
Using Components to Provide a Flexible Adaptation Loop to Component-based SOA
Applications

Cristian Ruz, Françoise Baude, Bastien Sauvan
INRIA Sophia Antipolis Méditerranée

CNRS, I3S, Université de Nice Sophia Antipolis
France

{Cristian.Ruz, Francoise.Baude, Bastien.Sauvan}@inria.fr

Abstract—The Service Oriented Architecture (SOA) model
fosters dynamic interactions of heteregeneous and loosely-
coupled service providers and consumers. Specifications like
the Service Component Architecture (SCA) have been used to
tackle the complexity of developing such applications; however,
concerns like runtime management and adaptation are left as
platform specific matters. Though several solutions have been
proposed, they have rarely been designed in an integrated way
and with the capability to evolve the adaptation logic itself.
This work presents a component based framework that allows
the insertion of monitoring and management tasks, providing
flexible autonomic behaviour to component-based SOA appli-
cations. Each phase of the autonomic control loop is imple-
mented by a different component, in such a way that different
implementations can be developed for each phase and they can
be replaced at runtime, providing support for evolving non-
functional requirements. We present an illustrative scenario
that is dynamically augmented with components to tackle non-
functional concerns and support adaptation. We use an SCA
compliant platform that allows distribution and architectural
reconfiguration of components. Micro-benchmarks and a use
case are presented to show the feasibility of our proposed
implementation, and illustrate the practicality of the approach.
Overall, we show that a component-based approach is suitable
to provide autonomic and adaptable behaviour to component-
based SOA applications.

Keywords-Monitoring; Autonomic Management; SLA Moni-
toring; Reconfiguration; Component-based Software Engineer-
ing.

I. INTRODUCTION

According to the principles of Service Oriented Archi-
tecture (SOA), applications built using this model com-
prise loosely-coupled services that may come from different
heterogeneous providers. At the same time, a provided
service may be composed of, and consume other services,
in a situation where service providers are also consumers.
Moreover, SOA principles like abstraction, loosely-coupling
and reusability foster dynamicity, and applications should be
able to dynamically replace a service in a composition, or
adapt the composition to meet certain imposed requirements.

Requirements over service based applications usually in-
clude metrics about Quality of Service (QoS) like avail-
ability, latency, response time, price, energy consumption,
and others, and are expressed as Service Level Objectives

(SLO) terms in a contract between the service consumer
and the provider, called Service Level Agreement (SLA).
However, SLAs are also subject to evolution due to different
providers, environmental changes, failures, unavailabilities,
or other situations that cannot be foreseen at design time.
The complexity of managing changes under such dynamic
requirements is a major task that pushes the need for flexible
and self-adaptable approaches for service composition. Self-
adaptability requires monitoring and management features
that are transversal to most of the involved heterogeneous
services, and may need to be implemented in different ways
for each one of them.

Several approaches have been proposed for tackling the
complexity, dynamicity, heterogeneity and loosely-coupling
of SOA-based compositions. Notably, the Service Com-
ponent Architecture (SCA) is a technologically agnostic
specification that brings features from Component-Based
Software Engineering (CBSE) like abstraction and compos-
ability to ease the construction of complex SOA applications.
Non-functional concerns can be attached using the SCA
Policy Framework. However, monitoring and management
tasks are usually left out of the specifications and must
be handled by each SCA platform implementation, mainly
because SCA is design-time and not runtime focused.

In our previous work [1] we have proposed a component-
based approach to ease the implementation of flexible adap-
tation in component-based service-oriented applications. Our
solution implements the different phases of the widely used
MAPE (Monitor, Analyze, Plan, and Execute) autonomic
control loop [2] as separate components that can interact
and support multiple sets of monitoring sources, conditions,
strategies and distributed actions.

Our approach gives two kinds of flexibility: (1) we can
dynamically inject or remove conditions, sensors, planning
strategies, or adaptation actions in the MAPE loop in order
to modify the way the autonomic behaviour is implemented
in the application; and (2) we can insert or remove elements
of the MAPE loop, modifying the composition of the auto-
nomic control loop itself, and making the application more
or less autonomic as needed.

In this work we extend the presentation of our component-

32

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based framework detailing the design considerations for each
phase of our autonomic control loop and how they provide
the flexibility that we expect. We present a concrete use
case of an application that is dynamically augmented with
autonomic behaviour.

The rest of the paper is organized as follows. Section II
presents the example that we use to motivate and illustrate
the practicality of our work, and provides a general overview
of our contribution. Section III describes the design of
our framework from a technologically independent point
of view. Section IV presents our implementation over a
concrete middleware and component model. Section V
shows a practical example of use of our framework and the
evaluations we have carried on. Section VI describes related
work and differentiations with our solution. Finally, Section
VII concludes the paper.

II. MOTIVATING EXAMPLE AND OVERVIEW OF OUR
CONTRIBUTION

Consider a tourism office that has composed a smart
service to assist visitors who request information from the
city and provides suggestions of activities. The application
uses a local database of touristic events and a set of providers
who sell tickets to museums, tours, etc. A weather service
can be used to complement the proposition of activities, and
a mapping service creates a map with directions. A payment
service is used to process online sells in some cases. Once
all information is gathered, a local engine composes a PDF
document and optionally prints it. The composed design of
the application is shown in Figure 1 using the SCA [3]
diagram notation.

Customer

Events
DB

SLA C

attractions

Weather
Service

Bank
Service

Attraction 1

Attraction 2

Attraction 3
Manager

Composer Map
Service

Printer

SLA 1

SLA 2

SLA 3

SLA W

reqs.

Tourism Service

payment

weather

mapping

composition

local

Figure 1. The SCA description of the application for tourism planning
scenarios.

Such a composition involves some terms for service
provisioning. For example, the Tourism Service agrees to
provide a touristic plan within 30 sec.; the Weather Service
charges a fee for each forecast depending on the level of
detail; the Mapping Service is a free service but has no
guarantees on response time or availability; the Payment
Service ensures 99% of availability. All these conditions are
formally established in several SLAs.

The runtime compliance to the SLAs may influence
certain decisions on the composed service. For instance, if

the Mapping Service is not reachable at a certain moment
or if it takes too much time to deliver a response, then
the Tourism Service may provide a touristic plan without
maps in order to meet the agreed response time at the
expense, however, of a lower quality response (workflow
modification). Another situation may happen if the Weather
Service increases its costs, thus violating the agreement, then
the Tourism Service may decide to replace it for another
equivalent cheaper service (service replacement). Finally, if
the Printer service is running short on color cartridge, then
the Tourism Service may decide to use only black and white
printing (parameter modification).

In all these cases the decisions should, ideally, be taken
in an autonomic way. This requires to constantly monitor
certain parameters of the application and, in order to timely
react, an efficient analysis and decision taking process.
However, it should not be a task of the programmer of each
service to code all these autonomic behaviours. Instead, it
is more desirable to compose the autonomic behaviour in a
separate way and insert it or remove it from the service
activity as needed. Moreover, if an autonomic behaviour
requires to collect information from different services, then
forcing each service to be explicitly aware of the details of
other services would increase the coupling of the services.

Also because of the heterogeneity of the services, the
monitoring requirements may be different for each service;
for example, in the case of the printer it is important to
measure the amount of paper or ink; in the case of the
touristic plan composer it is important to know the time
it takes to create a document; some of the external services
may provide their own monitoring metrics and, as they are
not locally hosted and only accesible through a predefined
API, it may not be possible to add specific monitoring on
their side. So, in any case the monitoring capabilities will
be limited by the monitoring features available from each
service. This situation imposes a requirement for supporting
heterogeneous services and adaptable monitoring.

A. Concerns

As it can be seen from the example, concerns about
SLA and QoS can be manifold. A monitoring system may
be interested in indicators for performance, energy con-
sumption, price, robustness, security, availability, etc., and
the range of acceptable values may be different for each
monitored service. Moreover, not only the values of these
indicators may change at runtime, but also the set of required
indicators. Also, heterogeneity plays a role at the moment
of programming the access to the required values.

In general, the evolution of the SLA and the required
indicators can not be foreseen at design time, and it is not
feasible to prepare a system where all possible monitorable
conditions are ready to be monitored. Instead, it is desirable
to have a flexible system where only the required set of
monitoring metrics are inserted and the required conditions

33

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

checked, but as the application evolves, new metrics and
conditions may be added and others removed minimizing
the intrusion of the monitoring system in the application.

B. Contribution

We argue that a component-based approach can tackle
the dynamic monitoring and management requirements of a
composed service application while also providing the ca-
pability to make the application self-adaptable. We propose
a component-based framework to add flexible monitoring
and management concerns to a running component-based
application.

In this proposition we separate the concerns involved in a
classical autonomic control loop (MAPE) [2] and implement
those concerns as separate components. These components
are attached to each managed service, in order to provide
a custom and composable monitoring and management
framework. The framework allows distributed monitoring
and management architectures to be built in a way that they
are clearly associated to the actual functional components.
The framework leverages the monitoring and management
features of each service to provide a common ground in
which monitoring, SLA checking/analysis, decisions, and
actions can be carried on by different components, and they
can be added or replaced separately.

