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Abstract - Short range communications in dense residential 

environments enable anytime high data rate connectivity, 

however also pose new challenges regarding the efficient 

operation of network devices, related to their co-existence. 

These challenges mainly concern capacity requirements on the 

one hand and the interference effect that each device creates to 

its neighboring ones on the other. This paper presents a 

cooperative distributed algorithm for power control and 

interference mitigation based on ad-hoc communication of 

networking devices. The algorithm also incorporates learning 

capabilities for strengthening the situation perception of each 

network element. Both versions of the algorithm, the core 

cooperative power control, and the learning enhanced one, 

have been deployed in WiFi Access Points and tested in an 

office environment in order to showcase their applicability. 

The experimental results prove that the incorporation of the 

presented algorithms leads to significant gains both in the 

energy consumption and the interference mitigation at the 

same time. 

Keywords – co-existence; cooperative power control; 

interference mitigation; learning; data mining; fuzzy logic. 

I.  INTRODUCTION 

The acute proliferation of wireless networking devices 
enables “anytime” and “anywhere” communications. This 
trend, coupled with large scale deployment of heterogeneous 
radio access networks in short range context, (APs, pico-
cells, etc.) and in dense environments, (i.e., residential areas) 
imposes the need for developing mechanisms addressing 
issues related to co-existence in an efficient way. The 
capacity and energy efficiency requirements impose different 
constraints in the system, whereas the mentioned co-
existence results in high interference levels. 

In such communication environments, power control 
mechanisms aim at optimizing the network’s capacity and 
coverage and at the same time at achieving interference 
mitigation, reducing power consumption and extending 
battery lifetime. The purpose is to have improved QoS for 
the users as well as having the optimum overall network’s 
utility and reduced cost from the network operator’s 
perspective. Given the two aforementioned objectives, the 
mechanisms should be developed following a cooperative 

and distributed paradigm in order to avoid selfish behaviors 
that lead to suboptimum solutions. 

In this paper, a distributed and cooperative power control 
algorithm is presented and evaluated; the objective is, 
through power adjustment, to have an optimum tradeoff 
between the network elements’ capacity and the interference 
caused to the rest of the network elements belonging in the 
scheme. The Cooperative Power Control (CPC) algorithm, 
initially described in our previous work in [1], is applicable 
to short-range wireless networking environments, where the 
network elements are able to exchange interference and 
power information. Moreover, the proposed solution deploys 
learning capabilities to the devices in order to facilitate the 
evaluation of the previous decisions and improve the 
interpretation of the environment conditions. This paper 
builds on the previous work and presents an extensive 
experiment for the validation of the proposed algorithm. 
More specifically, we have developed the CPC algorithm 
and incorporated it in WiFi APs; our solution has been used 
in a real life experiment, in an office network environment, 
which highlights the merits from its incorporation in both 
energy consumption and interference mitigation.  

The rest of this paper is structured as follows: Section II 
presents proposed solutions available in the literature; 
Section III provides background information regarding fuzzy 
logic and k-Means; in Section IV, the baseline reference 
algorithm for cooperative power control is briefly described. 
Section V presents the learning-assisted algorithm, by 
describing the considered functionalities, the case study, and, 
the learning framework. Section VI describes the 
experimentation deployment and assumptions of the 
experimental analysis, whereas Section VII describes and 
analyses in details the experimental results. Finally, Section 
VIII concludes the paper. 

