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Abstract—Relative to currently deployed Information Technology (IT)
systems, autonomic computing systems are expected to exhibit superior
control/management behaviour and high adaptability, regardless of op-
erational context. However, a means for measuring and certifying the
self-management capabilities of these systems is lacking and as result,
there is no way of assessing the trustworthiness of these systems. Two
things are needed to begin to address the above. The first is a consistent
structure for the autonomic computing system (ACS) and a consistent
architecture for the autonomic computing manager (AM). The second is
a set of metrics by which the operational characteristics of these systems
are to be measured within the context of the targeted application domain.

In this first part of a two-part paper, a biologically inspired architecture
is proposed for the autonomic computing manager. The interfaces and
messages by which this architecture communicates with objects within
and those without are technically defined. Also discussed in this paper
is the policy structure by which the autonomic manager is configured
to sense contexts and effect changes in its managed environment. For
the system framework, a tree structure together with its associated
protocols is proposed, implemented and used as the basis for establishing
administrative and security relationships between autonomic computing
elements; for resolving management conflicts; for enforcing data in-
tegrity; for ensuring data availability and for providing mechanisms that
aid system scalability, robustness and extensibility, while maintaining low
system complexity. This framework is achieved using standards-based
objects including the Lightweight Directory Access Protocol (LDAP),
Policy Core Information Model (PCIM) and a significant number of
Internet Engineering Task Force (IETF) Request For Comments (RFC)
standard documents.

Keywords-Autonomic computing systems; Certification; Architecture;
Intelligent Machine Design; LDAP;

I. INTRODUCTION

Information Technology (IT) systems are rapidly growing in com-
plexity and are becoming more difficult to manage by the day. This
growing complexity requires an increase in the number of expert
human operators managing these systems. This in turn increases
the cost associated with IT service management. Therefore, steadily
replacing the human operator with machines that can carry out similar
managerial functions is desirable. Apart from cost savings, this has
the added benefit of allowing complex computing systems to evolve
into even more complex ones with the associated value added service.
The human operator will act as an overall guide to the system and
should in no way constitute a technological bottleneck. However, such
a computing platform must be verified and trusted before it is handed
complex managerial duties. To accomplish this task, the internal
components of the computing managers must be well understood,
as well as their interactions with managed elements. The system of
managers must be of low complexity, scalable, portable, secure and
be able to efficiently and effectively accomplish the managerial tasks.
Being able to assign a consistent measure of trust to these systems
is also important. These are the challenges that need to be resolved
by the autonomic computing research field.

Although this research field is about a decade old, the solutions
to certifying autonomic computing systems (ACS), though urgently
needed, have not been considered. Proposed solutions must tackle
the certification problem from the twin angles of the architecture
of the system and its component managers, as well as mechanisms
for deriving quantitative and qualitative measures for the ACS.
These solutions, when implemented and verified will lead to further
acceptance of ACSs.

One of the difficulties associated with certification in this regard
has to do with the inability to achieve a fair comparison between
autonomic systems or elements from two or more vendors, as each
may adopt a different system structure or element architecture. In
order to address this difficulty, an architecture for autonomic systems
and managers that enforces structure but is flexible is required. To that
end, a three-layered architecture referred to as the Intelligent Machine
Design (IMD) is co-opted and technically defined for autonomic
computing managers (AMs). The general form of this architecture
is based on observations of how humans or animals behave in terms
of the way they perceive their immediate environment and effect
changes as a result.

An autonomic computing system will typically consist of manager
and managed elements. These elements must be able to co-exist
and interact gracefully with one another within the system. How-
ever, versatile and standardized mechanisms that should aid proper
management coordination within an autonomic computing system
are nonexistent. Later in this paper, the requirements necessary for
the above are identified, a system that relies solely on standardized
protocols is proposed, and how this system meets each of the
previously identified requirements is discussed.

This paper collates together the findings of a detailed research
project whose roadmap can be found in [1] and more extensive details
in [2].

The rest of this paper is organized as follows; In the next
section, the state of the art as it relates to autonomic manager
(AM) architecture is discussed. Also presented in this section, is an
expression of the Intelligent Machine Design (IMD) architecture for
AMs. Interfaces, event message types, valid configurations, policy
object framework for the IMD are proposed and presented in Sections
IV, V, VI and VII, respectively. A standard structure on which an
ACS can be built upon is proposed and presented in Section IX.
In Section VIII, the requirements for management coordination and
efficient autonomic elements interactions in an ACS are set out. The
solution to each of these requirements is presented in Section X. The
conclusion follows in Section XI.

II. AUTONOMIC MANAGER (AM) ARCHITECTURE

An architectural standard is central to the process of the certifi-
cation of an object. Any architecture that represents an autonomic
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As illustrated in Figure 2, autonomic managers, in the same manner as 

manageability endpoints, provide sensor and effector interfaces for other 

autonomic managers and other components in the distributed infrastructure 

to use. Using sensor and effector interfaces for the distributed infrastructure 

components enables these components to be composed together in a manner 

that is transparent to the managed resources. For example, an orchestrating 

autonomic manager can use the sensor and effector interfaces of resource 

autonomic managers to accomplish its management functions, as illustrated 

previously in Figure 1. This composition is discussed further in Chapter 3, 

“Self-Managing Resources” section.

Even though an autonomic manager is capable of automating the monitor, 

analyze, plan, and execute parts of the loop, IT professionals might delegate 

only portions of the potential automated functions to the autonomic manager. 

In Figure 2, four profiles (monitoring, analyzing, planning, and executing) 

are shown. An administrator might delegate only the monitoring function to 

the autonomic manager, choosing to have the autonomic manager provide 

data and recommended actions that the administrator can process. As a 

result, the autonomic manager would surface notifications to a common 

console for the situations that it recognizes, rather than automating the 

analysis, planning, and execution functions associated with those actions. 

Other delegation choices could allow additional parts of the control loop to 

be automated. 
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Figure 2. Functional details of an autonomic manager
Fig. 1. IBM Autonomic MAPE Architecture [5]

element e.g., an AM, must not be narrowly defined such that it
precludes the ability for the element to evolve or cater for new use-
cases. As noted in [3] and [4], the lack of an open standard is a
challenge in the autonomic computing field. In this section, the most
prevalent of all autonomic element architectures i.e., IBM’s MAPE
architecture is discussed. Drawbacks relating to this architecture are
also discussed, and a certifiable alternative architecture with similar
functionalities is presented.

A. Related Work

The IBM MAPE (Monitor, Analyze, Plan, Execute) architecture is
a well known autonomic computing element architecture [5], and has
been used as a reference for several autonomic computing systems.
Systems that use the MAPE as a reference include; the web service
host system proposed in [6], the self-adaptive service oriented system
in [7] and the LOGO kit for data warehousing [8]. It has also
been implemented in the Open Services Gateway initiative (OSGi)
platform [9], applied to a Mobile Network Resource Management
Architecture and several other projects [10][11].

The architecture consists of four main components which form a
loop, as shown in Figure 1. The first of these components is the
Monitor. Its main duty is to monitor the surrounding environment,
including system resources. The output of this Monitor is used for
making decisions at later stages of the loop. The second component
i.e., the Analyze component, uses a number of algorithms to antici-
pate problems and possibly proffer solutions to these problems. The
Planning component uses the information available to the autonomic
system to choose which policies to execute. The Execution com-
ponent, which is the fourth component, effects the most appropriate
policy/policies chosen by the system. This executed policy may cause
a change in the physical environment e.g., moving the arm of a robot,
or simply pass instructions/information to another element, possibly
an autonomic one. The input to the MAPE architecture comes from
the sensory mechanism, while the effector mechanisms carry out the
dictates of the machine.

While this architecture suffices for the purpose for which it was
designed, it is ill-suited for certification purposes. This architecture
has some limitations. For example, [12] considers it to be too
narrowly defined to apply to some autonomic systems e.g., multi-
agent systems. [13] points out that the loop in the MAPE architecture
is vulnerable to failure, which in turn can precipitate the collapse
of the management system all together. In addition to the above,
there is no consensus as to whether the IBM MAPE architecture is
a concrete architecture or a malleable concept. As a result, there are
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Fig. 2. An Autonomic Computing expression of the IMD

many different MAPE implementation permutations. A discussion of
these divergent implementation views can be found in [1]. The current
lack of a consistent architectural structure for the autonomic manager
hampers the certification process.