We believe that the dynamic inclusion and removal of
monitoring and management concerns allows (1) to add only
the needed monitoring operations, minimizing the overhead,
and (2) to better adapt to evolving monitoring needs, without
enforcing a redeployment and redesign of the application,
and increasing separation of concerns.

III. DESIGN OF THE COMPONENT-BASED SOLUTION

Our solution relies on the separation of the phases of the
classical MAPE autonomic control loop. Namely, we envi-
sion separate components for monitoring, analysis, planning,
and execution of actions. These components are attached to
each managed service.

From an external point of view, a regular service A is
augmented at design time with a set of additional interfaces.
These interfaces define the entry points to the management
framework for each service A, which is transformed into
managed service A, as shown in Figure 2. The management
interfaces allow the service to interact with other managed
services and take part in the framework; however the ser-
vices are not forced to provide an implementation of all these
management interfaces. Instead, these implementations can
be dynamically added.

The general structure of our design is shown for an
individual service A in Figure 3. Service A is extended
with one component for each phase of the MAPE loop and
converted into a Managed Service A, indicated by dashed
lines. The original “service” and “reference” interfaces of
service A are promoted to the corresponding interface of

Service
A

Managed
Service

A
actions
SLOs

 metrics
 metrics

actions
 design

time
addition

Figure 2. SCA component A extended at design time with management
interfaces

Service
A

MonitoringAnalysis

Planning Executionactions

Managed Service A

actions

SLOs

SLOs metrics metrics

actions

 metrics

monitoring data

execution

 alarm

Figure 3. SCA component A with all its attached monitoring and
management components

Managed Service A so that, from a functional point of view,
the Managed Service A can be used in the same way as the
original Service A.

The general functioning of the framework is as follows.
The Monitoring component collects monitoring data from
service A using the specific means that A may provide.
Using the collected monitoring data, the Monitoring com-
ponent provides access to a set of metrics through the
metrics interface. The computation of metrics may involve
communication with the metrics interface of other managed
services. The Analysis component provides an interface for
receiving and storing SLOs expressed as conditions. At
runtime, the Analysis component checks the SLOs using
the metrics that it obtains from the Monitoring component.
Whenever an SLO is not fulfilled (a faulting condition),
the Analysis component sends an alarm signal that activates
the Planning component. The Planning component uses a
pre-stored strategy to create an adaptation plan, described
as a sequence of actions, that will be the response of the
autonomic system to the faulting condition. If the adaptation
strategy requires additional monitoring information, it can
be obtained from the Monitoring component. The sequence
of actions created by the Planning component are sent
to the Execution component, which executes the actions
on the service using the specific means that the service
allows and, if needed, it can delegate the execution to the
Execution component of other services. This way, the loop
is completed.

34

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Although simple, this component view of the autonomic
control loop has several advantages.

• First, by separating the control loop from the com-
ponent implementation, we obtain a clear separation
of concerns between functional content and non-
functional activities; meaning that the programmer of
the application does not need to explicitly deal with
management activities or with autonomic behaviour.

• Second, the component-based approach allows separate
implementations to be provided for each phase of
the loop. As each phase may require complex tasks,
we abstract from their implementation, that may be
specific for each service, and allow them to interact
only through predefined interfaces, so that each phase
may be implemented by different experts.

• Third, as each phase can be implemented in a separate
way, we may consider components that include, for
example, multiple sensors, condition evaluators, plan-
ning strategies, and connections to concrete effectors
as required. This way we allow multiple autonomic
control loops running over the same system, taking care
of different concerns.

Regarding the genericity or the approach we have de-
scribed it in a way as technology-independent as possible.
However, every implementation that intends to manage a
concrete service has, at some point, to use the specific means
that the service admits either for obtaining information from
it, or for modifying it. Our design is generic until the point
that we must define the concrete sensors and actuators that
must interact with the managed service. Actually, the amount
of information that we can collect from the service and the
kind of actions that we can execute over it, will be limited by
the methods that the service makes available. We consider,
however, that this limitation is given by the technology that
provides access to the services (in this case, a component
middleware) instead of the service programmer itself. In
Figure 3, the service implementation dependent parts are
indicated by the dashed arrows between the Service A and
its respective Monitoring and Execution components.

The framework allows the addition and removal at run-
time of different components of the loop, which means
that, for example, a service that does not need monitoring
information extracted, does not need to have a Monitoring
component and may only have an Execution component to
modify some parameter of the service. Later, if needed, it is
possible to add other components of the framework to this
service. This way, a service may be modified at runtime to
have a major or minor level of autonomicity according to
the needs.

As a simple example, consider a component that repre-
sents a storage service, and provides some basic operations
to read, write, search and delete files. In order to get
information about the performance of the storage service,

a Monitoring component can be added and expose metrics
about the average response time for each operation, and the
amount of free space. As an evolution, some non-functional
maintenance actions can be exposed to compress, index,
or tune the periodicity of backups. These actions can be
exposed by adding an Execution component that can execute
them over the storage service. Now the managed storage
service exposes some metrics, and exposes an interface
for executing maintenance actions. However, the storage
service is still not autonomic and the reading of metrics and
execution of maintenance actions are invoked by external
entities. A next evolution can consider adding an autonomic
behaviour to avoid filling the capacity of the storage service.
An Analysis component can be added and include a condi-
tion that checks the amount of free space, and in case it is
less than, for example, 2%, it triggers an action oriented to
increase the amount of free space. The decision about what
action to take can be delegated to a Planning component,
which will create the list of actions to be carried on by the
Execution component.

Depending on the management needs, any evolution of
the storage service can be used. If the autonomic behaviour
described is not needed anymore, then the Analysis and
Planning components can be removed and return to the
simple version of the storage service. The three versions
mentioned of the storage service are shown in Figure 4.

In the following, we describe the components considered
in the monitoring and management framework, their function
and some design decisions that have been taken into account.

A. Monitoring

The Monitoring task consists of collecting information
from a service, and computing a set of indicators or metrics
from it. The Monitoring component includes sensors specific
for a service or, alternatively, supports the communication
with sensors provided by the target service. This way, the
Monitoring component can be effectively attached to the
service.

In the presence of a high number of services, the comput-
ing and storage of metrics can be a high-demanding task,
specially if it is done in a centralized manner. Consequently,
the monitoring task must be as decentralized and low-
intrusive as possible. For this, our design considers one
Monitoring component attached to each monitored service,
that collects information from it, and exposes an interface to
provide the computed metrics. This approach is decentral-
ized and specialized with respect to the monitored service.
On the other side, some metrics may require additional
information from other services: for example, to compute the
cost of running a composition, the Monitoring component
would require to know the cost of all the services used
while serving some request. To address this situation in
a decentralized way, the Monitoring component is capable

35

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 read()
write()

search()
delete()

Storage
Service

storage

Storage
Service

Monitoring

free space
search time

Executing

compress()
backup()
index()

 metrics

actions

storage

Storage
Service

Monitoring

Executing

 metrics

actions

storage

ME Storage Service

Analysis

MAPE Storage Service

Planning

(a)
(b)

(c)

 SLOs
%free < 2%"%free > 2%"

compress()

compress()

free

%free

%free
avg. search
time

Figure 4. (a) Storage service in its basic version, (b) with Monitoring and
Executing components, (c) with all the MAPE components and providing
an autonomic behaviour

of connecting to the Monitoring components of other ser-
vices. The set of Monitoring components are inter-connected
forming an architecture that reflects the composition of the
monitored service and forming a “monitoring backbone” as
shown in Figure 6.

Figure 5 shows the methods of the metrics interface.
Metrics are referenced by a metricName string. The method
getMetric(metricName) is used by another component, or
by an external tool to fetch the current value of the metric
metricName in a pull mode. It is also possible to read the
values in a push mode by using the subscribe(metricName)
and unsubscribe(metricName) methods, so that the Monitor-
ing component notifies the receptor of any changes in the
value. The method getMetricList() allows the caller to verify
which metrics are available from the Monitoring component,
and the insertMetric(metric, metricName) and removeMet-
ric(metricName) methods allow the caller to manipulate the
available metrics by inserting or removing the code that
actually computes the values. An actual implementation of
this interface is permitted to extend it as needed.

Figure 6 shows an example of a metric named “energy
consumption” (e(i)) for each component i. Each Monitoring
component Mi is in charge of computing its value e(i) as
the sum of its own energy metric, and those of its references.
In the case of the composite service C, the value e(C) is

Monitoring
metrics-service

metrics-reference1

metrics-reference2

metrics-referencei

. . .

. . .

[metrics]

metrics
 getMetricList()
 getMetric(metricName)
 subscribe(metricName)
 unsubscribe(metricName)
 insertMetric(metric, metricName)
 removeMetric(metricName)

[metrics]

[metrics]

[metrics]

management of
sensors (polling/

listening) to collect
information

computation of
metrics from

obtained values

storage of obtained
values or metrics

communication with
other monitoring

components

Figure 5. The metrics interface of the Monitoring component

Service
A

Service
B

Service C

Service
D

Service
E

Service
A

Service
B

Service C

Service
D

Service
E

e(D) = 8 kW

e(E) = 2 kW

e© = e(A) + e(B) + e(D) + e(E)

e(B) = 2 kWe(A) = 6 kW + e(B)

MA
MB

MC

MD

ME

Figure 6. An SCA application, and the inner “monitoring backbone”

the sum of the values of both internal components, e(A) and
e(B), and of its references e(D) and e(E). Using the con-
nection between the different Monitoring components, the
total value e(C) is computed by MC and exposed through
its metrics interface. Note that the means for computing
the energy metric for each component may be different,
depending on the characteristics of the implementation;
however, once the value is computed in the corresponding
Monitoring component, it becomes accessible in a uniform
way by the other Monitoring components.

