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Abstract—Intestinal lumen detection in endoscopic images
is clinically relevant to assist the medical expert in study-
ing intestinal motility. Wireless Capsule Endoscopy (WCE)
produces a high number of frames. Automatic classification,
indexation and annotation of WCE videos is crucial to a
more widespread use of this diagnostic tool. In this paper we
propose a novel intestinal lumen detection method based on
boosting. In particular, we propose a customized set of Haar-
like features combined with a variant of AdaBoost to select
discriminative features and to combine them into a cascade
of strong classifiers. Experimental results show the efficacy of
boosted classifiers to quickly recognize the presence of intestinal
lumen frames in a video. To better assess the accuracy of
the proposed boosted classifier, we present an experimental
comparison with the results obtained with a Support Vector
Machine using a linear kernel.

Keywords-Classification; Pattern Recognition; Boosting;
Wireless Capsule Endoscopy; Video Automatic Annotation;
Support Vector Machine.

I. INTRODUCTION

Wireless Capsule Endoscopy [2], [3] is a technique to
explore small intestine regions that traditional endoscopy
does not reach. A video-capsule, that integrates wireless
transmission with image technology, is swallowed by the
patient and it is propelled through the gut by intestinal
peristalsis. Once activated, the capsule captures two frames
per second and transmits images to an external receiver. The
exam is concluded after about eight hours, that corresponds
to the lifetime of the battery of the capsule. Images taken
during the entire route of the capsule through the intestine
are successively analyzed by an expert. He/She may spend
up to one or more hours to gather the relevant information
for a proper diagnosis. This greatly limits the use of the
capsule as a diagnostic routine tool.

Such shortcoming may be overcome if the WCE video
is automatically segmented into shorter videos, each one
relative to a different trait of the bowels, and if reliable
automatic annotation tools are available to the clinicians.
Unfortunately, the goal of automatically producing a sum-
mary of the whole WCE video remains yet unaccomplished.
Tools to extract semantic information from such videos are
relevant research products for applied Pattern Recognition
investigators.

In this paper we present a novel method to automatically
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Figure 1. Examples of lumen (a) and not lumen (b) frames extracted from
a WCE video.

discriminate a relevant subclass of frames. In particular, our
classifier sorts the frames in two categories: “lumen frames”
(images depicting the stages of an intestinal contraction
where the shrinkage of lumen intestine is well visible) and
“not lumen frames” (Figure 1). “Lumen frames” detection
is clinically relevant because it announces the presence of
a contraction and helps the physician to study the intestinal
motility. Alteration of the physiological intestinal motility is
an indicator of disorders in which the gut has lost its ability
because of endogenous or exogenous causes. In particular,
anomalies in contraction are a common symptom of irritable
bowel syndrome, delayed gastric emptying, cyclic vomiting
syndrome, and so on.

Our summarization tool may be deployed in a diagnostic
station providing real-time useful shortcuts to the middle
phases of an intestinal contraction resulting in reduced time
of analysis by the expert.

In our approach “lumen frames” detection is obtained as
a special case of object detection. To this aim we choose the
Viola and Jones paradigm introduced in 2001 [4]. Although
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other techniques, like neural networks, fuzzy rules systems,
etc., could be deployed, the main motivation for our choice
has been the following. Haar features based classification is
readily customizable to recognize different kinds of objects;
moreover, boosting allows fast learning even in presence of
high dimensionality data. Indeed in the case of boosting as
for all ensemble learning method, different classifiers are
built using a tiny part of the available features. The clas-
sification obtained by combining the responses of different
classifiers improves the performance achieved by a standard
classification algorithm in a straightforward, efficient, prin-
cipled way when adaptive boosting is adopted.

This paper is organized as follows: Section II reviews
related works and reports examples of object detection based
on approaches similar to the proposed one. Section III
describes in detail how Viola-Jones technique is customized
to address the present problem. Section IV reports the
experiments conducted on real WCE videos. It also describes
an interesting comparison between the results obtained using
Boosting and Support Vector Machine. Finally, Section V
draws conclusions and discusses some future works.

This paper is a revised and expanded version of the
contribution presented by the same authors to “The Third
International Conferences on Pervasive Patterns and Appli-
cations” [1].