Given that autonomic computing systems are biologically inspired,
it follows that the manager architecture should also be similarly
inspired, after all, AMs are supposed to steadily replace the human
operator. This architecture must enforce structure without impeding
innovation and it must allow for the separation of concerns i.e.,
the grouping of components with similar functionalities. This is the
approach taken for the architecture presented in the next section.

B. Intelligent Machine Design (IMD)

The appeal of the Intelligent Machine Design (IMD) architecture
[14] to autonomic computing systems is that it is closely related to the
way intelligent biological systems work. The theory that underpins
this architecture proceeds from the mechanisms by which animals
and humans evaluate and effect changes in an environment, using
their affect and cognitive abilities. Indeed, this architecture has been
suggested as a generic framework on which, autonomic systems can
be built upon [15]. While this architecture is mentioned in some
autonomic computing literature, nothing concrete from a technical
perspective has been achieved relative to IBM’s architecture. Before
describing this architecture in detail, it is necessary to specify what
a Policy Rule is. A Policy Rule is the primary technical mechanism
by which an AM effects changes in its managed environment given a
specific context. A policy rule is made up of policy conditions, policy
actions and other policy data that indicate how a policy condition is
evaluated and how a policy action is to be executed. If the perceived
state of the managed environment corresponds to the condition of a
Policy rule, the AM executes the associated policy action accordingly.
See Section VII for technical details on these Policy objects.

The IMD architecture is made up of three distinct layers i.e.,
Reaction (R1), Routine (R2) and the Reflection (R3) level (see
Figure 2). Each layer is characterized by the following attributes;
the amount of resources consumed, their ability to activate/inhibit
the functionality of a connected layer and their ability to be activated
or inhibited by another layer.

The lowest layer, the Reaction layer, is connected to the sensors (S)
and effecters (E). When it receives a sensory stimulus, it responds
relatively faster than the other two layers. The primary reason for
this is that its internal mechanisms are simple, direct and hardwired
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i.e., it has an automatic response to incoming signals. Technically,
the Reaction layer implements a single policy rule for all received
input signals. However, if the input signal is such that this solitary
policy rule does not suffice, control is handed over to the Routine
layer (R2). The Reaction layer can also be inhibited/activated by the
Routine layer. It consumes the least amount of resources.

The Routine (mid-level) layer is more learned and skilled when
compared to the Reaction layer. It is expected to have access to the
working memory or the Management Information Base (MIB), which
contain a number of policy rules that are executed based on context,
knowledge and self-awareness. As a result, it is comparatively slower
than the Reaction level. Its activities can be activated or inhibited by
the Reflection layer. Its input comes from both the sensory mechanism
and the Reflection layer. Its output goes to the effecter mechanism
and the Reflection layer. When the Routine level is unable to find a
suitable policy rule for an immediate objective, due to ambiguities
between two or more existing policy rules or the lack of a policy
rule thereof, it hands control over to the human administrator or the
Reflection layer.

While the Routine level’s primary objective is to deal with expected
situations whether learned or hardwired, the Reflection level, which
is the highest level, helps the machine deal with deviations from
the norm. The Reflection level is able to deal with abnormal situa-
tions, using a combination of learning technologies (e.g., Artificial
Neural Networks, genetic algorithms), partial reasoning algorithms
(e.g., Fuzzy Logic, Bayesian reasoning), the machine’s knowledge
base, context and self-awareness. Technically, the Reflection Layer’s
ultimate aim, as it relates to autonomic computing systems, is to
create and validate new policies at runtime that will be used at the
Routine level. If the system is able to adapt to an unexpected situation
as a result of the new policy rule, then the rule is stored in the MIB.
This new rule can be called upon if the situation is encountered in
the future. Thus, making a formerly abnormal situation a routine one.
The process of ’reasoning’ out a new policy rule makes the Reflection
layer the largest consumer of computing resources. This also means it
has the slowest response time of all three layers. The Routine layer
is the input source and output destination for the Reflection layer.
The Reflection layer can inhibit/activate the processes of the Routine
layer through new policy rule definitions.

C. The IMD and The Four Cardinal Self-Management Properties

Notice in Figure 2, that all three layers of the IMD are able to
action each of the four ‘cardinal’ autonomic management proper-
ties (self- configuration, healing, optimisation and protection). To
demonstrate how this works, consider an optimization scenario where
limited resources must be allocated between competing requests. In
this scenario, when the number of requests go beyond a certain
threshold then the system is in danger of collapsing e.g., a sudden
build up of service requests, leading to service queue overflow and
thus violation of Service Level Agreements (SLAs). Assume that
the number of requests currently being handled by the system is
near that threshold. On sensing that the threshold is about to be
reached, an autonomic manager (AM) implementing the IMD as
its architecture engages its Reaction layer. The self-optimization
component of the Reaction layer immediately forces the AM to stop
any further allocation of resources to requests. There is little or no
intelligence involved in this action. The Reaction layer then informs
the Routine layer of this action. The Routine layer needs to effect
an action such that the requests with higher priorities (based on the
organizational goals) are met. To do this, the Routine layer looks to
its policy rule database or MIB, to find the most appropriate rule

whose condition fits the context. If an appropriate policy rule that
optimizes the use of the limited resource is found, its associated action
is executed. The execution of this policy rule’s action overrides the
lock placed on the managed system by the Reaction layer. Note that
this Routine layer adopts a more intelligent and fine-grained approach
to solving the optimization problem.

It may be that the Routine layer is unable to find a suitable policy
rule in the policy repository for this specific context. In a case like
this, control is handed over to the Reflection layer. Keep in mind that
the lock implemented by the Reaction layer is still in effect at this
time. The Reflection layer ’deliberates’ on the best combination of
requests that can be granted access to the managed resources, while
still ensuring that the system is stable and organizational goals are
met given the current context. The Reflection layer will be expected
to implement a utility function or an artificial intelligence algorithm
for this optimization process. As soon as a solution is computed a
new policy rule is created and added to the policy repository and
the Routine layer is informed of same. The Routine layer is now at
liberty to effect the new policy rule. Again, as soon as the action
associated with the new rule is executed, the previous lock placed
by the Reaction layer on system resource allocation is removed. The
same principle applies to the other three self-management properties.

Note that the terms ‘the machine’ and ‘IMD’ are synonymous and
are used interchangeably through out this paper.

III. AN AUTONOMIC APPLICATION EXAMPLE

An autonomic application example is used to illustrate and put into
context some of the technical details presented in this work. For this
purpose, an application called Path Finder (PF) in which robots are
guided by AMs to and fro between a base and a target on a gridded
map. The objective of this application is to have robots accomplish
as many round trips as is possible between the base and the target
within a considered time. The robots can be moved once on a clock
tick in one of four directions on the map i.e., Top, Bottom, Left or
Right square. To carry out this task, the AM must deduce, through
its sensory mechanism (S), how many of the four squares constitute
a valid next move for the robot, given its current position. Using its
artificial intelligence algorithm, the AM decides which of the valid or
available squares is best for the robot’s next move. When the decision
is made, the effecter mechanism (E) moves the robot, accordingly.
In autonomic parlance, the robot is the Managed Resource/Element
while the AM is the Manager Element.

IV. MACHINE INTERFACES

Four distinct types of interfaces are proposed for the IMD in this
work. These interfaces are shown in Figure 3 and are labeled I-1 -
I-4. Each interface is discussed in terms of the kind and structure of
information it allows through.

A. The I-1 Interface

The first interface, I-1 connects the Reaction and Routine layers to
the sensory input (S) of the machine. Within this work, information
that comes through the sensory interface i.e., I-1 is referred to as
a ‘Context’. While it would be expected that different autonomic
applications would implement different Contexts, it is necessary to
describe this input information in a standardized way. The reason
for this is that as long as an AM complies with the standard, it
will always be able to interpret a Context, irrespective of the target
application. The IETF standard, RFC 2252 [16] is the means by which
the structure of a Context is described. RFC 2252 provides a standard
basis for which attributes of different data types are defined. Multiple
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objectclass ( 2.3.6.1.4.1.1.6863.6.1.909
NAME ‘pfSensory’ SUP Top STRUCTURAL
MUST (robotID $ topDirection $ bottomDirection $
rightDirection $ leftDirection) )

Fig. 4. RFC 2252 Compliant Object class for the PF I-1

attributes are grouped together under a structure called an object class.
This RFC also mandates that all attributes and object classes are
globally unique. This restriction ensures that no two applications will
have the same Context. The object class in Figure 4 is an example
of how the structure for the Context of the PF application described
in Section III would look like.