Figure 6 also shows a characteristic of our design with
respect to the number of monitoring interfaces. In order
to connect to monitoring interfaces of other components,
each Monitoring component includes one reference to the

36

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Monitoring component of each component to which the
managed component is bound. This is done so that we can
properly identify the monitoring information coming from
each managed component. It is possible to see, for example,
that MC includes three references: one for communicating
with MA because the service interface of Service C is bound
to Service A; and two reference interfaces for MD and ME

because Service D and Service E are referenced by Service
C. In this particular case, MC is not bound to MB because
its service interface is not bound to any service interface of
Service C.

B. Analysis

The Analysis component checks the compliance to a pre-
viously defined SLA. An SLA is defined as a set of simpler
terms called SLOs, which are represented by conditions that
must be verified at runtime.

One of the challenges of the Analysis component is to be
able to understand the conditions that need to be checked.
There exist several languages proposed for representing
SLOs and the metrics they require [4], [5], [6], [7]. Using a
component-based approach inside the Analysis component
it should be possible to embed an interpreter for these
languages into the Analysis component.

For illustrative purposes, we can consider a
very simple description of conditions using triples
〈metric, comparator , value〉 expressing, for instance,
“respTime ≤ 30sec”; or more complex expressions
involving other metrics or operations on them like
“cost(weatherService) < 2 × cost(mappingService)”,
where the metrics used by different services are required.

The Analysis component obtains the values of the metrics
it needs from the Monitoring component and, thanks to the
interconnected Monitoring components, it can obtain metrics
from other services as well.

The Analysis component receives a set of conditions
(SLOs) to monitor through the SLOs interface, and it checks
the compliance of all the stored SLOs according to the
metrics reported by the Monitoring component. In case
some SLO is not fulfilled, the Analysis component sends
an alarm notification through a reference alarm interface.
The consequences of this alarm are out of the scope of
the Analysis component and will be mentioned in the next
section.

The Analysis component can also be configured in a
proactive way to detect SLA violations not only after they
happened, but instead to generate the alarm before the vio-
lation happens (with a certain probability). This predictive
capability may be useful in many contexts, as it can avoid
incurring into penalties as a consequence of the ocurrence of
the violation [8]. Of course, a tradeoff between the precision
of the prediction and the cost of the prevention must be
made.

Analysis
slo-service metrics-reference

alarm-reference

[SLOs]

SLOs
 addSLO(SLO, sloName)
 removeSLO(metricName)
 enableSLO(metricName)
 disableSLO(metricName)

[alarm]

[metrics]

alarm
 notify(alarmType, condition)

management
(insertion/removal/

activation/storage) of
SLOs

association of
SLOs and required

metrics collection of
required values to

check SLOs

Figure 7. The SLOs interface of the Analysis component

Weather

Tourism
Service Attraction1

SLO:
cost(TS) < 30

Metric:
cost(TS)=cost(W)+cost(A1)

cost=?

cost(A1)=10

cost(W)=18

cost(TS)=28

SLO:
respTime < 2s.

Metrics:
cost(W)=...

respTime(W)=...

MTS
A

TS

M
WAW

MA1

Figure 8. SCA components with Analysis (Ai) and Monitor (Mi)
components. Tourism Service and Weather have different SLAs. The metric
cost is computed in Tourism Service by calling the monitors of Weather
and Attraction1.

By having the Analysis component attached to each ser-
vice, the conditions can be checked closely to the monitored
service and benefit of the hierarchical composition. This
way, the services do not need to take care of SLAs in which
they are not involved.

Figure 7 shows the methods of the SLOs interface. The
methods allow the caller to manipulate the list of SLOs
that are checked by the Analysis component by inserting or
removing the object that contains the SLO description and
referencing it through the sloName string. The enable/disable
methods permit the caller to enable or disable the verification
of a particular SLO. The precise manner in which the Anal-
ysis component reads and stores the SLO objects, checks the
compliance of the SLOs, and obtains the information from
the Monitoring component are left as an implementation
concern. One way to implement it is described in Section
IV-D.

Figure 8 shows an example where Service TourismService
(TS) has an Analysis component ATS , and a Monitoring
component MTS ; services Weather (W) and Attraction1
(A1) are referenced by TS. Service W includes an Analysis
component AW and a Monitoring component MW ; service

37

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A1 only includes a Monitoring component MA1.
The Analysis component of TS must check the SLO

“〈cost,<, 30〉” over Service TS. For checking that condition,
it requires the value of the metric cost from MTS . In MTS ,
the computation of the metric cost requires the value of the
metric cost from both services W and A1. MTS obtains this
information from the corresponding Monitoring components
MW and MA1 and is able to deliver the response to ATS . It
is worth noting that ATS is not aware that the computation of
MTS actually required additional requests to MW and MA1,
as this logic is hidden into MTS . At the same, the Analysis
component AW works independently to check a condition
related to the response time (respTime) metric from service
W , which requires to read the appropriate metric from MW .

C. Planning

The objective of the Planning phase is to generate a
sequence of actions, called plan, that can modify the state
of the service in order to restore some desired condition. In
general, we want to restore the condition (the SLO) that has
been violated.

The computation of a plan is triggered when a notification
is received indicating that a condition is not being fulfilled,
through the alarm interface. For creating such a plan, the
Planning component must execute a planning algorithm that
can determine that sequence of actions. This logic can be
implemented in a number of ways. On the more simple side,
a strategy may be a notification to a human agent (email,
SMS, etc.) who would be responsible of taking any further
action; another alternative could rely on a table of predefined
actions, like ECA (Event-Condition-Action) triggers, such
that if some conditions hold, then the corresponding action
is generated. On a more complex side, numerous strategies
and heuristics, in particular from the artificial intelligence
area have been proposed for planning a composition or
recomposition of services that complies with certain desired
QoS characteristics. The aim of our Planning component
is to be capable of supporting the implementation of such
existing strategies.

The alarm interface is shown in Figure 9. It only considers
one method notify(alarmType, condition) that includes the
condition that is triggering the reaction, and optionally a
level indicator called alarmType that permits the caller to
assign priorities or levels of gravity of the notification.

Given the wide range of different solutions for generating
a plan, it does not seem easy to find an interface that is
uniform across all the possible strategies. However, most
of the strategies require as input information the current
state of the service in order to guide the possible solutions.
Consequently, our Planning component considers one inter-
face for obtaining information about the state of the service,
connected to the Monitoring component.

Although a simple implementation would embed only
one specific strategy, our approach considers that several

Planningalarm-service
metrics-reference

actions-reference[alarm]
[actions]

[metrics]

actions
 sendActions(actionList)
 sendAction(action)

support for one or
more strategies

association of faulting
condition and severity

level to an
appropriate strategy

generation of (list
of) actions in a
defined format

alarm
 notify(alarmType, condition)

Figure 9. The alarm interface of the Planning component

conditions may be supported by the Analysis component.
Consequently, several conditions may need to be checked
and, if it is necessary to take some actions, different strate-
gies may be applied upon each case. That is why we think
that a component-based approach applied to the Planning
component should be able to support different planning
strategies that would be activated depending on the condition
that needs to be restored.

It is also a concern that these strategies may be replaced
at runtime. For example, an application may be driven
by a cost-saving strategy and, at some point the admin-
istrator may need to change the requirements and enforce
an energy-saving strategy. In that case, a replacement of
the corresponding strategy should be performed inside the
Planning component. However, this task is not an autonomic
task of the framework itself and is, instead, driven by an
administrator of the management layer.

Figure 10 shows an example where service Tourism-
Service (TS) uses two services Weather (W) and Mapping
(MP). The Planning component of TS, PTS receives an
alarm from the Analysis component ATS indicating that the
condition 〈cost , <, 30〉 has been violated, and that an action
should be taken. PTS executes a very simple strategy, which
intends to replace the component with the higher cost. For
obtaining the cost of both components W and MP, PTS uses
the Monitoring component MTS , which communicates with
MW and MMP to obtain the required values. As MP has the
higher cost, the strategy determines that this component must
be replaced. PTS uses an embedded reference to a discovery
service, to obtain an alternative service, called MX, which
provides the same functionality as MP (this is neccesary to
not interfere with the functional task of the application) and
whose cost is expected to satisfy the condition 〈cost , <, 30〉.
With all this information, PTS is able to produce a single
action replace(MP ,MX) as output.

It is worth to notice that all the logic of the planning
algorithm is encapsulated inside PTS , and that MTS is only
used to obtain the values of the metrics that the strategy may
need.