II. RELATED WORKS

Most of the systems reported in literature to recognize
intestinal lumen images refer to traditional probe-based en-
doscopy. The motivation behind these methods is to aid the
physician to individuate lumen region to avoid or minimize
the collision of the endoscope tip with the intestinal mu-
cosa. In this context, Asari [5] proposes a Region Growing
Segmentation to extract lumen from gray level endoscopic
images.

Recently, the original WCE has been modified/updated to
a novel configuration allowing the movements to be remotely
monitored. In this context, the recognition of lumen could
help the capsule to go through the intestine minimizing
collisions and avoiding to record meaningless frames. To
this aim, Zabulis et al. [6] propose a system based on a
Mean Shift Segmentation algorithm variant to locate lumen
regions in WCE frames.

The problem of the detection of frames with a clear
narrowing of lumen in WCE videos to assist the diagnostic
and clinical use of this imaging technique is not much
investigated. Some works study the general problem of
contraction finding to examine the intestinal motility [7]–[9].
If we associate a label to each “lumen frame” extending the
selection to a certain number of adjacent images in the video,
our task is roughly equivalent to the search of intestinal
contractions.

The main idea exploited in this work is to customize the
Viola-Jones method for object detection [4], [10]. Initially

proposed for face detection, this technique is based on the
use of simple features calculated in a new representation
of the image. Based on the concept of integral image
[11], a huge set of features is tested and the boosting
algorithm AdaBoost is used to reduce this set [12]–[14]. The
introduction of a tree of boosted classifiers provides a robust
and fast detection and minimizes the false positive rate. This
strategy has been proven effective to recognize various kinds
of objects. Several systems have been proposed for different
recognition problems, like face, hands and pedestrian [15]–
[18]. The possibility to define a specific set of features and
the more recent release of an open source implementation
[19] have permitted to use extensively this method in many
Computer Vision applications.

III. PROPOSED METHOD

In this section we describe an automatically trainable sys-
tem to detect frames where the front shrinkage of intestinal
lumen is well visible. The learning stage for the proposed
system can be summarized in the following three steps:

• Evaluation of a customized set of Haar features to the
integral images of the training samples.

• Selection of the best discriminative features through
AdaBoost algorithm.

• Construction of a final boosted classifier based on a
cascade of classifiers whose complexity is gradually
increasing.

To obtain, through a reliable learning procedure, a good
classifier we must guarantee two requirements: a comprehen-
sive set of examples where the objects of interest may occur;
a suitable selection of descriptors to describe each possible
occurring pattern. In order to detect an object in an image
we should in principle take into account the information
provided by each single pixel. This search space may be
reduced if we exploit the semantic information enclosed
by “lumen frames”. These images, indeed, show a strong
geometrical coherence that may help in discriminating them
from other kinds of frames. To this aim, Haar-like features, a
set derived from Haar wavelets [20], recognize objects using
intensity contrast between adjacent regions in an image.

Basic Haar features proposed by Viola-Jones and special-
ized for face detection do not have proper discriminative
power for lumen investigation: it is necessary to define
customized variations for the present case. In particular,
the features needed in this work should provide a strong
positive response on a rectangular region with low intensity
called generically “lumen” and a brighter surrounding area
corresponding to the gut wall. By combining a learned
evaluation threshold to each feature, it is possible to assign
an image to the appropriate category. Figure 2a shows an
example of the first kind of our proposed features that we
call “center-surround” feature.

The typical appearance of a frame that shows an intestinal
contraction consists in a dark area surrounded by the typical
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Figure 2. The three proposed kinds of features. For each feature we get a score S calculated as the difference of intensity between light and dark
regions of the rectangle. In the first row are shown the images at the original resolution while in the second the images are rescaled to the base resolution
24 × 24 pixels zooming on the region of interest. (a) Evaluation of a “center-surround” feature in a “not lumen frame” (Sa = 6348 − 2175 = 4173).
(b) Evaluation of the first cross feature in a “lumen frame” (Sb = 1083− 1766 = −683). (c) Evaluation of the second cross feature in a “lumen frame”
(Sc = 861− 1988 = −1127).

rays that muscular tone produces due to the folding of the
intestinal wall. We hence introduce two additional “cross-
like” features that enhance the discriminative power pro-
duced by the simpler “center-surround” feature (Figure 2b
- 2c). The computation of this second kind of features may
be efficiently obtained as for the simpler “center-surround”
feature from the integral image representation.