II. RELATED WORK 

The transmission power control adjustment has attracted 

the interest of researchers, given the benefits stemming from 

the introduction of power control schemes; thus several 

solutions have been proposed in the literature. In [2], Sun et 

al. propose to formulate the power control problem using a 

non-cooperative game; the solution converges once Nash 

equilibrium [3] is reached and is applicable to mobile ad-
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hoc networks. The strategy for the transmission power 

identification is related to the Shannon capacity [4] on the 

one hand and the energy waste due to the caused 

interference on the other. In [5], the authors introduce a 

competitive distributed and autonomous power control 

algorithm for cellular communication systems. This 

approach is mainly focused on the downlink communication 

but can be easily extended to take into account both 

downlink and uplink. The nodes set independently their 

Signal to Interference Ratio (SIR) targets and rely only on 

local information to proceed to power adjustment. The 

algorithm is proven to converge to the Pareto optimal 

solution when the system is feasible, but diverges otherwise 

[6]. In [7], a cooperative game-theoretic mechanism for 

optimizing power control is also proposed. In this solution, 

issues such as network efficiency and user fairness are taken 

into account in order to optimize a SINR-based utility 

function.  
The afore-described solutions are generic and focus on 

the transmission power control problem in general. However, 
specific solutions have been proposed in the literature, trying 
to tackle the transmission power control problem in WiFi 
networks. In [8], Mhatre et al. propose a power control 
algorithm that tries to mitigate interference in 802.11 
wireless network environments, by providing a starvation-
free transmission scheme based on the assignment of higher 
transmission power to cells that are more heavily loaded (i.e., 
the cells that have higher number of clients or clients with 
poor quality channel). This solution can be implemented in a 
centralized or a distributed manner; in case of the former the 
authors use a sampler in order to compute the optimum 
power vector of the AP topology by avoiding extensive 
signaling. However, misbehavior may occur in case power-
vectors of high probability exist, as the algorithm fails to 
search other possible vectors. In [9], a synchronous rate and 
power control system implemented in IEEE 802.11 AP is 
introduced. Such solution provides per-link power control 
without adaptations or modifications to the underlying 
802.11 MAC protocol, following an approach with two 
synchronized phases. In the former, an initial power level is 
identified so as to achieve admirable link performance 
whereas in the latter, further enhancements in the data rate 
and the transmission power level, based on the packet 
delivery rate are considered for avoiding performance 
degradation. The main disadvantage of this solution is the 
use of greedy schemes for power level allocation that cannot 
provide a maximum network throughput. In [10], Kowalik et 
al. propose the introduction of ConTCP, a power adaptation 
scheme that takes into consideration the links’ quality. 
Specifically, a reference node tries to calculate the 
approvable power level of each incoming wireless link, 
based on QoS level thresholds, and informs the AP for the 
selected power levels; the proposed scheme tends to perform 
well under specific network topologies, where simultaneous 
transmissions occur. In [11], the authors propose a power 
control method which discovers the required data-rate link 
within the transmission range through adjusting the 
transmission power to corresponding levels by recursively 

sensing the environment; this topology information is also 
used for the selection of the optimal route, in case of 802.11b 
WiFi mesh networks. In [12], ElBatt et al. propose a power 
management scheme for wireless ad-hoc networks with low 
mobility patterns; the classical shortest path routing 
algorithm coupled with the identification of the optimum 
transmission power level is used. This approach results to 
small clusters of ad-hoc nodes. However, even though the 
cluster-based interference is reduced, retransmission of 
packets and increase in the whole network interference is 
unavoidable. 

In terms of this paper, we apply a solution described in 
[1], aiming at power control in WiFi networks in a 
distributed cooperative manner. Our solution is based on and 
extends a cooperative power control scheme for wireless 
sensors [13] [14]. In the proposed approach, the CPC 
algorithm is applied in 802.11 WiFi networks and is also 
enhanced by introducing a learning scheme to strengthen the 
situation perception capabilities of each network element. 
The solution is based on a hybrid model which exploits the 
merits of fuzzy logic and data clustering. Compared to the 
rest of the afore presented solutions, the proposed and 
implemented one aims at maximizing network utility, which 
is being captured by the Shannon capacity and the 
interference caused to the neighboring APs. Thus, the benefit 
is in the overall network utility which also benefits the SINR 
in every node. Furthermore, given the fact that we use an 
adaptation mechanism for enhancing the situation perception 
of each network element, we ensure that the APs’ 
configuration will be the most suitable for the context where 
there are placed. 