38

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

W

Tourism
Service

MP

MX
Strategy:

getMetric(cost,W)=?
getMetric(cost,MP)=?
getMetric(cost,MX)=?

output: replace(MP,MX);

Action:
replace(MP,MX);

Alarm:
cost(TS) >= 30

SLO:
cost(TS) < 30

cost(W)=18

cost(MP)=20

cost(MX)=5

MTSATS

PTS

MW

MMP

MMX

Figure 10. Example for the Planning component.

D. Execution

The Execution component carries out the sequence of ac-
tions that have been determined by the Planning component.

Although it seems reasonable that once the actions have
been decided, those be executed immediately, the Execution
component has more importance than just executing actions.
One of the reasons for having a different component is to
separate the description of the actions from the specific way
to execute them. In the same sense that the Monitoring
component abstracts the way to retrieve information from
the target service and provides a common interface to access
the metrics it collects, the Execution component abstracts
the communication with the target service to provide a
uniform way to execute actions on the service. This also
implies that, like the Monitoring component, the Execution
component must be implemented according to the specific
characteristics of the service on which the actions must be
executed.

The set of actions demanded may involve not only the
managed service, but also different services. For this reason,
the Execution component is also able to communicate with
the Execution components attached to some other compo-
nents and send actions to them as part of the main reconfig-
uration action. The set of connected Execution components
forms an “execution backbone” that propagates the actions
from the component where the actions have been generated
to each of the specific components where some part of
the actions must take place, possibly hierarchically down
to their respective inner components. This approach allows
to distribute the execution of the actions.

The Execution component receives the sequence of ac-
tions to execute from the actions interface, which is shown
in Figure 11. The interface has two methods that permit the
caller to send either a list of actions, or a single action to

Executionactions-service

actions-referencei

[actions]

[actions]

execution of
actions on the
target service

translation of actions to
the support provided

by the service

transmission of
actions to external

services

. . .
actions-reference2
[actions]

actions-reference1
[actions]

. . .

actions
 sendActions(actionList)
 sendAction(action)

Figure 11. Example for the Execution component.

Comp. pr

Tourism
Service

W

W1

Actions:
replace(W,W1);
unbind(C,pr);

set(W1,threads,10);

PR

replace(W,W1);

set(W1,threads,10);

unbind(C,pr);

PTS ETS

EW1

EW

EC

Figure 12. Example of propagation of actions through Execution compo-
nents

the Execution component. The proper definition of the action
object will depend on the implementation. In any case, the
Execution must be able to read this object and interpret it
as an action that can be executed on the service.

Figure 12 shows an example where three actions are
generated by the Planning component of TourismService
(TS): one to replace the service Weather (W), one to unbind
the service Printer (PR), and the third one to set a parameter
on the reference to service Mapping (MP). In the example,
the Planning component PTS has sent the list of actions
to the Execution component ETS . The action of replacing
component W by W1 is executed locally at TS. However, the
unbinding of reference pr on service Composer (C) must be
executed by ETS ; and the setting of the parameter “threads”
on service W1 must be executed by EW1 . By using the
connections between the different Execution components,
the actions can be delegated to the appropriate place.

39

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. IMPLEMENTATION

This section describes our prototype implementation over
a middleware that implements a particular component model.
We describe the pieces of the framework that have been
implemented according to the design guidelines presented in
Section III and exemplify how they can be used to provide
self-adaptability in the context of the scenario described in
Section II.

A. Background: GCM/ProActive

The ProActive Grid Middleware [9] is a Java middle-
ware, which aims to achieve seamless programming for
concurrent, parallel and distributed computing, by offering
an uniform active object programming model, where these
objects are remotely accessible via asynchronous method
invocations and futures. Active Objects are instrumented
with MBeans, which provide notifications about events at the
implementation level, like the reception of a request, and the
start and end of a service. The notification of such events to
interested third parties is provided by an asynchronous and
grid enabled JMX connector [10].

The Grid Component Model (GCM) [11] is a component
model for applications to be run on computing grids, that
extends the Fractal component model [12]. Fractal defines a
component model where components can be hierarchically
organized, reconfigured, and controlled offering functional
server interfaces and requiring client interfaces (as shown
in Figure 13). GCM extends that model providing to the
components the possibility to be remotely located, dis-
tributed, parallel, and deployed in a grid environment, and
adding collective communications (multicast and gathercast
interfaces). In GCM it is possible to have a componentized
membrane [13] that allows the existence of non-functional
(NF) components, also called component controllers that
take care of non-functional concerns. NF components can
be accessed through NF server interfaces, and components
can make requests to NF services using NF client interfaces
(shown respectively on top and bottom of A in Figure 13).

The use of NF components instead of simple object
controllers as in the Fractal reference implementation, allows
a more flexible control of NF concerns and to develop more
complex implementations, as the NF components can be
bound to other NF components within a regular compo-
nent application. This notion of defining a componentized
membrane has been used in previous works to manage an
define structural reconfigurations [13], [14]. In this work we
use these notions to address self-adaptability concerns in
service-oriented contexts.

GCM/ProActive is the reference implementation of GCM,
within the ProActive middleware, where components are
implemented by Active Objects, which can be used to
implement new services using Java, or wrap existent legacy
applications like C/Fortran MPI code, or a BPEL code.

Service
A

Monitoring
Analysis

Planning Execution

metrics

actions

alarm

Monitoring
Service

SLA
 Service

Execution
 Service

External
Monitoring

Service

External
Execution
Service

Managed Service A

Membrane

Figure 13. Framework implementation weaved to a primitive GCM
component A. The MAPE components are isolated from the functional
part in the membrane of the component.

The GCM/ProActive platform provides asynchronous
communications with futures between bound components
through GCM bindings. GCM bindings are used to provide
asynchronous communication between GCM components,
and can also be used to connect to other technologies
and communications protocols, like Web Services, by im-
plementing the compliance to these protocols via specific
controllers in the membrane. These controllers have been
used to allow GCM to act as an SCA compliant platform,
in a similar way as achieved by the SCA FraSCAti [15]
platform, which however bases upon non distributed com-
ponents (Fractal/Julia).

B. Framework Implementation

The framework is implemented in the GCM/ProActive
middleware as a set of NF components that can be added
or removed at runtime to or from the membrane of any
GCM component, which becomes a managed service of the
application.

We have designed a set of predefined components that
implement each one of the elements we have described in
Section III. This is just one of possible implementations, and
particularly this has been designed to provide self-adaptable
capabilities to the composition.

The general implementation view for a single GCM
component is shown in Figure 13 (using the GCM graphical
notation [11]), and resembles the design presented in Figure
3, however now the components that implement the MAPE
control loop are inserted in the membrane and they are
structurally isolated from the functional part. The framework
is weaved in the GCM component A by inserting NF
components in its membrane. Monitoring and management
features are exposed through the NF server interfaces Mon-

40

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

itoring Service, SLA Service and Execution Service (top
of Figure 13). NF components can communicate with the
NF components of other GCM components through the NF
client interfaces External Monitoring Service and External
Execution Service (bottom of Figure 13). The sequence
diagram of the self-adaptability loop is shown in Figure 14.

Monitoring Monitoring
(external) Analysis Planning Execution

compute
Metric()

execute()

computePlan()

Service A

events

getMetric()

update()
check()

alarm()

getMetric()

actions

Figure 14. Sequence diagram for the autonomic control loop

C. Monitoring

We have designed a set of probes for CPU load and
memory use, and incorporated them along with the events
produced by the GCM/ProActive platform. Over them, we
provide a Monitoring component, shown on Figure 15,
which includes (1) an Event Listener that receives events
from a GCM component and provides a common ground to
access them; (2) a Record Store to store records of monitored
data that can be used for later analysis; (3) a Metric Store that
stores objects that we call Metrics, which actually compute
the desired metrics using the records stored, or the events
caught; and (4) a Monitor Manager, which provides the
interface to access the stored metrics, and add/remove them
to/from the Metrics Store.

The Monitor Manager receives a Metric that, in our
implementation, is a Java object with a compute method, and
inserts it in the Metric Store. The Metric Store provides to
the Metrics the connection to the sources that they may need;
namely, the Record Store to get already sensed information,
the Event Listener to receive sensed information directly,
or the Monitoring component of other external components,
allowing access to the distributed set of monitors (i.e., to
the monitoring backbone). For example, a simple respTime
metric to compute the response time of requests, requires to
acess the Record Store for retrieving the events related to
the start and finish times of the service of a request.

Consider, for instance, that the Tourism Service needs to
know the decomposition of the time spent while serving a
specific request r0. For this, a metric called requestPath for a
given request r0 can ask the requestPath to the Monitoring
components of all the services involved while serving r0,
which can repeat the process themselves; when no more calls

Metrics
Store

Monitoring
Manager

Event
Listener

Record
Store

Monitoring Component

monitoring-
service

[metrics]

external-
monitoring-

service
[metrics]

[recordStore]

[events]

[metrics]

[eventsControl]

GCM/ProActive events
(JMX)

Figure 15. Internal Composition of the Monitoring component

are found, the composed path is returned with the value of
the respTime metric for each one of the services involved in
the path. Once the information is gathered in the Monitoring
component of the Tourism Service, the complete path is built
and it is possible to identify the time spent in each service.