In the figure, 2.3.6.1.4.1.1.6863.6.1.909 is a globally unique iden-
tifier for the object class called an Object ID (OID) and is assigned
by the Internet Assigned Numbers Authority (IANA). Note that the
OID in the figure above is fictitious. The name of the object class
is pfSensory and it too must be globally unique. SUP Top means
that the ’pfSensory’ class inherits the properties of another object
class called Top. The Top object class is the parent class of all object
classes defined in RFC 2252 and all sub-classes directly or indirectly
inherit its properties. The STRUCTURAL Keyword simply means
that pfSensory can be used as a stand-alone class. The pfSensory
class consists of five mandatory attributes i.e., robotID, topDirection,
bottomDirection, rightDirection, leftDirection. The robotID attribute
is an integer value that contains the unique identifier of the robot. The
other four attributes of this class i.e., topDirection, bottomDirection,
rightDirection and leftDirection are Boolean values that are either
True or False depending on whether a move to the Top, Bottom,
Right or Left Square is valid, respectively. These attributes like the
pfSensory object class must be defined in accordance with the rules
set out in RFC 2252. The structure of these attributes will not be
presented here. The interested reader should consult the RFC on how
to go about this.

The I-1 interface of AMs targeted at the PF application will only
accept input information or Contexts that are of the type pfSensory.
With an information object class like this, multiple vendors can design
AMs for this application without having to worry about compatibility
issues. In addition, the contents of the pfSensory object class will have
a globally consistent meaning, as it is compliant with the RFC 2252
standard.

objectclass ( 2.3.6.1.4.1.1.6863.6.1.910
NAME ‘pfEffecter’ SUP Top STRUCTURAL
MAY (topDirection $ bottomDirection
$ rightDirection $ leftDirection) )

Fig. 5. RFC 2252 Compliant Object class for the I-2

B. The I-2 Interface

Interface I-2, is used to instrument the physical environment or
effect a change on the managed element. The instructions that lead to
changes should be contained within the action code of the appropriate
executing policy rule. The I-2 interface on the other hand, sits
between the AM and its effecter (E) mechanism, as shown in Figure
3. The information allowed on this interface must also be RFC 2252
compliant. An example of an object class for the I-2 interface for
the PF is shown in Figure 5. This class consists of four optional
boolean attributes viz; topDirection, bottomDirection, rightDirection
and leftDirection. The MAY keyword in Figure 5 is what indicates
that these attributes are optional. The AM creates an instance of this
class and inserts the direction the robot is to be moved. This class
instance is passed to the Effecter (E), which extracts the direction
information and moves the robot in that direction accordingly. If more
than one direction is specified in pfEffecter class instance, the effecter
discards the information and the robot is not moved.

C. The I-3 Interface

The next interface, I-3 is used for communication between layers
of the IMD. Communication between layers is accomplished using
a Machine Event Message (MEM). The exact technical details of
the MEM are presented Section V. Recall from Section II-B, that a
higher layer can modulate the response of a lower layer to an input
stimulus or Context. This is accomplished through the I-3 interface.
Suffice it to say that this interface will only accept information that
complies with the defined structure of the MEM.

D. The I-4 Interface

Before describing the I-4 interface, it is instructive to briefly discuss
the Lightweight Directory Access Protocol (LDAP) shown in Figure
3. In an autonomic computing system (ACS) and indeed any system,
there is a need to have the ability to store and retrieve data information
relating to management activities. Particularly, for ACSs, one needs
to be able to store information relating to functional components
within the autonomic domain e.g., managers, managed elements,
policy objects, operational states of active elements, activity logs etc.
All of the above will require a management information base (MIB).
In this project, the Lightweight Directory Access Protocol (LDAP)
defined in RFC 4510 [17] is the mechanism by which the MIB is
realized. The LDAP is both a data storage/retrieval protocol as well
as a communication protocol. As a data storage /retrieval protocol, it
acts as a front-end to file storage systems that conform to the .X500
directory services. As a communication protocol, it runs atop the
TCP/IP protocol stack. This provides an efficient, robust and secure
link between any two autonomic elements.

The machine, therefore, uses its I-4 interface to communicate with
its LDAP compliant working memory or MIB and to communicate
with external components, including a system-wide LDAP store,
where available. As a result, only LDAP compliant operations are
allowed on this interface. These operations are divided into three
groups as delineated below;

1) Interrogation operations: Search and Compare.
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2) Update operations: Add, Delete, Modify and Rename.
3) Authentication and control operations: Bind, Unbind and

Abandon.
Authentication and control operations are used to set up and tear

down administrative and security relationships between autonomic
elements. The retrieval of relevant information is based on the
functionalities exposed by the Interrogation operations. Finally, the
Update operations is used to carry out functions for which they are
appropriately named.

V. MACHINE EVENT MESSAGES

Messages exchanged between layers are called machine event
messages (MEM) and are four-tuple objects that take the general
form;

MEM =


eventType
eventID
policyRuleDNList
Context

The first component, eventType, of a MEM identifies what type
of message a layer is signalling. Four types of message events are
identified for this machine and they are;

eventType =


contextUknown
contextAmbiguity
contextActive
contextResolved

The purpose of each of these four event types are described later.
The eventID is a unique integer identifier for the MEM and the

‘policyRuleDNList’ is a list that contains the identities or Distin-
guished Names (DNs) of policy rules. Context is the information
retrieved from the I-1 interface (see Section IV-A). The valid message
exchange process between layers of the machine is described using
Figures 6, 7 and 8.

Recall from Section II-B that (1) when the Reaction Layer (R1) is
unable to deal with an incoming Context or signal, it hands control
over to the Routine layer (R2) and (2) that R2 can regulate R1’s
response to incoming Context. The process is accomplished using
the message sequence chart shown in Figure 6. If the R1 layer can
handle an incoming Context, it simply executes the action contained
within its singular policy rule, otherwise, it creates an MEM. The
event message will have a unique integer value inserted into the
eventID field. The eventType of the MEM is set to contextUnknown.
The incoming Context is inserted into the Context field of this
MEM. The policyRuleDNList is left empty. R1 hands control over
to R2 by sending this newly created MEM to the R2 layer through
the connecting I-3 interface (see Section IV-C). On receipt of the
MEM, the R2 layer retrieves the Context and uses this to search for
the most suitable policy rule from its policy repository i.e., LDAP

R1 R2

ContextUknown

ContextActive

R2 R3

ContextUknown

ContextActive

R2 R3

ContextAmbiguity

ContextResolved

Fig. 7. Machine Event Message Exchange II
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ContextUknown

ContextActive

R2 R3

ContextUknown

ContextActive

R2 R3

ContextAmbiguity

ContextResolved

Fig. 8. Machine Event Message Exchange III

store. If found, the dictates of the action associated with the policy
rule is passed to the effecter for execution. Note that the R2 layer
will reject a MEM from R1 that contains an eventType other than
contextUnknown. In order to modulate the response of the R1 layer
to incoming signals, the R2 layer replaces the policy rule currently
active in the R1 layer. To do this, R2 creates an MEM with the
evenType set to contextActive and the name of the new active policy
rule is inserted into the policyRuleDNList. As soon as the R1 layer
receives this event message, it replaces its current active rule with
that contained in the received policyRuleDNList.

