Y= Tie10 ®)
1

e “4)

Equation (3) is used for open space. This function
gradually decreases and the particle weight will be based on
this function, see Figure 7. Equation (4) is used when a wall
between the 2 devices is detected. This function will decrease
earlier because the obstacle has a big influence on the signal
strength which consequently will decrease quickly.

The measurement model for using Bluetooth measurements
with fixed devices is shown in Algorithm 1. An example
measurement probability is shown in Figure 8. In Figure 8(a)
the likelihood function when a device at position (0,0)
is discovered, is shown. A Class 2 Bluetooth device can
be discovered up to 10 m distance in line-of-sight. A
Sigmoid function is used to create a soft threshold between
the discoverable and the non-discoverable distance. In the
example, there is a wall from (-20,-3) to (-20,3). Since a wall
attenuates the Bluetooth signal, the maximum discoverable
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Fig. 8. Example of Bluetooth measurement probability with a wall at y =
-3.

distance will be lowered to 5 m if passing a wall. In
Figure 8(b) two devices are discovered, one at (0,0) and one
at (10,0). In the case of multiple devices, the Likelihood
Observation Function (LOF) for each device is multiplied to
get a LOF, which incorporates all discoverable devices.

The measurement model for using Bluetooth devices with
mobile devices using object binding is shown in Algorithm 2
and an example of such a likelihood based on a bound object
located with Wi-Fi is shown in Figure 9.

III. BLUETOOTH BASED OBJECT BINDING EXPERIMENTS

For these experiments, indoor localization is accomplished
by using Wi-Fi and Bluetooth. In these tests, the client is
only located by using Bluetooth. Multiple tests with fixed
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Algorithm 1: Bluetooth_Measurement_Model ( z;, x; )

Irw=1

2: for all Bluetooth devices b € z; do

3:  if b is known and fixed position z; then
4 if no wall betweelll x; and x; then

5: w = w.—l T ed(xt,xb)—lo

6 else 1

7 w= w.il T eiGa )5

8 end if

9: end if

10: end for

11: return w

Algorithm 2: Object_Binding_Bluetooth_Measurement_Model
(24, ¢ )

Lw=1

2: for all Bluetooth devices b € z; do

3:  if b is known and particle distribution A} known then
4: take sample set X, from X

5 for all z¢ in X; do

6 if no wall between z; and z} then

1
else
1
10: end if
11 end for
122 end if
13: end for

14: return w

x10

Probability

N
< 100
80

Fig. 9. Example of Bluetooth measurement probability using object binding.
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and mobile Bluetooth devices were done. The first test was
done with one fixed and known device, see Figure 10(a).

The estimated position is located at the center of the circle,
the real position is represented by a square and the position
of the found and known Bluetooth devices is represented by
dots. It shows good room level accuracy, although still some
particles -representing different hypothesises- are in adjacent
room.

(a) Test with 1 fixed de- (b) Test with 4 fixed de-

vice vices

Fig. 10. Comparison between test with 1 or 4 fixed devices

Repeating this test, but now with 4 known and fixed
devices gives us a better result, see Figure 10(b). You see that
all hypothesises, represented by the particles, are now inside
the correct room. Using more found and known devices
results logically in a more accurate estimation. This is due
to trilateration. The location of every fixed device will also
have an influence on the accuracy, as shown in Figure 11(c)
and 11(d). 11(c) shows a good location of fixed devices,
the area where the client can be located is very small and
consequently more accurate. In 11(d), all fixed devices are
close to each other and therefore, the area where the client
can be located is still large.

0+ @

Fig. 11. Trilateration

Obviously the area where the client can be located is a lot
smaller when more devices are found. This illustrates why
the error rate decreases when the amount of found and known
devices increases. Because we are using fixed devices only,
it is possible to compare the clients particles with one exact
position. Every fixed device has a known position which does
normally not change. Therefore the estimated position can be
easily calculated with a 100 percent certainty of the location
of the fixed Bluetooth device.
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Of course this is a kind of localization which is previously
already developed in other research such as [2]. But Bluetooth
can be used stronger as a sensor when combined with other
technologies to perform object binding.

In dynamic object binding, instead of static devices, other
mobile devices will be used as references. Mobile devices do
not have one exact and correct position. The likelihood of their
position is estimated with a particle cloud. In order to calculate
the position of the client, all particles will be compared with
10 percent of the particles from a found and known Bluetooth
device. It is possible to increase the threshold of 10 percent,
but using more particles will result in heavy calculations, using
less particles will make the final result inaccurate.