D. SLA Analyzer

The SLA Analyzer is implemented as a component that
queries the Monitoring component. The SLA Analyzer con-
sists in (1) an SLO Analyzer, which transforms the SLO
description to a common internal representation, (2) an SLO
Store that maintains the list of SLOs, (3) an SLO Verifier
that collects the required information from the Monitoring
interface and generates alarms, and (4) an SLA Manager that
manages all the process.

SLO
Store

SLA
Manager

Analysis Component

SLO-service
[SLOs]

monitoring-
service
[metrics]

alarm-service
[alarm]

SLO
Verifier

SLO
Analyzer

Figure 16. Internal Composition of the Analysis component

In this implementation, an SLO is described as a triple
〈metricN , comparator , value〉, where metricN is the name
of a metric. The SLA Monitor subscribes to the metricN
from the Monitoring component to get the updated values
and check the compliance of the SLO.

For example, the Tourism Service includes the SLO: “All
requests must be served in less than 30 secs”, described as
〈respTime, <, 30 〉. The SLA Manager receives this descrip-
tion and sends a request to the Monitoring component for
subscription to the respTime metric. The condition is then

41

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

stored in the SLO Store. Each time an update on the metric is
received, the SLA Manager checks all the SLOs associated to
that metric. In case one of them is not fulfilled, a notification
is sent, through the alarm interface including the description
of the faulting SLO.

E. Planning

The Planning component, shown on Figure 17, includes
a Strategy Manager that receives an alarm message and,
depending on the content of the alarm, it triggers one
of several bound Planner components. Each one of the
Planner components implements a planning algorithm that
can create a plan to modify the state of the application. Each
Planner component can access the Monitoring components
to retrieve any additional information, they may need; the
output is expressed as a list of actions in a predefined
language.

Strategy
Manager

Planning Component

alarm-service
[alarm]

monitoring-
service
[metrics]

actions-service
[actions]

Planner1

Planner2

PlannerN

.

.

.

Figure 17. Internal Composition of the Planning component

In our implementation we profit by the selective 1-to-N
communications provided by GCM to decide the Planner
component that will be triggered. For example, if the SLO
violated is related to response time, we may trigger a planner
that generates a performance-oriented recomposition; or if
a given cost has been surpassed, we may trigger a cost-
saving algorithm. The decision of what planner to use is
taken in the Strategy Manager component. However, the
possibility of having multiple strategies might be a source
for conflicting decisions; while we do not provide a method
to solve these kind of conflicts, we assume that the conflict
resolution behaviour, if required, is provided by the Strategy
Manager.

We have implemented a simple planning strategy that,
given a particular request, asks to compute the requestPath
for that request, then finds the component most likely re-
sponsible for having broken the SLO, and then creates a plan
that, when executed, will replace that component for another
component from a set of possible candidates. Applied to
the Tourism Service, suppose a request has violated the
SLO 〈respTime, <, 30 〉. The Strategy Manager activates
the Planner component that obtains the requestPath for that
request along with the corresponding response time, selects
the component that has taken the highest time, then obtains a

set of possible replacements for that component, and obtains
for each of them the avgRespTime metric. The output is a
plan expressed in a predefined language that aims to replace
the slowest component by the chosen one.

Clearly this strategy does not intend to be general, and
does not guarantee an optimal response in several cases.
Even, in some situations, it may fail to find a replacement
and, in that case, the output is an empty set of actions.
However, this example describes a planning strategy that can
be added to implement an adaptation for self-optimizing and
that uses monitoring information to create a list of actions.

F. Execution

The Execution component, shown on Figure 18, includes a
Reconfiguration Engine. This engine uses a domain specific
language called PAGCMScript, an extension of the FScript
[16] language (designed for Fractal), which supports GCM
specific features like distributed location, collective commu-
nications, and remote instantiation of components.

The Execution component receives actions from the Plan-
ning component. As many strategies may express actions
using different formats, a component called Execution Man-
ager may require a transformation to express the actions
in an appropriate language for the Reconfiguration Engine,
using a Translation component. The Execution Manager
may also discriminate between actions that can be executed
by the local component, or those that must be delegated to
external Execution components.

For example, if a planner determines that the Weather
service must be removed from the composition, it can be
unbound from the Tourism Service by using a PAGCMScript
command like the following
unbind($tourism/interface::"weather")

Execution
Manager

Execution Component

actions-service
[actions]

Translation

Reconfiguration
Engine

actions-service
[actions]

PAGCMScript
commands

Figure 18. Internal Composition of the Execution component

G. Generalization and Dynamic Insertion

The GCM-based framework shown in Figure 13 has been
presented as an instantiation of the SCA version shown in
Figure 3. Indeed, the SCA design of Figure 3, presented
only in terms of SCA elements, can be realized for any
SCA runtime platform. The deployment of the framework
may be done by injecting the required SCA description in

42

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the SCA ADL file. This way, the application is deployed
with all the needed elements of the framework attached.

In our implementation, however, we allow the insertion
of the components that provide the autonomic behaviour to
occur at runtime. We have provided a console application
that can use the standard NF API of GCM components to
insert or remove at runtime the required components of the
framework.

The console, while not being itself a part of the frame-
work, shows that an external application can be built and
connected to the NF interfaces of the running application
and handle at runtime the composition and any subsequent
reconfiguration, if needed, of the monitoring and manage-
ment framework itself. In the use case that we present in
Section V-B we use this console application, for instance,
to interact with the Monitoring interface and obtain the value
of certain metrics.

V. USE CASE AND EVALUATION

This section shows the experimentation we have made
with the implementation of our framework over the
GCM/ProActive middleware. The experimentation is divided
in two parts. First we execute some micro-benchmarks to
analyze the overhead incurred by the execution of the MAPE
components concurrently with the functional application in
our particular implementation. Then, we describe from a
working point of view the use of the framework to insert
and modify a set of MAPE components into a concrete
application, showing the practicality of our proposition.

A. Performance

We have built a sample application with several compo-
nents that interchange messages. Each execution performs
a distributed computation through all the components to
compose a return message, so that each execution gener-
ates a communication that ultimately reaches every other
component.

1) MAPE Execution Overhead: We run a repetition of
n messages in two versions of the application: one with
no MAPE components inserted, and another with a version
of each MAPE component inserted in all the membranes.
This is, a complete MAPE cycle in each component. The
Monitoring component computes metrics related to response
time; the Analysis component checks an SLO that compares
the response time in a push mode (subscription) upon each
update of the respTime metric and, in case it is bigger
than 1 second, it sends an alarm to a planner component.
The planner only checks the last value obtained for the
respTime metric from the Monitoring component, but does
not generate actions. In order to isolate the execution of
the application respect to network communication, in this
experiment all the components are deployed in a single node.

The times obtained for each execution depending on the
number of requests, and the overhead obtained for the total

execution is shown in Table I. The “Base” column shows the
execution time without any MAPE component inserted, and
the “w/MAPE” columns shows the execution with all the
MAPE components inserted and running in the membranes
of each functional component.

#msgs Base (sec) w/MAPE (sec) Diff. %Overhead
1000 6.98 8.00 1.02 14.6
2500 17.20 19.29 2.09 12.2
5000 34.39 39.18 4.79 13.9

10000 68.57 77.55 8.98 13.1
20000 140.38 158.91 18.53 13.2

Table I
EXECUTION OVERHEAD IN NON-DISTRIBUTED APPLICATION WITH

MAPE COMPONENTS EXECUTING IN THE MEMBRANE OF FUNCTIONAL
COMPONENTS

We observe that the overhead incurred stabilizes around
13% of the initial time. Although it seems important, we
must highlight that this case represents one of the worst
cases of an execution, as the only thing that this application
does is to send requests to other components, while little
functional work is done by each individual service. In a
more general situation, an application would be expected to
do some other activity than only sending requests. However,
this experiment allows us to test the behaviour of our frame-
work implementation under a high load and still obtaining
acceptable results.

2) MAPE Execution and Communication Overhead:
In this experiment we use a distributed version of the
application, where each component is deployed in a different
node in a grid environment. In this case, in addition to the
overhead caused by the execution of the MAPE components,
we expect to have and additional overhead caused by the
communication between the membranes of the different
functional components.

The results are shown in Table II. The “Base” column
shows the execution time of the distributed application
without any MAPE component inserted, and the “w/MAPE”
columns shows the execution with all the MAPE compo-
nents inserted and running in all the membranes, and in
the same node of their corresponding managed functional
component.

In this case, the overhead reaches around 15% of the
“Base” execution time. This is not a big increment with
respect to the previous situation, while the amount of
network communication is bigger. Once again, we must
mention that this particular experiment reflects a situation
where the components spent most of the time sending and
receiving requests, which consequently triggers reactions
over the application. The node where each component runs
must support the execution of both the original functional
node, and the activity of the additional NF components.