Using integral image representation, feature evaluation is
accomplished by few memory accesses. It is straightforward
to verify that to compute “center-surround” features, at
any position or scale, only eight look-ups are needed. The
remaining two kinds of features require more accesses due to
greater number of rectangular areas. “Cross-features” require
respectively 16 and 24 references from the integral image.
The reader may easily convince himself that indeed this
is the minimum number of look-ups needed from a direct
analysis of this feature geometry.

Once a feature shape has been assigned, it is necessary to
specify its position and scale within the region of interest.
Actually, the features are scanned across the image top left
to bottom right using a sliding offset of two pixels both
in the horizontal and in the vertical directions. The process
is iteratively repeated with different feature scales at each

round. To keep the computation of the proposed features
within the same number of look-ups into the integral image,
we choose not to change the scale of the image but to variate
instead the size of the features.

The exact representation for the three proposed types of
features is as follows:

f = [xw, yw, swx, swy, xb, yb, sbx, sby, type, θ, ρ] (1)

The first four elements xw, yw, swx, swy, refer to the
larger square of the feature. Similarly, the following four
elements xb, yb, sbx, sby , relate to the inner square. The type
parameter is an integer that indicates which type of feature
is considered (1 for the “center-surround” feature, 2 and 3
for the two kinds of cross features respectively). The last
two parameters are the optimal learned threshold and the
polarity to register the category of images discriminated by
that feature.

The “center-surround” features are evaluated considering
difference between the sum of the pixels within two rect-
angular regions (Figure 3a). The second type of features
considers a cross-shaped region to enhance lumen area.
Location and size of this region are constrained by the size of
correlated “center-surround” feature (Figure 3b). The third
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Figure 3. Schematic features representation. (a) Center-surround feature.
(b) First cross feature obtained by center-surround feature considering the
cross with width sby and height sbx. (c) Second cross feature obtained by
the first taking into account a inner square of width and height greater than
one pixel respect to the previous version.

Figure 4. Given feature size, all regions of a fixed scale are considered
in each location (a). This cycle is reiterated by increasing the size of the
inner square (b) until maximum amplitude is achieved (c).

type of features is processed in a similar way. The central
region of the cross is enlarged of one pixel both in the
horizontal and in the vertical directions (Figure 3c). We
consider the same total number of features for each type.
Lumen area presents always a square aspect ratio, i.e., the
bounding region of these areas is approximatively a square.
This leads to a simplification of the feature definition (1) as
follows:

f = [xw, yw, sw, xb, yb, sb, type, θ, ρ] (2)

We consider only squared features, i.e., those with equal
horizontal and vertical even scale sw. The internal region
relative to lumen varies from a minimum size 2 × 2 up to
(sw−2)×(sw−2) pixels. Once we have fixed the size of the
external section, the descriptor associated with the lumen is
shifted across the external descriptor with a resizing of two
pixels at each step (Figure 4).

In this phase of processing the resolution of a WCE frame
is reduced to 24×24 pixels. The total number of features per
scale is hence equal to the total amount of different features
in the image multiplied by the allowed variations of scale.
For example, a 8 × 8 feature contains nine regions of size
2×2, four of size 4×4 and one of size 6×6 pixels. The total
number of features of size 8×8 is 1134, equal to the number
of windows in the image (assuming a horizontal and vertical
offset of two pixels) for the total number of variations. Table
I summarizes the feature counting for the chosen scales.

A. Training a cascade of strong classifiers

As it is stated above, during the training phase the dataset
is rescaled to the base resolution 24×24 pixels. The integral
image representation of gray tone training samples is used to
compute feature scores. Application of AdaBoost provides
a list of best discriminative features. In particular, we build
a binary classifier for each feature (these are traditionally
referred in the boosting community as weak classifiers).
Initially all the examples have the same weight. For each
boosting step, the determination of a new weak classifier
involves the evaluation of the relevance of each feature on
training data. The “best” feature is selected according to
the weighted error that each feature shows on the training
data. In the successive round, the samples are reweighted to
emphasize the misclassified ones. Since this step has to be
iterated several times, this is the most expensive section of
the training module.