On receiving a Context directly from the Sensory input (S) through
the I-1 interface or from a MEM created by R1, R2 may be unable to
find a policy rule in the repository that matches the received Context.
As discussed in Section II-B, in order to resolve this problem R2
must engage R3. To this end, R2 creates a MEM with its eventType
set to contextUknown and the context field set to the received Context.
Let this newly created MEM be called MEM1. This event message is
transmitted to R3 through the I-3 interface. R3, using its implemented
artificial intelligence algorithm, will attempt to create a new policy
rule for this unknown Context. If successful, the new policy rule is
written to the repository through R3’s I-4 interface. A new MEM with
eventType set to contextActive is created and the distinguished name
(DN) of the new policy rule is added to the policyRuleDNList. Let this
MEM be called MEM2. Since MEM2 is a response to MEM1, both
will share a similar eventID field value. When R2 receives MEM2 , it
checks the eventID field to make sure it is a response to a previously
sent MEM. If it is not, MEM2 is discarded and no action is taken
for that Context. If the eventID field is a match to the eventID of
a previously sent MEM, the policy rule in the policyRuleDNList is
extracted and its associated action executed by the effecter (E) for
that Context. If this Context is encountered in the future, there will
be no need for R2 to reengage R3, as a matching policy rule has
already been created previously. The message sequence for the above
is depicted in Figure 7.

Consider a scenario where R2 finds that two or more policy rules
in the repository match a particular Context. This uncertainty must
be resolved by R3 (see Section II-B), this interaction is illustrated
in Figure 8. In an instance like this, R2 creates MEM3 with
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Fig. 9. Configuration I (R1 � ∅ � ∅)

eventType set to ContextAmbiguity and inserts the Context into the
Context field of MME3. The DN of all rules that match the Context
are added to the policyRuleDNList of MEM3. When R3 receives
MEM3, it attempts to resolve the policy rule conflict. If it does, it
generates MEM4, sets the eventType to ContextResolved and inserts
the eventID of MEM3 into that of MEM4. The preferred policy rule
in MEM3’s policyRuleDNList is added to the policyRuleDNList of
MEM4. MEM4 is sent to R2. On receipt, R2 will attempt to match the
eventID of MEM4 to that of MEM3. If they are not a match, MEM4
is discarded. Otherwise, R2 executes the action contained within the
policy rule in MEM4’s policyRuleDNList. The interactions shown in
Figures 7 and 8 are the means by which R3 regulates the activities
of R2.

VI. MACHINE CONFIGURATIONS

There may be instances where a targeted autonomic application
domain can do without the functionality of any one of the three
layers of the IMD, for example, the R1 layer may or may not
be needed. In another application example, the R3 layer may not
be needed, if the targeted application does not require an artificial
intelligence algorithm to determine behaviour for new or unexpected
situations. As a result, the structure of the IMD lends itself to several
layer configurations, five to be precise, depending on the autonomic
application. These five configurations are governed by two rules.

1) Rule 1: A configuration must have at least an R1 or R2
layer. Observe from Figure 2 that only the Reaction (R1) and
Routine (R2) layers have access to the sensor and effecter
mechanisms. These are the means by which an IMD-compliant
AM perceives and effects changes on the managed system.
Without at least one of these two layers, the AM is ineffective.

2) Rule 2: This rule has to do with the presence of the R3 layer. If
the R3 layer is present, then the R2 layer must also be present.
Recall from Sections II-B and V, that the R3 layer resolves
conflicts if two or more policy rules match a particular Context.
Only R2 is able to detect rule conflicts, as R1 only implements
a single policy rule.

Based on these two rules, the five valid machine configurations of
the IMD and their allowed event message sequences are presented in
Sections VI-A-VI-E.

A. Machine Configuration I

In the first valid configuration (shown in Figure 9), R2 and R3
are not in commission, meaning that R1 is the only active layer,
giving rise to the R1 � ∅ � ∅ configuration. Where � represents
the bidirectional I-3 interfaces that connect the layers (see Figure 3).
R1 receives input from the sensory object (S). This input forms the
current Context. If the conditions associated with the singular policy
rule in R1 match this Context, R1 passes the associated policy actions
to the effecter object (E) for execution. If not, control is passed to
the human operator of the application.
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Fig. 10. Message Sequence Chart (Config. I)

The possible message sequence for the machine when the human
operator is not involved is shown in Figure 10and represented by
Expression (1).

(1) 7→ (2) (1)

The symbol 7→ in Expression (1) indicates the execution sequence
from the sensing of a Context to the effecting of a change in the
managed environment.

B. Machine Configuration II

Configuration II (Figure 11) i.e., R1 � R2 � ∅, assumes that
the R3 layer is not needed for the targeted application domain. There
are two possible message sequences for this configuration. These are
shown in Expressions (2) and (3) and depicted in Figure 12.
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Fig. 11. Configuration II (R1 � R2 � ∅)

(1) 7→ (2) (2)

(1) 7→ (3) 7→ (4) (3)
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Fig. 12. Message Sequence Chart (Config. II)

Notice that Expression (2) corresponds to Expression (1) in Sec-
tion VI-A. This indicates that Configuration II is an extension of
Configuration I. If possible, the portion circled and labeled ‘A’ in
Figure 11 should be implemented as a single self-contained function.
As is shown later, this function is reusable when a machine with
this configuration needs to be extended. The dotted arrows shown in
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Figures 11 and 12 represent instances where R2 changes the policy
rule implemented in R1.

C. Machine Configuration III

All three layers of the machine in Configuration III are active
as shown in Figure 13. This configuration allows for three different
message sequence depending on the Context (see Expressions (4),
(5), (6) and Figure 14).
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Fig. 13. Configuration III (R1 � R2 � R3)

(1) 7→ (2) (4)

(1) 7→ (3) 7→ (4) (5)

(1) 7→ (3) 7→ (6) 7→ (7) 7→ (4) (6)

Observe that the message sequence represented by Expressions (4)
and (5) are also present in the Expressions of Configuration II. Again,
this is a concrete expression of the fact that Configuration III simply
an extension of Configuration II.
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Fig. 14. Message Sequence Chart (Config. III)

Still on the theme of extensibility, notice that Figure 13 also has
a portion circled ‘A’, as did Figure 11 of Configuration II. If for
any reason a machine with Configuration II needs to be extended
to Configuration III, the self-contained function that implements the
circled portion ‘A’ of Figures 11 and 13 need not be rewritten, as it
can be used as is. In a similar vain, the portion circled and labeled ‘B’
in Figure 13 should also be implemented in a single self-contained
function, as it can be reused when a need arises to transition from
Configuration III to Configuration V.

D. Machine Configuration IV

In configuration IV, only the R2 layer is active as shown in
Figure 15. This means that as soon as a Context is sensed, the
matching policy rule is found and its associated policy action is
passed to the Effecter (E). The only message sequence allowed for

this configuration is straight forward as laid out in Figure 16 and
Expression (7).
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E. Machine Configuration V

From Figures 17 and 18 and Expressions (8) and (9), it is clear
that Configuration IV is a subset of Configuration V.
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(3) 7→ (4) (8)

(3) 7→ (6) 7→ (7) 7→ (4) (9)
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This configuration is for application instances where the R1 layer
may not be needed. Therefore, like Configuration IV, there is no
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need to attempt to change the policy rule implemented in R1. The
circled portion labeled ‘B’ in Figure 13 of Configuration III is also
present in Figure 17. As discussed in Section VI-C, implementing
the portion labeled ‘B’ as a self-contained function eases the process
of extensibility, if required at some future time.

VII. MACHINE POLICY OBJECT FRAMEWORK

In Section II-B, policy rules, conditions and actions for the AM
were introduced but without their proper technical structures. In
this section, these policy objects are discussed from a technical
perspective. The Policy Core Information Model (PCIM) in RFC
3060 [18] and its update defined in RFC 3460 [19] is the primary
framework by which an IMD- compliant AM and by extension an
ACS are able to process a received Context, select the best action as
a result and aid some system management functions.

The main appeal of the PCIM framework is that it is well
established, in that it is standardized and used in a number of
computing management related fields, for example the management
of computer networks. Apart from the fact that this framework
outlines the structures by which policy objects are defined, it also
enforces type safety, which allows for ease of parsing and automation.
And this it does without restricting problem-specific applicability. The
PCIM framework is able to achieve all of the above by defining
the processes and associated schemas by which already defined
policy object classes are to be encapsulated, extended or reused. The
PCIM defines a number of policy objects but only four of these
i.e., policy rules, policy conditions, policy actions and policy role
collection are relevant to this work. Each of these policy objects
implements an RFC 2252 compliant object class and consists of a
number of similarly compliant object attributes. The object classes
together with their associated attributes govern how specific policy
objects are interpreted when read and/or executed. The classes and
attributes of the four relevant policy objects are discussed further in
the subsections that follow.