43

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

#msgs Base (sec) w/MAPE (sec) Diff. %Overhead
1000 29.66 33.69 4.03 13.6
2500 72.20 82.18 9.98 13.8
5000 138.72 156.74 18.02 13.0

10000 271.45 314.20 42.75 15.7
20000 539.26 624.27 85.01 15.8

Table II
EXECUTION OVERHEAD IN A DISTRIBUTED APPLICATION WITH MAPE

COMPONENTS EXECUTING IN THE MEMBRANE OF FUNCTIONAL
COMPONENTS

Overall, the insertion of the MAPE components in this
implementation implies a bigger load in the execution of
the managed component, which is natural. In a worst-
case scenario, the overhead incurred does not account for
more than 15% of the not-managed execution. This measure
however, is not completely accurate, as the actual overhead
incurred by the MAPE components may depend on many
additional factors. For one, the specific logic applied to
the metrics implementation, and to the planner strategies
may require much more additional processing. Moreover,
the planner strategy may require to (it is not forbidden to)
temporarily stop the functional execution of the component
if some computation needs to be performed in an isolated
way, introducing more overhead in the execution. However,
we must remember that the planning activity should be
executed mainly for resolving undesired situations and not
become the main activity of the application.

Another factor is the supporting implementation. In our
case we have conducted our experiments over a distributed
environment supported by the GCM/ProActive middleware.
This particular implementation profits of asynchronism to
allow the concurrent execution of the MAPE components.
Each implementation of the framework, however, may profit
of their particular characteristics and optimize the implemen-
tation.

B. Use Case

We implement the application described in Section II
using the GCM/ProActive implementation of our framework.
The application is presented as an example of use of the
framework to add progressively autonomic behaviour to an
application.

The application is initially designed without any monitor-
ing or management activity. However, in order to be able to
insert some MAPE components later, it is necessary that the
required interfaces be previously declared. In the context
of our implementation, this is achieved by introspecting
the functional interfaces defined for the component and,
before instantiating the component, declaring the monitoring
and management interfaces. This extension of the originally
declared interfaces is done in an automatic way by our
implementation prior to deploy the components. The com-

ponents are, thus, deployed without any MAPE components
inserted, however they are prepared to receive them and
gradually support autonomic behaviour.

The design from Figure 1 is shown using the GCM
notation in Figure 19 for the Tourism Service composite.

Manager

Monitoring
Service

Tourism Service

Events DB

Composer Email

SMS

attractions

weather-service

payment-service

map-service

front-end

Figure 19. GCM description of the Tourism Service composite. NF
interfaces are available but no NF Component is in the membrane

1) Inserting Monitoring activity: In order to monitor the
application, it is possible to insert a Monitoring component
as the one described in Section IV-C. Figure 20 shows the
Tourism Service composite once the Monitoring component
has been inserted in its membrane, and in each one of its
subcomponents. The NF bindings are shown as solid lines
inside the membrane, and as dashed lines in the functional
part.

Using this configuration, it is now possible to connect
to the Monitoring interfaces of each component and insert,
query, or remove some metrics. Among others, we have
implemented a metric called respTime, which computes the
response time on the server side of a binding, a metric called
avgRespTime that keeps an average of response time on each
interface, and another one called requestPath that uses the
previous one to trace the tree of calls generated by a request
including the response time on each component. Our console
application includes commands to connect and interact with
the monitoring interfaces, providing an interaction like it is
shown in Listing 1.

Listing 1. Request Path computation by invoking a metric from the
console. Numbers in parenthesis are unique request identifiers
> addMetric TourismServ requestPath rp
Metric rp (type: requestPath) added to TourismServ
...
> addMetric MappingServ requestPath rp
Metric rp (type: requestPath) added to MappingServ

44

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Manager

Monitoring

metrics

Monitoring
Service

Managed Tourism Service

Events DB

Composer Email

SMS

front-end attractions

weather-service

payment-service

map-service

Figure 20. GCM description of the Tourism Service composite, once
the Monitoring component has been inserted in the membrane of all
components and its NF Interfaces are bound

> runMetric TourismServ rp 1131284383
Path from TourismServ, for request 1131284383
Request Path from request 1131284383
* (1131284383) TourismServ.reqs.buildDoc:
client: 7943 server: 7646
* (-516789329) Manager.events.getEvent:
client: 410 server: 398
* (-516789328) Manager.weather.getWeather:
client: 2224 server: 2118
* (1131284384) TourismServ.weather.getWeather:
client: 2011 server: 1841
* (-516789327) Manager.attr3.getTicktData:
client: 3019 server: 2867
* (1131284385) TourismServ.attr3.getTicktData:
client: 2860 server: 702
* (-516789326) Manager.composer.buildDoc:
client: 5066 server: 5002
* (1278875256) Composer.mapping.getLocn:
client: 3200 server: 3109
* (1131284385) TourismServ.mapping.getLocn:
client: 3006 server: 2955
* (1278875257) Composer.email.send:
client: 1434 server: 1137
>

2) Automating the monitoring: By connecting to the
Monitoring interface, it is possible to introduce metrics and
request their values. However, this still requires to explicity
ask for the values and interpret them in an external way from
the application as shown on Listing 1.

A next level of autonomic behaviour is achieved by
automating the monitoring. The Analysis component can
be dynamically inserted in the membrane and bound to
the Monitoring component to check periodically certain
metrics. In the example, an Analysis component like that
described in Section IV-D is inserted in the Tourism Service
component, and made available through the SLA Service

interface. This interface allows to insert SLOs according to
the format described in Section IV-D and associate them to
the metrics provided through the Monitoring interface. In
the example shown in Figure 21, the Analysis component
uses the avgRespTime metric to check the average response
time on the frontEnd interface.

In case a condition is not met, the Analysis component
is expected to throw an alarm through its alarm interface.
This notification must be logged and produce some action
in order to be useful. A simple way to handle it is to insert
a Planning component like that described in Section IV-E
that implements a planner whose only action is to send a
notification email about the faulty condition. This simple
activity is described in Figure 21.

Manager

SLO
Service

Tourism Service

Events DB

Composer Email

SMS

Execution
Service

Monitoring
Service

Monitoring . . .
Analysis

Planning

. . .
Alarm:

avgRT > 15

getMetric("avgResp
Time")

sendEmail()

Figure 21. TourismService with Monitoring, Analysis, and simple Planning
inserted. The basic action is to check a metric and notify in case a threshold
is reached. The complete set of monitoring bindings is not shown for clarity.

3) Providing a self-optimizing autonomic loop: At this
moment the autonomic control loop is not complete, as the
final action is still dependent on a human administrator. In
order to provide a complete autonomic behaviour, a more
complex planner can be added to the Planning component
and associated to the SLO that checks the avgRespTime
metric, and an Execution component must be inserted in
each component where an action may be carried on.

45

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Manager

SLO
Service

Tourism Service

Events DB

Composer Email

SMS

Execution
Service

Monitoring
Service

Monitoring . . .
Analysis

Planning Execution . . .
. . .

. . .
Alarm:

avgRT > 15

getMetric("reque
stPath")

replace("SMS", "SMS-2")

remote-replace
("SMS", "SMS-2")

remote-replace
("SMS", "SMS-2")

SMS-2

Figure 22. TourismService with all MAPE components, providing a self-
optimizing behaviour. If the average response time is not met, the slowest
component is identified and replace by an equivalent one. The complete set
of monitoring bindings is not shown for clarity.

A simple self-optimizing autonomic behaviour may con-
sist of reacting when the desired average response time
is not obtained in the frontEnd interface, and replacing
the component that takes the most time to execute by an
equivalent quicker component.

To implement this kind of action, the new planner compo-
nent must implement a behaviour slightly more complex that
the old component. The planner first needs to identify the
“faulty” component, which in this case is defined as the one
that takes the biggest slice of the total time to serve a request.
This information is obtained from the requestPath metric that
can be obtained from the Monitoring component. Once the
component to be replaced is identified, the planner must find
a proper replacement. The discovery process is not shown in
the example, however we assume that an alternative, more
efficient component can be found (if that is not possible, the
planner can safely fail without producing an action). Finally,
the replacement action must be carried on in the appropriate
binding. By using the connections between the Execution
components, the action can be propagated and the binding
can be updated. The sequence of the propagation of actions,
and the application with all the MAPE components inserted
is shown in Figure 22.

This particular implementation is a concrete implemen-

tation of an effective autonomic self-optimizing behaviour
built through our framework and dynamically inserted in a
running application.

4) Providing a self-healing behaviour based on infras-
tructure: As we have mentioned before, the implementation
of sensors and actuators are the only parts of our framework
that are heavily dependent on the particular implementation.
In the previous example, we have relied in sensors that detect
JMX events produced by the GCM/ProActive implementa-
tion of the functional code, and actuators that rely on the
PAGCMScript scripting language to describe reconfiguration
actions.

A different implementation of sensors can be oriented
to measure characteristics of the running infrastructure like
CPU or memory utilization, by using operating system calls,
or communicating with a virtual machine manager. Once
these sensors are implemented, their values can be fetched
by the MetricsStore and they are available for the rest of
the components of the framework as any other metric value.
These kind of sensors are particularly useful in a Cloud com-
puting environment, where the introduction of autonomic
behaviour in the application seems like a promising way to
benefit of the elasticity of the running infrastructure.

Infrastructure-based sensors may be used to provide a
simple self-healing behaviour in which a metric called
avgLoad is used to determine the average load of the node
where a component is runnning. In case the load surpasses a
threshold, a planner is activated, which determines the node
with the highest load, and migrates one component from that
node to another newly acquired node, expecting to achieve
a better balance.