The result of the training module is a classifier (called
“strong classifier” in the boosting jargon) computed as a
weighted linear combination of the weak classifiers built
during each round of boosting. The whole boosting process
is, in turn, iterated, varying at each step the number of weak
classifiers. The result is the realization of a cascade of strong
classifiers with a gradually increasing number of features.

An appropriate learning process requires that each strong
classifier shows a prescribed detection rate, while main-

Table I
FEATURES NUMBER PER SCALE. THE FIRST COLUMN REFERS TO THE
SIZE OF THE FEATURE WHILE THE SECOND IS RELATED TO MAXIMUM

SCALE ALLOWED FOR THE LUMEN AREA.

Feature Max
size Internal #Features #V ariations Total

scale

4× 4 2× 2 121 1 121
6× 6 4× 4 100 5 500
8× 8 6× 6 81 14 1134

10× 10 8× 8 64 30 1920
12× 12 10× 10 49 55 2695
14× 14 12× 12 36 91 3276
16× 16 14× 14 25 140 3500
18× 18 16× 16 16 204 3264
20× 20 18× 18 9 285 2565
22× 22 20× 20 4 385 1540
24× 24 22× 22 1 506 506

21021
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taining a definite rate of false positives. In particular, a
minimum detection rate and a maximum false positive rate
is required at every level of the cascade. For each strong
classifier, a weak classifier is added until it reaches the
required parameters for the current level of the cascade.
Similarly, a new strong classifier is associated to the cascade
until total false positive rate crosses a certain threshold.

One of the advantages of the proposed system is that
the user only needs to define the feature set to be used
and the false positives and detection rates for each level
of the cascade. All the internal parameters are automatically
selected during the training phase.

B. Testing a cascade of strong classifiers

In the proposed system, each test image is scaled to
24 × 24 pixels and it is labelled as “lumen frame” or “not
lumen frame”. This single scale procedure combined with
selection of best features during training allows real time
application of our system (up to 600 frames per second).
Please notice that, differently than in the case where the
object to recognize may appear at different scales, in the
present case a “single-scale” choice has been shown ade-
quate. Notice that in this simplifying choice of a single scale
we differ from the original Viola and Jones approach. In the
case of face detection the issue is to find faces that may
appear at different scales within an image. These stringent
requirements force Viola and Jones to include different
scales in their detection procedure. In our case the problem
is simpler: lumens are roughly all at the same scale and
we do not require localization of them inside the frame but
only to label the frame as a “lumen frame”. This justifies
our choice of a single scale.

IV. EXPERIMENTAL RESULTS

A. Boosting based classification

In this section, we report the experiments carried out
to verify the efficacy of the proposed method. To this
aim, we have considered 10033 images extracted from real
WCE videos of 12 patients of which 6 were healthy and
6 had suspected bowel disorders. Rather than considering
only one training set as was done in an earlier version of
this paper [1], we have extracted ten different training sets
and control sets from the whole set at our disposal. This
more extensive experiment has been aimed to verify if the
behavior of the algorithm significantly changes according to
the used learning set. To train each one of the cascades of
strong classifiers, we take into account the integral images
of 3000 images, 1000 positive and 2000 negative, rescaled
to 24×24 pixels. The positive images have been previously
manually selected from WCE videos labelled by an expert.
The selected images represent a comprehensive set of scenes
where the intestinal lumen can be present, including location
and scale changes within the image. Differently, the negative
examples have been randomly selected from videos that not

contain any lumen. Both typical smooth images and images
containing other judged negative events, like the presence of
bubbles, bleedings, residuals, share this set.

During the learning module, we need to establish a
maximum false positive rate and a minimum detection rate
to satisfy for each layer of cascade. In particular, we require
that 98% of positive images must be recognized at each level
while maintaining a maximum amount of false positives
equivalent to 80%. These values have been experimentally
optimized. Notice, however, that higher positive images
recognition rate are first of all rarely attainable and even
when possible, they may introduce strong overfitting. At the
next levels of the cascade these two values are computed
relatively to the new dataset whose positives set is composed
by every lumen recognized as such by the previous classifier;
the negatives set includes the remaining false positives. A
strong classifier will be added to the cascade until the total
false positive rate drops to zero.