III. BACKGROUND 

This section provides the background for the proposed 

solution. The baseline algorithm is based on an objective 

function which uses fuzzy logic for the calculation of the 

weights of the parts of the equation. The learning algorithm 

uses the k-Means data mining technique for the adaptation 

of the fuzzy logic controllers.  The rest of this section 

presents the principles of fuzzy logic and k-Means so as to 

create a standalone document. 

A. Fuzzy logic 

Fuzzy logic is an ideal tool for dealing with complex 

multi-variable problems; the nature of the decision making 

mechanism makes it very suitable for problems with often 

contradictive inputs. A fuzzy reasoner (Fig. 1) consists of 

three parts, namely: 

• The fuzzifier, which undertakes to transform the 
input values (crisp values) to a degree that these 
inputs belong to a specific state (e.g., low, medium, 
high, etc.) using the input membership functions. 

• The inference part, which correlates the inputs and 
the outputs using simple “IF...THEN...” rules. Each 
rule results to a specific degree of certainty for each 
output; these degrees then are being aggregated.  
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• The defuzzifier, where the outcome of the 
abovementioned aggregation is being mapped to the 
degree of a specific state that the decision maker 
belongs to. Several defuzzification methods exist; 
the most popular is the centroid one, which returns 
the center of gravity of the degrees of the outputs, 
taking into account all the rules, and is calculated 
using the following mathematical formula: 
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Figure 1: High level view of a fuzzy inference system 

 

B. k-Means 

k-Means is a well known data-mining clustering 

technique. The core idea of data clustering is to partition a 

set of N, d-dimensional, observations into such groups that 

intra-group observations exhibit minimum distances from 

each other (Fig. 2), while inter-group distances are 

maximized. k-Means [15] is based on the following objective 

function: 
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Where 

• c: the number of clusters,  

• Gi: the i
th
 group,  

• xk: the k
th

 vector in group Ji and represents the 
Euclidean distance between xk and the cluster center 
ci.  

The partitioned groups are defined by using a 

membership matrix described by the variable U. Each 

element Uij of this matrix equals to 1 if the specific j
th
 data 

point xj belongs to cluster i, and 0 otherwise. The element Uij 

is analyzed as follows: 
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This means that xj belongs to group i, if ci is the closest of all 
centers.  
 

 
Figure 2: Visualization of k-Means clustering for three clusters 

 

IV. COOPERATIVE POWER CONTROL- BASELINE 

ALGORITHM 

The proposed CPC algorithm is based on [13] and [14]; 

both approaches propose a scheme for distributed 

interference compensation in Cognitive Radio that operates 

in license exempt spectrum bands, using transmission power 

adjustment methodologies. The solution concerns ad-hoc 

networks and is based on an information exchange scheme 

for the identification of the appropriate transmission power 

levels. Each independent node of the topology sets its power 

by considering individual information, as well as 

information related to the neighboring nodes. More 

specifically, a node sets its power level by considering its 

Signal to Interference plus Noise Ratio (SINR) and the 

interference caused to its neighbors. The main idea of this 

approach is to prevent users to operate in the maximum 

transmission power levels.  
The authors assume a set of node pairs L that operate in 

the same frequency. The SINR for the i
th

 pair is given below 
[13]:  
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Where 

• pk
i: transmission power for user i on channel k 

• hii: link gain between i
th
 receiver and i

th
 transmitter 

• no : noise level (equals to 10
-2

) 

• p
k
j: transmission power for all other users on channel 

k, assuming that j ∈{1,2,…,L} and j≠i 

• hji: link gain between i
th
 receiver and j

th
  transmitter 

It is also assumed that the channel is flat-faded without 
shadowing effects. Since the channel is static, the only 
identified attenuation is the path loss h (channel attenuation 
or channel gain). Given that indoor urban environments are 
considered, the channel gain is hji = dji

-3
, where d is the 

distance between the j
th
 transmitter and the i

th
 receiver.  