Note that this section is not meant to be an exhaustive discussion
of the PCIM framework and its dependencies, as this information
spans more than 10 Internet Engineering Task Force (IETF) RFCs or
standards. However, it is detailed enough to support the core ideas
discussed, leaving out extraneous information. In addition, when a
policy object is introduced, the containing RFC is mentioned along
side.

A. Policy Rule

A policy rule object is the means by which a condition or set of
conditions is/are associated with an action or set of actions. According
to RFC 3060/3460, it is not necessary for a policy rule to have an
associated condition or action. However, in this work, all policy rules
have conditions and corresponding actions. A policy rule is realized
through the object class called PolicyRule. This class consists of
10 optional attributes. Only seven of these attributes are relevant to
this work and they are discussed here. The first two attributes of
the PolicyRule class to be dealt with are the ConditionList and the
ActionList. The ConditionList contains the unique identities of the
conditions that are to be evaluated when the policy rule is invoked.
The ActionList, likewise, contains the unique identifiers of actions
that would be executed if all the associated conditions evaluate to
true. An attribute called the ConditionListType determines how the
conditions of a policy rule are to be evaluated. This attribute specifies
two types of condition evaluation procedures, namely; Disjunctive
Normal Form (DNF) and Conjunctive Normal Form (CNF). In order
to describe how the DNF and CNF apply to condition evaluation, it is

necessary to state here that one or more conditions can be assembled
under a single group number and a policy rule may be associated
with more than one group of conditions. Assume that an instance of
the policy rule class exists, such that it is made up of three groups
of conditions. The first, i.e., Group 1 contains conditions C1 and C2,
Group 2 contains C3 and C4 and Group 3 contains C5 and C6. If the
ConditionListType is set to DNF (which is the default), the conditions
are evaluated thus;

(C1 AND C2) OR (C3 AND C4) OR (C5 AND C6)

If ConditionListType = CNF, then

(C1 OR C2) AND (C3 OR C4) AND (C5 OR C6)

The PolicyRule class has an attribute called Enabled. This attribute
can take one of three values i.e., enabled, disabled and enabledForDe-
bug. If this attribute is set to enabled and if the associated conditions
evaluate to true, the actions are executed. If it is set to disabled, the
conditions are not evaluated and actions not executed. Lastly, if it is
set to enabledForDebug, the conditions are evaluated but the actions
are not executed.

pcimRuleSequencedActions attribute contains a list of integers that
indicate the relative execution order of the policy actions associated
with a PolicyRule. The values in this list are obtained from the
ActionOrder attribute of the associated policy actions (see Section
VII-C). The Mandatory attribute of the PolicyRule object class
specifies the order, in which the policy actions associated with a
policy rule are to be executed or interpreted. The allowed values for
the Mandatory attribute are mandatory, recommended and dontCare.
If Mandatory = mandatory, then the action order must be enforced,
otherwise none of the actions should be executed. if Mandatory =
recommended, the machine will attempt to execute the actions based
on their order. If this fails, any other order may be attempted. If
Mandatory = dontCare, the actions are executed in any order on the
first try. In PCIM, managed elements can be grouped under a single
named role. The name of this role can be added to a policy rule’s
policyRoles attribute. Every time this policy rule executes an action,
the action impacts all managed elements pointed to by the content
of its policyRoles attribute. The last attribute of the PolicyRule class
discussed here is the PolicyRuleName. This attribute should ordinarily
uniquely identify an instance of a policy rule object.

To store a defined policy rule instance in an LDAP store or MIB
(see Section IV-D), the rule instance must follow the schema structure
pcelsRuleInstance defined in RFCs 4104 [20] and 3703 [21]. These
RFCs list this schema’s globally unique identifier.

B. Policy Condition

A policy condition is defined by its object class called PolicyCon-
dition. This is an abstract class that cannot be instantiated directly. It
consists of four sub-classes, i.e., PolicyTimePeriodCondition , Simple-
PolicyCondition, CompoundPolicyCondition and VendorPolicyCondi-
tion. All of these sub-classes, save the last one are standardized.
The VendorPolicyCondition is of most relevance to this work. This
sub-class was created to allow for the definition of domain specific
conditions that can be associated with policy rules. In other words,
an instance of the PolicyCondition object can be applied to a vendor
specific device through the VendorPolicyCondition sub-class.

According to RFC 4104 and 3703, creating a vendor specific
condition and associating it with a policy rule is a four-step process.
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1) First, the vendor must define the structure and interpretation of
the input signal from the device. The defined structure of the
signal is based on RFC 2252.

2) A schema for the vendor specific policy condition and its
associated attributes must be defined according RFC 2252.

3) The defined vendor specific condition must then be coupled
with an instance of what is called a policy rule association
class.

4) The unique identifier of the instance of the association class is
added to the policy rule’s ConditionList attribute described in
Section VII-A.

The PF application discussed in Section III is used to illustrate
this four-step process. Step 1 has already been dealt with for the PF
application in Section IV-A.

objectclass ( 2.3.6.1.4.1.1.6863.6.1.911
NAME ‘pfCondition’
SUP pcimConditionVendorAuxClass AUXILIARY
MUST (isActive $ isValidMove $ topDirection
$ bottomDirection $ rightDirection $ leftDirection) )

Fig. 19. RFC 2252 Compliant PF Vendor Specific condition class

The second step in this process relates to defining the actual vendor
policy condition. The schema for the vendor specific condition for
the PF application is shown in Figure 19. From the figure it can be
seen that the pfCondition class is derived from the pcimCondition-
VendorAuxClass class, which is defined in RFC 3703. This vendor
class has 7 attributes. The isActive attribute checks that the robot
has been instantiated and is currently active. This attribute is always
set to True. Attribute isValidMove verifies that the robot has not been
moved on the current clock tick. Recall that a robot is moved at
most once at the tick of the clock. The isValidMove attribute is also
always set to True. The topDirection, bottomDirection, rightDirection
and leftDirection attributes are similar to those discussed in Section
IV-A. The AUXILIARY keyword indicates that the pfCondition class
is not a stand-alone class and must be coupled with another class,
which must be STRUCTURAL (see Section IV-A). In other words,
its identity is drawn from the Structural class. This is the basis for
Step 3 discussed later.

Assume that an AM maintains two variables for each robot i.e.,
rActive and rMoved. The rActive variable indicates the active state of
the robot and the variable rMoved is either True or False depending
on whether the robot has been moved in the current clock tick.
Let iSensory be an instance of the pfSensory class (see Section
IV-A) containing current information regarding a robot and its valid
positions for the next move. An example condition evaluation code
within an AM is shown in Figure 20.

isActive == rActive AND isValidMove == rMoved
AND (topDirection == iSensory.topDirection OR
bottomDirection == iSensory.bottomDirection OR
rightDirection == iSensory.rightDirection OR
leftDirection == iSensory. leftDirection)

Fig. 20. Condition evaluation code example

If the condition evaluates to True then all policy rules with
matching conditions are equally applicable to the extant Context.

In the third step, the AUXILIARY pfCondition class must be
coupled with a STRUCTURAL class called pcelsConditionAssociation

class (as explained above). pcelsConditionAssociation is defined in
RFC 4104 and its schema is shown in Figure 21.

objectclass ( 1.3.6.1.1.9.1.9
NAME ’pcelsConditionAssociation’
SUP pcimRuleConditionAssociation STRUCTURAL
MUST ( pcimConditionGroupNumber
$ pcimConditionNegated )
MAY ( pcimConditionName $ pcimConditionDN ) )

Fig. 21. RFC 2252 Compliant pcelsConditionAssociation class

The attribute pcimConditionGroupNumber is the group number to
which the condition belongs. The pcimConditionNegated attribute
indicates whether the condition should be negated before it is
evaluated. A condition may have a condition name assigned to the
attribute pcimConditionName, hence the use of the MAY keyword.
Apart from the condition name, a DN or Distinguished Name may
also identify the defined condition. The DN is assigned to the attribute
pcimConditionDN. Coupling an AUXILIARY class to a STRUC-
TURAL class is necessary because an AUXILIARY class cannot be
instantiated directly. When a STRUCTURAL class is instantiated,
the attached AUXILIARY class is also instantiated but indirectly. By
coupling the defined pfCondition to the pcelsConditionAssociation
class, the attributes of the former are included with the attributes of
the latter. A machine reading this condition instance sees only the
pcelsConditionAssociation class and not the pfCondition. However,
due to coupling the machine is able to read the attributes of the
pfCondition object class.