By iterating this process for each training set, we get
ten different cascades of strong classifiers whose details are
listed in Table II. It is straightforward to understand that
the trained cascades are slightly different only in the total
number of features, but the proportion of features is often the
same: the cross-shaped features (Cross 1 , Cross 2) are the
most discriminative. The number of nodes in the cascade can
not be deterministically calculated, but this also depends on
the type of images used during learning. We do not impose
any constraints on the number of features in each node. It is
assured only that the node i+1 must have a greater or equal
number of features than node i. To clarify this procedure,
in Figure 5 is illustrated the cascade of strong classifiers
relative to the 8-th dataset. The total detection rate of this
cascade, D, and the final false positive rate F , are obtained
as a combination of intermediate outcomes on the cascade:

D =

N∏
i=1

di = 97, 98% F =

N∏
i=1

fi = 0% (3)

where N is the total number of layers of the cascade. To
test the effectiveness of trained cascades, we have considered

Table II
DETAILS ON TRAINED CASCADES USING TEN DIFFERENT TRAINING

SETS.

Train Nodes features Center Cross 1 Cross 2
Data surround

1 6 217 51 78 88
2 5 291 82 109 100
3 6 397 89 154 154
4 6 342 77 131 134
5 6 256 57 71 128
6 5 185 47 67 71
7 6 257 72 98 87
8 5 205 60 66 79
9 6 184 47 80 57
10 5 272 67 100 105
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Figure 5. Cascade of strong classifiers. di and fi represent detection and false positive rate at the i-th level of cascade. L and NL indicate lumen and
not lumen frames, respectively.

ten different collections of 7033 images randomly extracted
from a set of frames disjoined from each training set.
During testing phase, we consider the integral images of
test set rescaled to 24×24 pixels with the respective labels,
the cascade of boosted classifiers as it has been obtained
during training and, finally, a threshold that determines the
rigorousness of the classifier. Each test sample gets through
each single node of the cascade; a positive outcome is sent
by the classifier i to the more complex classifier i + 1.
An image is labeled as lumen if positively overcomes each
node of the cascade. If at any point the test image is
judged negative, it is rejected immediately without further
test (Figure 5). The classification performance has been
evaluated in terms of precision and recall by comparing our
results with the annotations provided by the specialist. Table
III shows the results. The labeling of images was previously
made by a human expert. However, for certain images it
is often difficult to understand, even to a skilled human
observer, if what we hold as ”lumen frame” is actually a
particular fold of the intestinal tissue or vice versa.

Each strong classifier in the cascade is constrained by
a rigidity threshold. Higher threshold values minimizes
both detection and false positive rates. Similarly, a low
threshold will lead to acceptance of a greater number of

Table III
CLASSIFICATION RESULTS USING BOOSTING

Test Recall Precision Accuracy
Data

1 88, 60% 72, 06% 91, 32%(6423/7033)
2 89, 05% 71, 64% 91, 24%(6417/7033)
3 91, 82% 69, 11% 90, 67%(6377/7033)
4 91, 37% 67, 86% 90, 16%(6341/7033)
5 87, 92% 70, 73% 90, 81%(6387/7033)
6 88, 07% 71, 76% 91, 17%(6412/7033)
7 88, 90% 69, 06% 90, 34%(6354/7033)
8 90, 85% 70, 78% 91, 15%(6411/7033)
9 86, 95% 73, 40% 91, 55%(6439/7033)
10 91, 45% 68, 33% 90, 34%(6354/7033)

lumens images while increasing the probability of detecting
false positives. The optimal value of threshold depends on
the preferences of the physician. We expect that a higher
amount of false positives than of false negatives is typically
preferred. The presence of a high number of false positive
results in more time spent by the expert to do a diagnosis.
Losing a rightful lumen is a worse event because it means
to miss a relevant event with the resulting inaccuracy in
the final report. By varying the rigidity threshold from a
minimum to a maximum value, we can construct a ROC
curve comparing the detection rate versus the number of
false positives. Figure 6 reveals that is possible to reach
a detection rate above the 90%, keeping the amount of
false positives at about 600 instances, i.e., 8% of the test
dataset. All experiments have been conducted on a consumer
level PC with Intel R©CoreTM2 Duo processor and 4 GB
of RAM. Calculations have been performed in MATLAB
environment.