15m 20m 2 10m 15m 20m 25m

i

Test with 1 mobile device

LA

Fig. 12.

In this test, the client location, shown in 12(a), is calculated
based on the particles of another mobile device, shown in
12(b). Due to the fact that we do not have an exact position
of the mobile device, we have to estimate the client position
based on another estimation. Consequently, the error rate is
increased, compared to the test with fixed devices. The error
depends largely on the correctness and distribution of the
likelihood of the dynamic reference device.

Dynamic object binding makes it possible to locate any
found Bluetooth device without the necessity to have any other
technology embedded in the device itself. Localization infor-
mation from all found devices will be used to correctly locate
the client device. Merging different technologies improves the
final result but within this structure, the position estimation of
each device has always been created independent from other
devices.

Of course we can combine dynamic reference devices and
fixed devices when they are both discovered by the device.
This increases the reliability of the estimation.

IV. WIRELESS SENSOR NETWORK PROXIMITY
DETECTION

Wireless sensor networks are characterized by low-cost
wireless sensors to perform some action. The ideal wireless
sensor should meet certain conditions. Properties like
scalability, low power consumption, integration in a network,
programmability, capability of fast data transmission and
little cost to purchase and install are very important during
the fabrication of the sensors. It is not possible to meet all
these requirements. Therefore it is very important to know
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all prerequisites of the application where the sensors will be
used. There are two considerations to make, namely the use
of low data rate sensors or high data rate sensors. Examples
of low data rate sensor include temperature and humidity.
Examples of high rate sensors include strain, acceleration and
vibration.

Today it is possible to assemble the sensors, radio
communications and digital electronics into a single package.
Therefore it is possible to make a wireless sensor network of
very low cost sensors communicating with each other using
smart routing protocols. Basically a WSN network consists
of a base station (gateway) and some sensor nodes. These
sensor nodes send information directly to the gateway or if
necessary use some other wireless sensor nodes to forward
the data to the gateway. Eventually the data received in the
gateway is presented to the system for processing.

Minimizing power consumption of any wireless sensing
node is a key feature to deal with. Mostly the radio subsystem
requires the largest amount of power. To minimize power
consumption it is recommended to send data over the network
only when required. There is also a possibility to minimize
the power consumption of the sensor itself. A lot of energy
can be saved by only performing sensor measurement when
needed instead of continuously. For example to locate people,
it is not necessary to send data every second so energy could
be saved by only send data every 5 seconds.

A. WSN Network Topology

Different topologies can be used to organize a WSN net-
work:

In a star topology, all nodes are connected to a single
hub node. This node handles the routing and must be able
to perform more intensive messaging since it handles all the
traffic in the network. The hub node is very essential, when it
goes inactive, the network will be destroyed.

By using the ring topology, there is no coordinator. All
messages travel in one direction, so when one node leaves
the ring, the communication is broken.

A bus topology has the property of broadcasting messages
to all the nodes connected to the bus. Each node checks the
destination address of the message’s header and checks if the
address is equal to its address. When there is a match, the
node accepts the message, otherwise the node does nothing.

More complex, fully connected networks are characterized
by a connection from every node to every node. There are a lot
of backups, so when one node leaves the network, messages
can still be routed via the other nodes. By adding nodes to the
network, the number of links increase exponentially, so the
routing becomes too complex.

Finally, mesh networks are generally described as dis-
tributed networks. Such networks allow communication be-
tween a node and all other nodes including those outside
its radio transmission range. A big advantage of using this
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topology is the use of multi-hop communication. Multi-hop
communication allows transmission between 2 nodes that
aren’t in each other range.

By using self-healing algorithms a mesh network has the
property to enable a network to operate even when one node
breaks down.

B. Existing WSN Localization Systems

Localization using WSN can be applied by using different
algorithms. Getting the best results for the localization process
depends on two major parts: the influence of noise and the
different system parameter settings. Each algorithm perform
better in on other environments or with other WSN motes, so
for good localization, the used motes and the environments
have to be taken into account. The localization techniques for
WSN can be divided into two categories: range-based and
connectivity-based.

Range-based methods estimate the distance between nodes
with ranging methods such as Time-of-Flight, Angle of
Arrival and Received Signal Strength. These techniques
typically provide better accuracy compared to connectivity-
based algorithms, but are more complex. Connectivity-based
algorithms do not estimate the distance between nodes but
determine the position of a blind node by their proximity to
anchor nodes [20].