In the fourth and final step, the DN of the instance of the coupled
pcelsConditionAssociation is added to the ConditionList attribute of
an instance of a PolicyRule class.

C. Policy Action

The creation of a vendor-specific policy action object class follows
the same four-step process used to create and associate a policy
condition to a policy rule. The first step in this case, is to create
an object class by which information going to the effecter through
the I-2 interface must be an instance of. This was done for the PF
application in Section IV-B. In the next step, the PF vendor policy
action AUXILIARY object class has to be specified. An example is
shown in Figure 22.

objectclass ( 2.3.6.1.4.1.1.6863.6.1.912
NAME ‘pfAction’
SUP pcimActionAuxClass AUXILIARY
MUST functionID )

Fig. 22. 2252 Compliant PF Vendor Specific action class

It consists of a compulsory solitary attribute called functionID and
the class is derived from the pcimActionAuxClass defined in RFC
3703. This functionID attribute is of data type string and it points
to the function that creates an instance of the pfEffecter object class
defined in Section IV-B. Once created, the instance of the pfEffecter
class is passed to the effecter (E), which then moves the robot in the
indicated direction.

For the third step, the AUXILIARY pfAction class is attached to
the STRUCTURAL pcelsActionAssociation defined in RFC 4104. The
compulsory pcimActionOrder attribute shown in Figure 23 indicates
the relative execution order of a policy action, in a policy rule
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objectclass ( 1.3.6.1.1.6.1.10
NAME ’pcelsActionAssociation’
SUP pcimRuleActionAssociation STRUCTURAL
MUST ( pcimActionOrder )
MAY ( pcimActionName $ pcimActionDN ) )

Fig. 23. RFC 2252 Compliant pcelsActionAssociation class

that consists of more than one policy action. The optional attributes
pcimActionName and pcimActionDN hold the name of the action and
the action’s Distinguished Name (DN), respectively.

In the final step, the DN of the coupled instance of the pcelsAc-
tionAssociation is added to the ActionList attribute of an instance
of the policy rule object. When all the conditions associated with a
policy rule evaluate to true, the associated policy action is retrieved
and the content of its functionID attribute is passed to the effecter
for execution.

D. Policy Role Collection

Unlike the other three policy objects discussed previously, the
Policy Role Collection object is simply an administrative unit that
groups a number of related managed elements on which a single rule
is applicable. Note that a named Policy Role Collection instance is
associated to a specific policy rule using the policyRoles attribute
of that rule (see Section VII-A). In other words, the policyRoles
attribute contains the name of an instance of a Role Collection. If
the conditions associated with a policy rule evaluate to true, then
the associated policy actions are applied to all managed elements
pointed to by the policyRoles attribute of the rule. The Policy Role
Collection object is schematically represented by the object class
pcelsRoleCollection defined in RFC 4104.

VIII. REQUIREMENTS FOR MANAGEMENT COORDINATION IN

ACSS

As a testament to the need for the ability to coordinate and manage
autonomic element interactions, autonomic computing literature is
replete with instances or scenarios where several autonomic elements
must interact to achieve a common goal. In [22], the autonomic
managers communicate indirectly with one another using the system
variables repository. If a manager were to fail, other managers reading
this repository take over the responsibilities of the failed one. Other
research works take a more direct approach to autonomic manager
interaction. In [23] and [24], the communication between managers is
peer-to-peer, while [25], [26], [27], [28] and [29] adopt a hierarchical
system for manager interactions. These works either lack a formal
definition of the mechanisms by which these autonomic managers
interact, or where defined, these mechanisms were highly specific
to the system in question, thus preventing wide applicability and
reusability.

Notwithstanding the lack of a formal framework that addresses
issues relating to autonomic element interoperability, attempts have
been made to specify certain requirements that should be met if
interoperability is to be made possible. For example, [30] argues
that the mechanisms that define interoperability between autonomic
elements must be reusable to limit complexities i.e., it must be
generic enough to capture all communications across the board.
[3] mentions the need for a name service registry for autonomic
elements, a system interaction broker and a negotiator as necessary
components for autonomic element interaction. Also required is a
need for standardized communication interfaces between autonomic

elements to ensure interactions are well documented and secure [31],
[12]. Based on some of the information contained in these works, the
following eight requirements are proposed for effective management
coordination and element interaction in ACSs;

1) Administrative relationships: A means to establish proper
administrative relationships should exist. This way the sphere
of influence of autonomic managers is clearly defined. This
requirement is necessary to solve problems associated with
operational conflicts. Also included within this requirement, is
the need to define clear procedures for security relationships
between elements in an ACS.

2) Conflict Resolution Mechanism: A conflict resolution mech-
anism must exist if two or more managers are able to simulta-
neously effect changes on the same resource.

3) Monitoring Autonomic Elements: A means must exist to
query the internal state of an autonomic element. This is taken
for granted when an AM might inquire as to the current state
of an ME (e.g., start, stop and resume). Nevertheless, it may
be necessary for an AM determine whether another AM is in
a suitable operational state to allow for element interaction.

4) Grant and Request Services: For Requirement 3 to be pos-
sible, a mechanism for requesting and granting services must
exist. For instance, an AM might need to understand the context
in which a peer AM took an action. Requesting contextual
information is within the remit of this requirement.

5) Remote Policy Object Communication: Following from Re-
quirement 5, queries and associated responses must be transpar-
ent, regardless of the relative physical location of the AMs and
MEs. In this case, an appropriate standardized communication
protocol must exist to satisfy this requirement.

6) Policy Object sharing: If two or more AMs implement the
same policy rule or if two or more MEs are instructed using
the same policies, then an administrative mechanism (e.g., a
well defined policy repository) for policy sharing should exist.

7) A Policy Rule Selection Mechanism: A structure to support
the selection of the best policy for a given context should be
available to a multi-policy system.

8) Low complexity and Reusability: Finally, the framework must
be reusable across a broad spectrum of autonomic application
domains without increasing its complexity.

The ways in which these requirements are met by the technical
proposals in this work are presented in Section X.

IX. A SYSTEM ARCHITECTURE FOR ACSS

It is necessary to describe how the structure and build of an
autonomic computing system (ACS) is approached in this work.
The mechanisms discussed herein contribute to the solutions for the
management coordination requirements set out in the last section.

In addition to the LDAP being the basis for an MIB (see Section
IV-D), it is also the structure on which autonomic computing elements
within an administrative domain are brought together to form an ACS.
The mechanisms of the LDAP that provide for the core structure of
the system, that ensure data integrity, security and availability are
discussed here.

It may be noteworthy to state here that as the LDAP is an IETF
standard, there are several implementations available. However, for
this project, the openLDAP platform is the preferred choice. The
reason for this is that in addition to being able to run on multiple
operating systems, it is free, open source and implements a non-
propriety license.
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o= uniGRE

dc = acDomain

dc = acElements

ou = acManagers ou = acManagedElements

ou = AM1 ou = AM2

ou = policyObjects ou = opInfo

ou = policyObjects
ou = ME2ou = ME1

ou = opLogs

ou: organizational unit

o: organization dc: domain component

ou = opState

ME: Managed Element

AM: Autonomic Manager

Fig. 24. Example DIT for an Autonomic Computing System

A. Core Structure

The LDAP stores data in a structure referred to as the Directory
Information Tree (DIT). An example DIT implemented in this project
is shown in Figure 24, with branches in Figures 25 and 26. At the root
of the tree is o=uniGre. The uniGre (or University of Greenwich)
component of this root entry is the name of the organization that
owns the directory. The o component of this root entry is the name
of the object class that defines the rules governing the naming of
organizations in a DIT. This object class is defined in RFC 2256
[32]. Put more succinctly, the entry ’o=uniGre’ means that the name
of the organization is uniGre and this name conforms to the o object
class.