Figure 7 shows some examples of false positives ob-
tained with the proposed method. In many circumstances,
the intensity contrast between adjacent regions does not
correspond to the presence of a lumen. This is maybe a
consequence that Haar features are sensitive to illumination
changes. Variations on the lighting conditions may cause
the cascade to detect lumen that was not predicted during
the training stage. Likewise, in some images, folds of the
intestinal wall may produce contrasted regions that confuse
the Haar features. If new kind of images are presented to
the classifier, detection is difficult and the amount of false
positives increases. To deal with this problem, training data
must include as many examples as possible to predict only
true lumen.

B. Features analysis

One may reasonably ask if the proposed kind of features
is optimal: may we obtain good classification results without
one of these three kind of features? May we get away
with only one kind? Adding some more elaborate Haar-like
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Figure 6. ROC curves for each dataset obtained by varying the stiffness
threshold of each classifier from 0.1 to 1.

Figure 7. Example of some false positives detected by the system.

features is worth the gain in accuracy? The authors have
tried to perform boosted classification using only one kind
of feature among those proposed in this paper at each time.
The results were only slightly different than those obtained
using the whole set of features. This suggests that we might
use only one kind of feature and achieve similar results. It
is relevant to point out that the cross-shaped features have
been introduced by the authors to improve not the results
but the stability of the classifier. The availability of the
whole set of features helps to keep down the number of
classifiers in each node of the cascade. This happens because
AdaBoost achieves more quickly the requirements fixed for
the current classifier by the user. Also the number of nodes
in the cascade is minimized. We can confirm that the use of
additional features can only take effect on the structure of
the classifier. The results would not be further significatively
improved.

C. Comparing the boosted classifier with Support Vector
Machine

The mean recall value we obtained using boosting is
89,5%. This result is efficiently attainable allowing a real-
time performance. An interesting question is to compare the
results provided by the boosting-based implementation with

Table IV
CLASSIFICATION RESULTS USING SUPPORT VECTOR MACHINE.

Test Recall Precision Accuracy
Data

1 69, 92% 63, 84% 86, 79%(6104/7033)
2 71, 57% 63, 77% 86, 90%(6112/7033)
3 70, 82% 66, 39% 87, 67%(6166/7033)
4 69, 62% 64, 27% 86, 90%(6112/7033)
5 68, 79% 67, 58% 87, 83%(6177/7033)
6 70, 59% 65, 39% 87, 35%(6143/7033)
7 69, 17% 66, 14% 87, 44%(6150/7033)
8 70, 37% 65, 37% 87, 32%(6141/7033)
9 70, 37% 64, 11% 86, 92%(6113/7033)
10 72, 77% 63, 86% 87, 03%(6121/7033)

another “classic” classification method. The main problem
in our data is the excessive dimensionality (63,063 features
for each image to be classified). The high number of features
suggests that comparison with other classification technique
is fair only if these other techniques are adequate to handle
these cases. For this reason, Support Vector Machine (SVM)
is the ideal candidate for comparison. It is well know that
SVM may easily deal with very high feature dimension;
moreover, standard SVM implementation are available and
this makes comparison easier and repeatable. SVM is a
supervised learning algorithm used both for classification
and regression. It indicates a binary classifier which projects
the training samples in a multidimensional space looking
for a separating hyperplane in this space. The hyperplane
should maximize the margin, i.e., the distance from the
closest training examples. SVM is well adapted to handle
the curse of dimensionality and its performance has been
tested in different application domains. We have considered
the same data used in the previous experiments to train
different SVMs using a linear kernel. We rely on a particular
class of SVM called Least Squares SVM (LS-SVM). In
this version it is possible to maximize the margin between
support vectors by solving a linear equation with a least
squares method. Classification results using this method are
shown in Table IV. The superiority of the proposed boosting
based technique is evident.

V. CONCLUSION

In this paper we introduced an automatic lumen detection
algorithm for endoscopic images. Inspired by Viola-Jones
object detection system, we show that using AdaBoost
learning-based algorithm combined with a cascade of strong
classifiers leads to a good rate of detection minimizing
running time. Experimental results show that the proposed
system detects positive images using exclusively Haar-
like proposed features. Our detector is flexible and
easily extensible to other semantic objects in endoscopic
applications.
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