The decision for the transmission power levels takes into 
account the negative impact (i.e., interference) of a node to 
its neighboring nodes. This is formalized using (5), which 
captures the notion of interference price; such price reflects 
the interference a user causes to other users within its 
transmission range and is given by: 
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Where 

• ui(γi(p
k
i)=θilog(γi(p

k
i)): logarithmic utility function, 

• θi: user dependent parameter. 
Both of the algorithms presented in [13] and [14] are 

based on a tradeoff between the capacity of a user and the 
interference caused to the corresponding neighborhood. This 
balance is being captured by the following objective 
function: 
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The first part indicates a relation to the Shannon capacity 
for the corresponding user, while the second part captures the 
negative impact in terms of interference prices that a user 
causes to its neighborhood. The a factor is introduced so as 
to capture uncertainties in the network; these uncertainties 
reflect the precision of the received and compiled 
information of each network element regarding the 
interference price which should have been available by the 
node’s neighbors. This is related to the fact that once a 
network element adjusts its transmission power, it informs its 
neighbors in an ad-hoc manner. This implies that even 
though a network element has collected information from all 
of its neighbors in order to adjust its transmission, the 
gathered data could be obsolete and, as a consequence, they 
will not capture neighborhood’s current state. The 
obsolescence of the interference prices is related to the 
update interval (i.e., the periodic update) of each network 
element. In [13], α is set in a static manner as 25%. In [14], a 
fuzzy reasoner is introduced in order to identify, in a more 
dynamic way, uncertainties in the network based on the 
network’s status; the inputs (number of users, mobility, 
update interval) of the fuzzy reasoner capture the volatile 
nature of the ad-hoc network, whereas the output of the 
fuzzy reasoner is the Interference Weight. The a factor is 
defined as 1/β Interference Weight + 1 (β has the maximum 
value of the Interference Weight).  

The algorithm consists of three steps, namely, the 
initialization, the power update and the interference price 
update. The former is related to the assignment of initial 
valid transmission power and interference price values. The 
second part concerns the transmission power update based 
on the interference prices each node receives from its 
neighbors. Finally, the interference price update captures the 
communication of its interference prices to the 
neighborhood, by every network node. The second and the 
third steps are asynchronously repeated until the algorithm 
reaches a steady state (i.e., a state where every network 
element has the same transmission power for two 
consecutive time iterations).  

The main deficiency of the afore-described scheme is 
related to the static perception of the environment (i.e., a 

factor that captures the network’s dynamics). Even in the 
case where the fuzzy reasoner is used for capturing the 
uncertainties in the network, the environment interpretation 
model (i.e., membership functions of the fuzzy reasoner) is 
static. More specifically, in the latter case, the environment 
interpretation is based on expert’s knowledge and is induced 
to the network elements by its input membership functions. 
This implies that all network elements with the same 
configuration have the same situation perception as well. 
Moreover, it would be a major benefit for the network 
administrators to enable network elements to evolve the way 
they interpret their environment; this could be achieved by 
changing the shape of the input membership functions. In 
order to tackle the static definition of the situation 
perception, we propose a feedback-based learning scheme 
that evaluates how the network performed after a 
transmission power adjustment, in terms of the interference 
prices. 

V. LEARNING ENHANCED COOPERATIVE POWER 

CONTROL FRAMEWORK 

In our previous work in [1], we have proposed the 

application of the algorithms introduced in [13] and [14] in 

a completely new application area, that of WiFi Access 

points; the cooperative power control among the network 

elements is the objective of this algorithm in order to 

maximize the network’s utility. More specifically, we 

suggest that the WiFi APs should cooperate in order to 

minimize the caused interference, by adjusting their 

transmission power and at the same time having the 

optimum transmission power based on the Shannon 

capacity. 