Langendoen et al. [5] present in a survey 3 categories of
algorithms for WSN localization: ad-hoc positioning [21],
n-hop multi-lateration [22] and robust positioning [23]. The
survey concludes that no single algorithm performs perfectly
in every situation.

Another comparison is done by Zanca et al. [24]. This
paper compares four algorithms: Min-Max, multi-lateration
[5], Maximum Likelihood [25] and ROCRSSI [26]. The
absolute ranging errors of the algorithms are presented with
the number of anchor nodes as a parameter. The authors
conclude that multi-lateration provides superior accuracy
compared to the other algorithms when the number of anchor
nodes is high enough. Interestingly, despite its simplicity,
Min-Max achieves reasonable performance.

MoteTrack [27] is a decentralized location tracking system.
The location of each blind node is computed using a RSS sig-
nature from the anchor nodes. This database of RSS signatures
is stored at the anchor nodes themselves.

Blumenthal er al. [28] present weighted centroid
localization, the position of a blind node is calculated
as the centroid of the anchor nodes.

C. OSL and WSN Proximity Detection

The goal of this research is to use the nodes of a WSN
network to perform localization. Proximity localization will
be used to determine the mobile terminals position relative
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to the nodes with known position. Figure 13 shows the
architecture of the localization system.

1) Three-tier network architecture:

a) Mobile tier: For proximity localization to work, the
WSN network is divided into three tiers. First we have the
mobile tier. This tier contains the mobile devices carried by
the people or assets being tracked. Each mobile mote has its
own unique ID, used for localization.

b) Fixed tier: The WSN devices in the fixed tier are the
nodes on known locations. They can be seen as the routers or
access points of a Wi-Fi network. The location of the mobile
motes is equated to the location of the router with the highest
measured signal strength.

c¢) Gateway tier: The gateway tier is a WSN
node connected to a PC. The WSN node receives the
packets coming from the routers. This device handles the
communication between the WSN network and the OSL
framework and can be seen as a client of the OSL server.
It houses the algorithms that transform the data coming
from the WSN network into information the OSL server can
process, i.e. location updates with a fixed ID and mobile ID
as arguments.

2) WSN-to-OSL gateway: Information forwarded from the
WSN device is raw data represented in a serial way. In order
to access the useful data, we need to parse the serial data
coming from the WSN device so that we can access the ID’s
and RSS measurements. As Figure 13 shows data coming
form the WSN network is relayed through a gateway which
acts as a client of the OSL server.

3) Localization server: The localization engine for a prox-
imity localization system is pretty straightforward. When the
gateway has detected a new nearest fixed router for a given
mobile device it sends a location update message to the
localization server. The message contains the ID of the new
nearest fixed node along with the ID of the mobile terminal
itself. The server matches the ID of the nearest router to its
actual coordinates and thus locates the mobile device.

V. PROXIMITY DETECTION EXPERIMENTS
A. RSS characteristic

FSPL(B) = 10logo((df)?) 5)

Since this paper discusses signal strength based localization it
is important to know the RSS versus distance characteristic.
Figure 14 shows the received signal strength between two
identical Zigbit [29] based tags with dual chip antenna which
are placed in Line-of-Sight at increasing distance.

Equation 5 gives the Free-Space-Path-Loss, which is the
attenuation of a RF signal traveling through a medium, in this
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Fig. 13. Achitecture of the localization system
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Fig. 14. Received signal strength over increasing distance

case air. The characteristic given by the formula along with
the graph show the signal strength has a steep decrease in the
first tens of meters. As the two devices move further apart
the decrease becomes less steep. A first conclusion we can
deduct from this characteristic is that RSS based localization
will perform better in close range. The steeper the RSS
curve the better the system can distinguish different distances
between router and mobile terminal. Since indoor locations
such as offices or classrooms are typically limited in size, the
RSS based localization should perform reasonably well in
indoor environments. In addition to the steep RSS curve, the
presence of walls will improve the room-based localization.
When each room is equipped with one fixed node, the
signal coming from that node will be dominant compared
to the signals of the fixed nodes in other rooms because
of the RF attenuation caused by the walls between two rooms.