At the next level of the DIT is the name of the domain within the
organization i.e., acDomain, which stands for autonomic computing
domain. The domain name conforms to the domain component (dc)
object class defined in RFC 2247 [33]. The acDomain has a single
branch called acElements. The acElements domain is split between
autonomic computing managers and managed elements. These two
branches conform to the organizational unit (ou) object class defined
in RFC 2256. The ou object is a container that holds a number of
other object classes. All managed devices in the organization are
placed under the acManagedElements organizational unit. Each man-
aged device e.g., ME1, ME2 contain a branch for storing operational
logs (opLogs) and operational state (opState).

In a similar manner, all autonomic computing managers e.g., AM1,
AM2 in the organization are placed under the acManagers branch of
the acElements domain. From Figure 25, it can be seen that each
manager has its own repository of policy objects that are applicable
to the specific manager. A unit for storing operational information is
also present.

As noted previously the policyObjects organizational unit consists
of policy rules, conditions and actions. In Figure 25, under the
policyRules branch are two rules named PR0 and PR1. Each rule
is identified by its pcimRuleName attribute. Recall from Section
VII-A, that this is an attribute of the pcelsRuleInstance object
class. Based on the above it can be inferred that all policy rules
within the policyObjects branch of an autonomic manager must
conform to the pcelsRuleInstance schema definition. Each policy
condition under the policyConditions branch of Figure 25 must
conform to the pcimRuleConditionAssociation object class definition,
as its pcimConditionGroupNumber attribute is the basis for which
policy conditions are identified (see Section VII-B). The same is

ou = AM1

ou = policyObjects

ou = policyRules

ou = policyConditions

ou = policyActions

pcimRuleName = PR0 pcimRuleName = PR1 pcimActionName = PA0 pcimActionName = PA1

pcimConditionGroupNumber = 0 pcimConditionGroupNumber = 1

ou = AM1

ou = opInfo

ou = opLogs ou = opState

timeStamp  = 1301893211 
timeStamp = 1301893100 timeStamp = 1301893200 

timeStamp  = 1301893200 

ou: organizational unit

PR: Policy Rule

PA: Policy Action

ou: organizational unit

Fig. 25. AM1 Policy Object Branch

ou = AM1

ou = policyObjects

ou = policyRules

ou = policyConditions

ou = policyActions

pcimRuleName = PR0 pcimRuleName = PR1 pcimActionName = PA0 pcimActionName = PA1

pcimConditionGroupNumber = 0 pcimConditionGroupNumber = 1

ou = AM1

ou = opInfo

ou = opLogs ou = opState

timeStamp  = 1301893211 
timeStamp = 1301893100 timeStamp = 1301893200 

timeStamp  = 1301893200 

ou: organizational unit

PR: Policy Rule

PA: Policy Action

ou: organizational unit

Fig. 26. AM1 Operational Information (opInfo) Branch

true for the policyAction branch, only this time, any entry under this
organizational unit must conform to the pcimRuleActionAssociation
schema, as its pcimActionName attribute is the means by which policy
actions are stored and accessed (see Section VII-C). Observe from
Figure 24, that the acManagers ou also has a branch for policy
objects i.e., policy rules, conditions and actions that have manager-
wide applicability. In other words, all managers in the domain can
share the policy objects under this branch.

Each manager also has a unit for entries relating to operational
information (opInfo). In the DIT implemented in this project the
opInfo consists of the state of the machine (opState) at points in time,
as well as information relating to changes made to devices by the AM
(opLogs). In Figure 26, the entries in operational logs (opLogs) and
operational state (opState) organizational units are both identified by
their individual UNIX time stamp (or Posix time).

Entries or information in a DIT are identified by their distinguished
names or DN. For instance, the unique identifier for policy rule PR1
within the organizational structure is;

DN: pcimRuleName=PR1, ou=policyRules,
ou=policyObjects, ou=AM1, ou=acManagers,
dc=acElements, dc=acDomain

Fig. 27. Unique identifier for PR1

and the identifier for the operational state information of AM1 at
(Posix) time 1301893100 is;
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DN: timeStamp=1301893100, ou=opLogs,
ou=opInfo, ou=AM1, ou=acManagers,
dc=acElements, dc=acDomain

Fig. 28. Example identifier for AM opState information

B. Data Integrity and Security

In a directory that acts as a back-end for LDAP, data integrity is en-
forced through the twin mechanisms of object classes and attributes.
Object classes are used to group attributes that apply to a specific
component, and attributes contain data values for this component. The
definition of the object class of a component indicates those attributes
that are mandatory and those that are optional. The structures of
the contained attributes in turn, specify the data types that values
can take. For instance, values can be restricted to Integer, String or
Boolean types etc., thus ensuring type safety. The syntax of attributes
also indicates how attributes are to be compared during a search
or compare operation. For example, an attribute that specifies a
string value might indicate case sensitivity during a search etc. In
addition, the attribute definition also indicates if it is multi-valued
or single-valued. In Section VII, it was shown that object classes
can include the attributes of other classes through inheritance or
the use of auxiliary classes. This mechanism enables reusability and
extensibility. As mentioned previously, all object classes and defined
attributes must have globally unique identifiers assigned by IANA
(see Section IV-A). All of these mechanisms help enforce entry
integrity in the DIT. All related object classes and attributes are
written to a schema file and the LDAP server is pointed to it. The
syntax for object class and attribute definition are contained in RFC
2252.

Concerning data security, the LDAP allows for granting, restricting
or denying access to any branch, attribute or distinguished name (DN)
on a DIT using a user name/password mechanism. For instance, the
domain controller of the DIT shown in Figure 24 might restrict access
of one AM to a handful of managed element on the one hand, and
grant full access to all managed element to another AM, on the other.
In another scenario, the domain controller might give read access to
its policy object entries to an AM but deny write access.

Apart from data integrity on the DIT, there is also a need to
ensure integrity of the information exchanged between autonomic
elements or between an autonomic element and an LDAP server
located remotely. Recall from Section IV-D, that the interface between
an autonomic element and its MIB or an external component i.e., I-
4, only allows for LDAP-type transactions. Since LDAP uses TCP
as its transport layer, it is able to ensure communication security by
leveraging the Secure Sockets Layer (SSL) of the transport layer. If
remote communication security is required, TCP port 636 is used,
otherwise port 389 is used.

C. Data Availability through Referrals and Replication

LDAP allows branches of a DIT to be spread over several servers
located at different physical locations. Regardless of the physical
location of branches, the LDAP client e.g., an AM, still views the
DIT as a consistent whole. The above is enabled by a mechanism
known as Referrals. In a DIT where referral is implemented, rather
than entries containing values, they would contain addresses to where
the required data is housed. The object class for a referral entry is
defined in RFC 3296 [34]. The LDAP client or server may resolve
the referral. If the LDAP server is configured with Chaining, then the
server gets the data from another server using the address contained

in the instance of the referral object. Without Chaining, the referral
is returned to the client and it is up to the client to issue a query
based on the referral. Obviously, Chaining is the preferred method
as it allows the whole process to be transparent to the client.

Whole copies of the DIT are allowed to be placed on multiple
servers using a technique known as replication. Two types of replica-
tion configuration exist. The first, Master-Slave replication allows the
Slave server to be updated by the Master. Client accessing the copy
of the DIT on the Slave are only given read access. Write and update
operations must be done on the Master server which then updates the
Slave server after a defined period. If the server is configured without
Chaining and a client attempts to write to the copy of the DIT on
the Slave, the Slave server returns a referral for the Master server to
the client. If configured with Chaining, the Slave server handles the
update transparently. The second replication configuration is called
Master-Master, which allows for reading, writing and updating on
any of the LDAP servers. Changes to the DIT propagated to other
servers later.

Both of these methods enable data availability, improve perfor-
mance and ensure reliability. For instance, data can be placed closer
to the consuming client through replication or referrals, thus reducing
network overhead. In addition to the above, a backup of the DIT or
branches of the DIT is always maintained through replication and
referrals, respectively. Another benefit of these two mechanisms is
that the DIT or parts thereof can be moved around possibly for
scalability reasons without the need to change the client codes.

X. MECHANISMS FOR ACHIEVING MANAGEMENT

COORDINATION IN ACSS

The technical details of the IMD and ACS presented in Sections IV,
V, VI, VII and IX provide the mechanisms by which the management
coordination requirements set out in Section VIII are achieved. This
section describes how each of these mechanisms or a combination of
mechanisms is used to meet each requirement.