Figure 23 shows an example of this behaviour.
5) Integrating adaptation on a cloud infrastructure: We

have also integrated the infrastructure monitoring capability
of our framework to provide adaptation through the lifecycle
of an SOA-based application running on a cloud environ-
ment [17].

Figure 24 shows a simplified version of the TourismSer-
vice application where the Composer component is dupli-
cated and each component is located in a different node
of a cloud infrastructure. The integration of our monitoring
capabilities through our framework allows the collection of
information both from the infrastructure sensors, and from
the runtime levels, and made it available at a higher level
view.

From the unified view, it is possible to interact through
the Execution interfaces and introduce modifications both
at the component runtime architecture level as we showed
on Figure 22, or by acquiring new nodes from a cloud
infrastructure and migrate a component to that node, in
order to balance the load of the application. Such example
is shown on Figure 25, where component C2 is migrated
from node C to a newly acquired node D.

46

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Manager

SLO
Service

Tourism Service

Events DB

Composer Email

SMS

Execution
Service

Monitoring
Service

Monitoring . . .
Analysis

Planning Execution . . .
. . .

. . .

migrate
("Email", "VN-2")

Alarm:
avgLoad > 10

migrate
("Email", "VN-2")

getMetric("avgLoad")

SLO:
avgLoad < 10

Figure 23. TourismService with all MAPE components, providing a self-
healing behaviour using sensor over the infrastructure. When a component
runs in a node that exhibits a high load. One component is migrated to a
newly acquired node, illustrated as a cloud provided node. The complete
set of monitoring bindings is not shown for clarity.

VI. RELATED WORK

Several works exist regarding monitoring and manage-
ment of service-oriented applications and about the imple-
mentation of autonomic control loops.

A set of works tackle the implementation of each phase
mostly in a separate way. We can find infrastructures for
monitoring components and services [18], [19], [20], and
tools for monitoring grid and cloud infrastructures [21],
[22], [23]. The work of Comuzzi et al. [24] proposes a
hierarchical monitoring of SLAs with support for event-
based communication, pull/push modes and different kinds
of metrics. The monitoring requirements are tightly coupled
to the services and accessed through a common interface.
Their approach differs with ours in that they do not consider
the modification of the monitoring requirements, or even
SLAs at runtime (nor do they consider components and
possible associated hierarchy as we do, in order to ease
monitoring information aggregation).

Regarding the Analysis phase, several works integrate
SLA monitoring and analysis [25] with SLA fulfillment
[8], [26]. For representing the conditions to verify, several
languages have been proposed [4] like SLAng [5], WSLA

Tourism Service

Man

C2

C1

Man C1

C2

Monitoring

A

B
C

Exec.

CPU, Load, Memory

Max/Min/Avg Resp. Time
Availability

AvgRT: 5s.
Node: B

CPU: 80%
AvgRT: 10s.

Node: A
CPU: 20%

AvgRT: 30s.
Node: C

CPU: 100%

GCM
Runtime

SCA design

Infrastructure

Figure 24. TourismService with Monitoring and Execution interfaces. The
GCM implementation allows to retrieve information from the infrastructure
and the runtime middleware, and associate it to the SCA design.

[6] and WS-Policy [7], which are mostly oriented to specify
the agreement conditions between providers and consumers.
Our claim is that our component based approach allows the
integration of one of these languages, specifically in the SLO
Analyzer shown in Section IV-D to represent the conditions.

On the area of planning strategies for adaptation, several
planning algorithms can be found using different techniques.
Some of them try to solve the problem of dynamically
selecting a set of services that accomplish some determined
QoS characteristic [27] using techniques from the genetic
algorithms area [28], [29] or using linear and integer pro-
gramming [30]. Other common way to separate the workflow
composition from the selection of services is to rely on ab-
stract services with some optionally defined QoS constraints,
and bind them to proxies or brokers that are in charge of
collecting information from a set of candidate services and
performing the selection to bind concrete services to them
[31], [32], [33]. Those works intend to compose a service,
previous to execution, that complies with the required QoS
characteristics. On the other side, other works address the
problem of dynamically adjusting a composition at runtime
[34], which is closer to the autonomic control loop that
we provide, although it makes encapsulation harder as they
require a closer integration between the monitoring and anal-
ysis phases with the planning phase. The runtime nature of
these approaches imposes restrictions on the time spent for

47

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tourism Service

Man

C2

C1

Man C1

C2

Monitoring

A

B

Exec.

"Migrate to 'workers-hp'"

GCM
Runtime

SCA design

Infrastructure

Trigger GCMScript on
associated component

Request new node +
propagate modifications

D

DC

VN: workers-hp

VN: workers-2

VN: workers-1

VN: manager

Figure 25. By sending commands through the Execution interface,
reconfigurations can be enacted both at the runtime level, as well as in
the infrastructure level.

computing the necessary rebinding. Some heuristics include
K-means clustering of candidate services [35], and filtering
of services that combine local and global optimizations [36]
and skyline selections [37].

Regarding the Execution phase, recent component systems
have been designed to take into account support for exe-
cuting reconfigurations. Among them, works like FraSCAti
[15] and SAFRAN [38] include methods for dynamically
modifying the composition of an application. FScript [16]
is a scripting language closely related to Fractal [12] based
applications to describe such reconfigurations, and is the
base for our own scripting language PAGCMScript.

Our approach, however, provides support for dynami-
cally building complete autonomic control loops through a
meaningful integration of the previous phases. The existing
works that provide complete frameworks for the MAPE loop
include Rainbow, and architecture-based approach providing
a single autonomic control loop [39] that uses a model of
the managed architecture to analyze and generate adapta-
tions, which are later mapped to the effective system using
a set of sensors and actuators. Another similar work to
ours [40] proposes a generic context-aware framework that
separates the steps of the MAPE control loop to provide self-
adaptation; their work allows the implementation of self-
adaptive strategies, though not much is mentioned about
runtime reconfigurability, or the possibility to have multiple
strategies. Also, we do not necessarily consider that all

services require the same level of autonomicity.
CEYLON [41] is a service-oriented framework for inte-

grating autonomic strategies available as services and using
them to build complex autonomic applications. They provide
the managers that allow the integration and adaptation of
the composition of the autonomic strategies according to
evolving conditions. In CEYLON, autonomicity is a main
functional objective in the development of the application,
while in our case, we aim to provide autonomic QoS-related
capabilities to already existing service based applications.
Also, we take benefit of the business-level components in-
trinsic distribution and hierarchy to split the implementation
of monitoring and management requirements across different
levels, thus enforcing scalability.

VII. CONCLUSION AND PERSPECTIVES

We have presented a generic component-based frame-
work for supporting monitoring and management tasks of
component-based SOA applications.

The strengths of our approach include a clear separa-
tion of concerns between the functional content and the
management tasks, relieving the programmer of the func-
tional application to integrate the managment activities.
The framework is generic in the sense that most of its
components can be implemented in an independent way
from the supporting technology of the application. The nec-
essary implementation-dependent elements, such as sensors
and actuators are encapsulated in components, and made
available through a common interface to the rest of the
framework. Finally we provide two levels of flexibility as
we can dynamically insert or remove sensors, conditions,
planning strategies and actuators in a previously existent
skeleton that provides the autonomic control loop; and we
also allow the modification of the composition of the control
loop by including phases like analysis and planning only
when they are needed and providing different degrees of
autonomicity to each component.

We have provided an implementation of our framework as
a self-adaptation loop for component-based services, thanks
to the composition of appropriate monitoring, SLA man-
agement, planning and reconfiguration components. This
prototype has been developed in the context of an SCA
compliant platform that includes dynamic reconfiguration
and distribution capabilities.

This approach provides a high degree of flexibility as
the skeleton we have provided for the autonomic control
loop can be personalized to support, for example, different
planning strategies, and leverage heterogeneous monitoring
sources to provide the input data that these strategies may
need (for example, performance, price, energy consumption,
availability).

One point not targeted by our proposition is the problem
of conflict resolution. Indeed we may think about two kinds

48

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of conflicts: one when two or more different planners gen-
erate opposite actions, or actions that invalidate each other;
and the other situation where the result of an action triggers
a chain of autonomic reactions that does not converge to a
stable state resulting in a livelock situation. Both types of
conflicts must be eventually dealt with, and they may arise
as a consequence of the fact that conditions are inserted
in the system in a way that they may be unaware of
each other. For that matter we can consider an additional
component that collects the output of each planner involved
and that is capable of resolving these kind of conflicts inside
the planning component. The specific implementation of a
conflict resolution mechanism is not a concern of this work.
Nevertheless, its integration is a promising perspective that
goes in the direction of improving the autonomic capabilities
that can be added to an application.

REFERENCES

[1] C. Ruz, F. Baude, and B. Sauvan, “Flexible Adaptation
Loop for Component-based SOA applications,” in IARIA
7th International Conference on Autonomic and Autonomous
Systems (ICAS 2011), 2011, pp. 29–36.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, no. 1, 2003.