In terms of this paper the learning enhanced CPC is 

being presented and evaluated in a real life experiment. In 

this section the functionalities that should be incorporated in 

the CPC enabled network elements (i.e., in this case WiFi 

APs) are described. Then, the case under investigation, 

where the modified CPC is applied is being presented along 

with the learning algorithm used for the adaptation of the 

situation perception of the CPC. 

A. Functional Architecture 

In order to deploy the CPC in the considered 
environment, network elements should be enhanced with a 
set of software modules namely “Power Control”, the 
“Learning”, the “Memory”, the “CPC communication”, the 
“Control Engine” and the “Monitoring”. Fig. 3 presents the 
functional architecture of the software implementation of the 
CPC.  

Each software module provides a set of functionalities in 
order to enable the instantiation of the CPC in WiFi APs; 
more specifically: 

• The “Power Control” incorporates the functionalities 
for the calculation of the metrics (interference 
prices) and the objective function that each network 
element has to maximize. Furthermore, this part of 
the mechanism implements the fuzzy logic reasoner 
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for the calculation of the Interference Weight and the 
α factor, 

• The “Learning” part incorporates the learning 
mechanism for enhancing the network element’s 
situation perception. 

• The “Memory” contains all the information required 
for the CPC; this information may be local and 
related to the AP under consideration (ex. TxPower, 
SINR, local IPs and MACs, etc.), or related to 
neighboring network APs (physical topology 
information – distances from neighbors, network 
information – neighbors’ IPs and MACs, algorithm 
information – neighbors’ interference prices and 
TxPowers). 

• The “CPC communication” software module 
consists of two parts, the client and the server. As 
mentioned afore, the basis of the CPC scheme is 
related to the asynchronous information exchange 
among the network elements. This implies that each 
network element operates as a server, where the 
neighboring WiFi APs are being associated and also 
as a client in order to associate to the neighboring 
APs. 

• The “Control Engine” is responsible for the 
enforcement of the re-configuration action, which in 
the considered case is the TxPower adjustment.  

• The “Monitoring” software module is responsible 
for the two types of monitoring tasks, the local and 
the neighborhood/cluster. The former is related to 
monitoring of local metrics and measurements (e.g., 
identification of local TxPower, associated users, 
sensed APs, etc.) whereas the latter is related to 
cluster information (e.g. MACs and IPs of 
neighboring APs, physical topology graph, etc.).  

The afore-described software comprises the CPC 
application that has been deployed in every CPC-enabled 
network element. 

  
Power Control

CPC CommunicationMemory

Monitoring

Objective 
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Fuzzy Logic –

Uncertainties 

handling

Convergence 

Condition –

Interference 

prices

MFs 

Adaptation

Local Information
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Information
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Server

Local Information 

Monitoring

Control Engine

Update 

TxPower

Topology and Cluster 

Information Monitoring

Learning

 
Figure 3: Functional architecture of the CPC 

 

B. Case Study 

In the case study under investigation, we assume the 
presence of several WiFi APs located in the considered area. 
These APs communicate via wireless links in order to 
exchange their interference values. Based on these values 
each network element adjusts its transmission power (Fig. 4). 

  
 
 

Figure 4: Envisaged network topology 

 
Given the assumption that the APs communicate 

asynchronously and each one might have its locally-set 
update period, it is possible that the APs are unaware of the 
current network’s status (from the messages exchange). Such 
problem becomes even more acute if we consider that the 
network elements might lose some messages during the 
messages exchange procedure due to the nature of the 
applied information fusion scheme and the sensitivity of the 
wireless medium. This implies that the use of the fuzzy 
reasoner is imperative for capturing the uncertainties [14]. 
The WiFi application area though, poses the need for 
modification of the inputs and the inference engine of the 
fuzzy logic controller. Thus, the number of the WiFi APs in 
the vicinity, the number of users in the vicinity (associated to 
WiFi APs) and the update interval are used as inputs of the 
fuzzy reasoner. In case of completely new application areas, 
new/modified fuzzy reasoners could be incorporated so as to 
be more suitable to the use case under discussion. The way a 
network element perceives its environment is based on the 
input and output membership functions. As in [14], the 
inputs’ membership functions initially are set to have 
triangular shape, mainly in order to capture the strict nature 
of the inputs.  