1) Establishing administrative relationships: The DIT structure
shown in Figure 24 of Section IX-A is the basis for which
administrative and security relationships are formed. In order
to participate in an autonomic computing domain (acDomain),
an AM must attempt to bind itself to the DIT of that domain.
It does this by issuing an LDAP bind command through its
I-4 interface to the acDomain (see Section IV-D). To place this
joining request, the AM must have been configured with the
right credentials i.e., username and password for the acDomain
(see Section IX-B). If the bind request is successful, the
acDomain creates a branch on the DIT for the new AM. Recall
that the exact physical location of this new AM branch is
irrelevant (see Section IX-C). As soon as the AM becomes
aware of its new branch, it proceeds to set up its policy objects,
operation and state information sub-branches. An ME is added
to the domain much in the same way as an AM. All successful
bind requests are recorded by the acDomain. This way, it is
aware of all active objects within its sphere of influence. If an
autonomic element no longer wishes to be part of the DIT, the
element informs the domain controller of same.

2) Resolving management conflict: Management conflict can be
resolved in two ways, once areas of potential conflicts have
been identified. The first mechanism is known as hard resolu-
tion mechanism. Here, two or more AMs that may negatively
interfere with one another are prevented from executing policy
rules that point to the same Policy Role Collection Object (see
Section VII-D). The soft resolution mechanism, which is the
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second method, allows two or more AMs to use policy rules
that point to the same Policy Role Collection Object but during
periods where there is a risk of conflict, the ACS domain
manager disables the policy rules. This is done by setting the
Enabled attribute of the policy rule to disabled (see Section
VII-A). Outside of the conflict risk period, the policy rule is
enabled.

3) Monitoring Autonomic Elements: An autonomic element is
able to persist current and previous state information in its
opState branch on the DIT. It is also able to log its operational
activities in the opLogs branch. opLogs and opState are depicted
in Figure 26 for AM1 and in Figure 24 for ME1. If the state of
an autonomic element needs to be verified, then it is simply a
matter of querying its opState branch. This query will be based
on the estimated entry time of the opState entry of interest. If
the acDomian controller or a peer-AM requires information on
why a managerial action was taken by an AM, a similar query
with the time estimate is performed on the opLogs branch of
the AM.

4) Support for granting and requesting Services: The ac-
Domain controller supports and grants services to autonomic
elements also using the DIT structure. For instance, assuming
the proper administrative relationships have been established,
an AM can query the acDomian for information relating
to the available managed elements. Based on the retrieved
information, the AM can then proceed to create its own policy
objects for managing these elements. Requesting a bind to a
DIT is also an example of support for services. Many other
services specific to an acDomain can be defined, requested
for and granted using the LDAP Interrogation, update and
authentication and control operations (see Section IV-D).

5) Reliable remote policy object communication: Since LDAP
relies on the TCP for network transport functionalities; an
AM through its interfaces is able to reliably communicate
policy actions or instructions to an ME and receive sensory
information from the same ME. Keep in mind that TCP
provides reliable ordered byte stream delivery to a network end
device. SSL in TCP can also be used to provide security for
autonomic elements when managerial transactions are carried
out over a network (see Section IX-B).

6) Policy object sharing: An acDomain can define policy objects
that are globally available to all AMs in its domain. For
instance, in this project policy sharing is achieved by placing
these common policy objects in the policyObject organizational
unit of the acManagers branch (see Figure 24). Of course,
the policy objects defined in the branch of an AM can be
utilized by other AMs, if need be, assuming the right security
relationships have been established. In the above example, one
AM might be totally dependent on another AM ’s policy object
branch for its policy rules, conditions and actions. This may
be a mechanism for enforcing hierarchy in a group of AMs.
Recall from Sections VII-B and VII-C, that policy conditions
and actions are associated with policy rules using their DNs.
This mechanism allows two or more policy rules to reuse the
same condition(s) or action(s), if necessary.

7) A Policy rule Selection Mechanism: The means to select
the best policy rule for a particular Context is unique to the
targeted application. Nevertheless, support for this exists in
this work. Consider a scenario where two or more policy
rules are applicable to a Context. An AM that conforms to
the IMD architecture simply uses the contextAmbiguity and

contextResolved message events defined in Section V to resolve
the uncertainty.

8) Low complexity and Reusability: In this work, there are sev-
eral levels of extensibility, which support low complexity and
reusability. The reliance on standard based objects e.g., LDAP
and its associated RFCs allow autonomic elements designed by
different vendors to interact efficiently with one another, thus
engendering low implementation complexity. If the acDomain
becomes too large, it can be split into more manageable chunks
without impacting on the structural integrity of the implemented
DIT (see Section IX-C). This makes the acDomian scalable
and by extension of low complexity. The security mechanisms
utilized in this work are also well established. The policy object
classes presented can also be extended in a structured manner to
include attributes of vendor specific objects (see Sections VII-B
and VII-C). In Section VI, suggestions were made regarding
the implementation of functions that are self-contained and
therefore reusable when attempts are made to extend the layer
configuration of an AM.

XI. CONCLUSION

The technological reach of autonomic computing systems (ACS) is
currently stymied by the lack of standardized certification procedures
for these systems. This is made more difficult still by the lack of a
consistent architecture for autonomic elements and systems and a
deficit in standard metrics by which performances of these systems
once built can be measured. In this paper, a structure based on already
standardized protocols for the ACSs was proposed along with a
flexible but consistent architecture for the autonomic manager (AM).
Standard metrics are dealt with in the second part of this two-part
paper.

Concerning the architecture for the AM, it was shown in this
paper and elsewhere that due to implementation inconsistencies, the
MAPE architecture was not well suited for certification purposes. As
a result, an architecture that is flexible but guides the implementation
more clearly than MAPE does was required. Biological animals,
including humans use the same basic physiological structure to
sense, process and effect changes in their immediate environment.
Technically, this structure can be called a ‘standard’. Incidentally,
an architecture i.e., the Intelligent Machine Design (IMD) based
on biological ‘standard’ had already been proposed. However, it
lacked specific technical details to make it viable for ACSs or
any other computing system for that matter. The first task in the
process of expressing the three-layered IMD architecture for use in
autonomic computing was to have it imbued with the four cardinal
self-management properties i.e., self-configuration, self-healing, self-
optimization and self-protecting. Each layer will implement these
properties, albeit with differing levels of intelligence, computational
complexities and execution speed, depending on both the architectural
rules and on the application’s requirements. The second task required
the definition of four interfaces i.e., I-1, I-2, I-3 and I-4 for the IMD.
Along with the definition of these interfaces, were the descriptions
of the structure of the information communicated on each. Based
on the make up of the IMD, five possible configurations, including
their allowable message sequence charts were derived and presented.
These configurations are one of the vehicles by which architectural
flexibility is achieved. For the final task, the Policy Core Information
Model (PCIM) framework was proposed as the basis for which policy
rules, conditions, actions and repository are defined.

The Directory Information Tree (DIT) of the Lightweight Directory
Access Protocol (LDAP) was proposed as the structure on which the
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ACS is built. To support scalability in the system, branches of the DIT
can be distributed over a number of physical locations and hardware,
without affecting the consistency of the tree as viewed by elements.
Apart from aiding scalability, distributing the branches of the tree also
helps with data availability, as data can be transparently placed close
to where it is consumed. This branch distribution is realized through
a mechanism known as LDAP Referrals. Data availability can also be
achieved by storing copies of whole or parts of the DIT in multiple
locations. These copies are made consistent with the original using
the LDAP server Replication mechanism. Replicating the DIT also
achieves system robustness, as copies can be used as backups, if the
main DIT becomes corrupted or unavailable.

Using the technical components of the DIT and the IMD, a number
of issues relating to efficient management coordination and element
interactions are resolved. These issues include but are not limited to;
establishing security and administrative relationships, management
conflict resolutions, autonomic element monitoring, support for ex-
tensibility and reusability across the system.

The proposals in this paper are foundational steps towards stan-
dardization of autonomic components, with a longer term goal of
achieving certification of autonomic systems, which in turn is key
to the long term acceptance and sustainability of the autonomic
computing paradigm.
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