Because this system is intended for indoor localization, we
tested the WSN system in an indoor office environment. We
tested both Line-of-Sight and Non-Line-of-Sight conditions
to determine what’s the optimal choice when positioning the

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



fixed nodes. The fixed nodes are placed 15m apart in each
other’s line of sight in the first test and out of each other’s
line of sight in the second test. A test person carrying the
mobile devices moves from one fixed node to another in steps
of one meter. After every step the person turns 360 degrees
to check the localization’s dependency of the orientation of
the tag.

® Fixed e Fixed
T T
_.l ._ E
| |
4 _— * . L] _— L]
i — H —
1im | im |

(a) Line-Of-Sight (b) Non-Line-Of-Sight

Fig. 15. Indoor Localization Results

In figure 15 the position of the fixed nodes are indicated
by the dots and the area where the localization depends on
the orientation of the tag by a highlighted area. As figure
15 shows there is a small area round the door where the
localization performs poorly. Figure 15(b) shows this area is
clearly smaller in the NLOS case than in the LOS case of
figure 15(a). The reason for this is that when a fixed node
in one room has a line of sight into another room, it’s RF
signals will propagate through that door, or other opening
for that matter, without the attenuation caused by the walls.
When the fixed nodes have no line of sight into the adjacent
rooms, as in figure 15(b), the signals of the fixed nodes will
attenuate when propagating through the walls or through the
door after reflecting on the other walls.

VI. MULTIPLE DEVICE BINDING

The concept of object binding can also be considered in
two extra ways. The first one is tackling the issue of people
wearing more than one tracked device. The second focusing
on storage areas where dozens of tracked assets are stocked.
In both cases the goal is to reduce objects visible on the
client user interface [30].

The multiple device issue shouldn’t so much be seen as
a problem but as an improvement. If a person is carrying
3 devices, this means the server will calculate his position
3 times. This results in 3 coordinates, each with their own
quality of location circle suggesting the area where the
persons actual position is. Figure 16 below shows how the
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most likely area can be narrowed in 2 ways.

® LAPTOP
o
LAPTOP

Fig. 16. Multiple device binding. On the left side by trilateration. On the
right side using the average of only the outermost X and Y values.

On the left trilateration is used to merge the 3 coordinates.
The quality of location (QoL) is used as the radius. QoL
is a measure of how confident the OSL server is about
it’s calculated position. This technique should be the most
accurate. On the right side another technique uses the
minimum and maximum coordinate value of all points
in each dimension to calculate the middle. Although this
calculation needs less processing power, it is also the least
accurate. Both show the concepts in only 2 dimensions,
OSL calculates the position in 3. Another way is to take
the average of each dimension. This technique should score
between previous two techniques in terms of accuracy and
uses about the same processing power as the second technique.

The second issue concerning the assets could be handled
by adding a static location. When the assets are within range
of the storage area, they can be snapped to the static location.
This way coupling stored assets into 1 location will increase
end-user data comprehensibility. The implementation for
this can be done in roughly the same way as stated for the
multiple device issue only there is no need to calculate an
average position.

VII. CONCLUSION AND FUTURE WORK

In this paper, a method to realise dynamic object binding is
presented. We choose Bluetooth to accomplish object binding
because of its appearance in many mobile devices. For this
project, the Bluetooth technology is fused with multiple other
technologies in order to get an accurate localization system.
Some real experiments were done to test the Bluetooth
measurement model. These results showed room accuracy
when only Bluetooth was used. Obstacles like walls have
a big influence on the signal strength which will make it
easier to achieve room-level accuracy. This information is
incorporated in the Bluetooth measurement model.

Dynamic object biding is used to locate devices which
cannot be located by any other technology but can discover
other devices which are located by other means. Dynamic
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object binding can increase the likelihood of the position of
these devices.

This paper shows that Wireless Sensor Networks can be
used for localization purposes and how it is incorporated
int the Opportunistic Seamless Localization framework. In
indoor environments however the room-level localization is
reasonably accurate depending on the location of the fixed
nodes and the configured transmission power depending on
the layout of the indoor environment.

Tests indicate that this Wireless Sensor Networks Proximity
Localization system performs poorly in large outdoor
environments, for outdoor use a GPS is recommended. For
indoor environments however, exactly where this system is
designed for, the localization seems to be pretty accurate.
Also the position of the fixed nodes plays a role in the
reliability of the locations yielded by the system. The ideal
conditions are an indoor environment with rooms up to 20
m long, with fixed nodes placed in such a way so they have
a limited line of sight into the adjacent rooms. The thicker
the walls separating the rooms, the better the room-level
localization will perform.
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