[3] (2007, Mar.) Service Component Architecture Specifications.
OASIS. Last accessed: April 2011. [Online]. Available:
http://oasis-opencsa.org/sca

[4] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and
F. Casati, “Automated SLA Monitoring for Web Services,” in
Management Technologies for E-Commerce and E-Business
Applications, ser. Lecture Notes in Computer Science,
M. Feridun, P. Kropf, and G. Babin, Eds. Springer Berlin /
Heidelberg, 2002, vol. 2506, pp. 28–41.

[5] J. Skene, A. Skene, J. Crampton, and W. Emmerich, “The
Monitorability of Service-Level Agreements for Application-
Service Provision,” in Proceedings of the 6th international
workshop on Software and performance, ser. WOSP ’07.
New York, NY, USA: ACM, 2007, pp. 3–14.

[6] A. Keller and H. Ludwig, “The WSLA Framework: Spec-
ifying and Monitoring Service Level Agreements for Web
Services,” Journal of Network and Systems Management,
vol. 11, pp. 57–81, 2003.

[7] (2007, Sep.) Web Services Policy 1.5 - Framework (WS-
Policy). W3C. Last accessed: June 2012. [Online]. Available:
http://www.w3.org/TR/ws-policy/

[8] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dust-
dar, and F. Leymann, “Runtime prediction of service level
agreement violations for composite services,” in Proceedings
of the 2009 international conference on Service-oriented
computing, ser. ICSOC/ServiceWave’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 176–186.

[9] ProActive Parallel Suite. Last accessed: June 2012. [Online].
Available: http://proactive.inria.fr/

[10] F. Baude, V. Contes, and V. Lestideau, “Large-Scale Service
Deployment–Application to OSGi,” in IARIA 3rd Interna-
tional Conference on Autonomic and Autonomous Services
(ICAS 2007). IEEE Computer Society Press, Jun. 2007, pp.
19–26.

[11] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov,
L. Henrio, and C. Prez, “GCM: a grid extension to Fractal
for autonomous distributed components,” Annals of Telecom-
munications, vol. 64, pp. 5–24, 2009.

[12] E. Bruneton, T. Coupaye, M. Leclercq, V. Quma, and J.-B.
Stefani, “The FRACTAL component model and its support in
Java,” Software: Practice and Experience, vol. 36, no. 11-12,
pp. 1257–1284, 2006.

[13] F. Baude, L. Henrio, and P. Naoumenko, “Structural Recon-
figuration: An Autonomic Strategy for GCM Components,”
in IARIA 5th International Conference on Autonomic and
Autonomous Systems (ICAS 2009). IEEE Computer Society,
2009, pp. 123–128.

[14] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto,
P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Vanneschi, and
C. Zoccolo, “A framework for experimenting with structured
parallel programming environment design,” in Parallel Com-
puting - Software Technology, Algorithms, Architectures and
Applications, ser. Advances in Parallel Computing. North-
Holland, 2004, vol. 13, pp. 617 – 624.

[15] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni,
and J.-B. Stefani, “Reconfigurable SCA Applications with the
FraSCAti Platform,” in Proceedings of the 2009 IEEE In-
ternational Conference on Services Computing, ser. SCC’09.
IEEE Computer Society, 2009, pp. 268–275.

[16] P.-C. David, T. Ledoux, M. Léger, and T. Coupaye, “FPath
and FScript: Language support for navigation and reliable
reconfiguration of Fractal architectures,” Annals of Telecom-
munications, vol. 64, pp. 45–63, 2009.

[17] C. Ruz, F. Baude, B. Sauvan, A. Mos, and A. Boulze, “Flexi-
ble SOA Lifecycle on the Cloud Using SCA,” in Proceedings
of the 2011 IEEE 15th International Enterprise Distributed
Object Computing Conference Workshops, ser. EDOCW’11.
IEEE Computer Society, 2011, pp. 275–282.

[18] A. Van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst, “Continuous
Monitoring of Software Services: Design and Application
of the Kieker Framework,” 2009, last accessed: June
2012. [Online]. Available: http://www.informatik.uni-kiel.de/
uploads/tx publication/vanhoorn tr0921.pdf

[19] I. Garcia, G. Pedraza, B. Debbabi, P. Lalanda, and C. Hamon,
“Towards a Service Mediation Framework for Dynamic Ap-
plications,” 2006 IEEE Asia-Pacific Conference on Services
Computing, pp. 3–10, 2010.

[20] P.-C. David and T. Ledoux, “Wildcat: a generic framework
for context-aware applications,” in Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-
hoc computing, ser. MPAC’05. ACM, 2005, pp. 1–7.

49

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,” Parallel Computing, vol. 30, no. 7, pp. 817 –
840, 2004.

[22] Hyperic. CloudStatus Monitoring. Last accessed: June
2012. [Online]. Available: http://www.hyperic.com/products/
cloud-status-monitoring

[23] LogicMonitor. Last accessed: June 2012. [Online]. Available:
http://www.logicmonitor.com/

[24] M. Comuzzi and G. Spanoudakis, “A Framework for Hierar-
chical and Recursive Monitoring of Service Based Systems,”
in 4th International Conference on Internet and Web Appli-
cations and Services, 2009. (ICIW’09), may 2009, pp. 383
–388.

[25] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-
to-End Support for QoS-Aware Service Selection, Binding,
and Mediation in VRESCo,” IEEE Transactions on Services
Computing, vol. 3, pp. 193–205, 2010.

[26] I. Foster, “Globus toolkit version 4: Software for service-
oriented systems,” Journal of Computer Science and Tech-
nology, vol. 21, pp. 513–520, 2006.

[27] C. Ghezzi, A. Motta, V. Panzica La Manna, and G. Tam-
burrelli, “QoS Driven Dynamic Binding in-the-many,” in
Research into Practice – Reality and Gaps, ser. Lecture Notes
in Computer Science, G. Heineman, J. Kofron, and F. Plasil,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6093, pp. 68–
83.

[28] S. Liu, Y. Liu, N. Jing, G. Tang, and Y. Tang, “A Dynamic
Web Service Selection Strategy with QoS Global Optimiza-
tion Based on Multi-objective Genetic Algorithm,” in Grid
and Cooperative Computing – GCC 2005, ser. Lecture Notes
in Computer Science, H. Zhuge and G. Fox, Eds. Springer
Berlin / Heidelberg, 2005, vol. 3795, pp. 84–89.

[29] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani,
“A framework for QoS-aware binding and re-binding of
composite web services,” J. Syst. Softw., vol. 81, pp. 1754–
1769, Oct. 2008.

[30] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” IEEE Trans. Softw. Eng., vol. 30,
pp. 311–327, May 2004.

[31] T. Yu and K.-J. Lin, “A broker-based framework for QoS-
aware Web service composition,” in Proceedings of the 2005
IEEE International Conference on e-Technology, e-Commerce
and e-Service, ser. EEE ’05. IEEE Computer Society, 2005,
pp. 22–29.

[32] D. A. D’Mello, V. Ananthanarayana, and S. Thilagam, “A
QoS Broker Based Architecture for Dynamic Web Service
Selection,” 2nd Asia International Conference on Modelling
& Simulation, vol. 0, pp. 101–106, 2008.

[33] M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A
QoS broker Based Architecture for Efficient Web Services
Selection,” in Proceedings of the 2005 IEEE International
Conference on Web Services (ICWS 2005), 2005, pp. 113 –
120 vol.1.

[34] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani,
“QoS-aware replanning of composite Web services,” in Pro-
ceedings of the 2005 IEEE International Conference on Web
Services, ser. ICWS ’05. IEEE Computer Society, 2005, pp.
121–129.

[35] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas,
and V. Issarny, “QoS-aware service composition in dynamic
service oriented environments,” in Proceedings of the ACM/I-
FIP/USENIX 10th international conference on Middleware,
ser. Middleware’09. Springer-Verlag, 2009, pp. 123–142.

[36] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient QoS-aware service composition,”
in Proceedings of the 18th International Conference on World
Wide Web, ser. WWW’09. ACM, 2009, pp. 881–890.

[37] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline
services for QoS-based web service composition,” in Pro-
ceedings of the 19th International Conference on World Wide
Web, ser. WWW ’10. ACM, 2010, pp. 11–20.

[38] P.-C. David and T. Ledoux, “An Aspect-Oriented Approach
for Developing Self-Adaptive Fractal Components,” in Soft-
ware Composition, ser. Lecture Notes in Computer Science,
W. Löwe and M. Südholt, Eds. Springer Berlin / Heidelberg,
2006, vol. 4089, pp. 82–97.

[39] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure,” IEEE Computer, vol. 37, pp.
46–54, 2004.

[40] F. André, E. Daubert, and G. Gauvrit, “Towards a Generic
Context-Aware Framework for Self-Adaptation of Service-
Oriented Architectures,” 5th International Conference on In-
ternet and Web Applications and Services (ICIW’10), vol. 0,
pp. 309–314, 2010.

[41] Y. Maurel, A. Diaconescu, and P. Lalanda, “CEYLON: A
Service-Oriented Framework for Building Autonomic Man-
agers,” 7th IEEE International Conference and Workshops
on Engineering of Autonomic and Autonomous Systems, pp.
3–11, Mar. 2010.

50

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