Table I provides the rules of the inference engine of the 
fuzzy reasoner. The most crucial input for the decision 
making process is the update interval. This input depicts the 
frequency of the information updates about the interference 
price of a network element to its neighbors thus capturing 
how recent is the view of a network element, based on the 
inputs from its neighbors. These inputs will be used for the 
calculation of the TxPower (Section IV). 
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Figure 5: Message sequence chart for two WiFi APs 

TABLE I.  RULES OF THE FUZZY REASONER 

Rule 

Number 

Num of 

WiFi Aps 

Num of 

Users 

Update 

Interval 

Interference 

price 

1 Low Low Low Low 

2 Low Low Medium Low 

3 Low Low High Medium 

4 Low Medium Low Low 

5 Low Medium Medium Medium 

6 Low Medium High Medium 

7 Low High Low Medium 

8 Low High Medium Medium 

9 Low High High High 

10 Medium Low Low Low 

11 Medium Low Medium Medium 

12 Medium Low High High 

13 Medium Medium Low Medium 

14 Medium Medium Medium Medium 

15 Medium Medium High High 

16 Medium High Low Medium 

17 Medium High Medium Medium 

18 Medium High High High 

19 High Low Low Medium 

20 High Low Medium Medium 

21 High Low High High 

22 High Medium Low Medium 

23 High Medium Medium Medium 

24 High Medium High High 

25 High High Low Medium 

26 High High Medium High 

27 High High High High 

 
As briefly described in Section IV, the CPC consists of 

two separate iterative procedures, the power update and the 
interference price update. In the former, consider a network 
element i, which updates its transmission power using a time 
interval tai∈Tai, where Tai is a set of positive time instances 

in which the AP i will update its transmission power level 

and ta1≠ ta2≠…≠ tai. Similarly, each WiFi AP i has an 

interference price update interval tbi∈Tbi, where it updates its 
interference price and announces the updated interference 
price πi

k
 to the rest of the WiFi APs belonging in the scheme. 

Fig. 5 provides the messages exchange and the operations’ 
sequence on a scheme with two WiFi APs; this could be 
generalized for more APs as well. 

C. Learning Algorithm 

The proposed learning algorithm consists of three parts, 

namely, the monitoring/labeling, the classification and the 

adaptation of the fuzzy reasoner. Each network element that 

is part of the network monitors its own environment. Every 

time that the network elements collaboratively proceed in 

transmission power adjustment, their interference prices are 

being compared to the previous ones and the interference 

factor calculations are being labeled as: 

• Beneficiaries: for the decisions that led to reduction 
of the interference value caused to the neighboring 
network elements, 

• Neutral: for the decisions that led to similar 
interference values. In such cases the decision could 
not be characterized either as correct or wrong, 

• Non Beneficiaries: the decision led to an increase of 
the interference value caused to the neighboring 
network elements. 

More specifically, periodically, the network elements 
cooperatively identify the optimum transmission power 
using the methodology described in Section IV; the iterative 
procedure requires finite number of steps (i.e., maximum 30 
iterations). Before every periodic transmission power 
adjustment, the interference value is being compared to the 
value before the last transmission power adjustment (Fig. 6). 
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Tx Power adjustment Tx Power adjustment

Ii Ti Ti+1

Ii+1

 
Figure 6: Timeline for Interference calculation and transmission per 

adjustment 

 
The input vector Z

→
i (i.e., num of WiFi APs, num of 

users, update interval) of each network element is being 
evaluated against a predefined fuzzy inference system and 
results to an a value which, in conjunction to the interference 
prices, is used for the calculation of the optimum 
transmission power. Comparing the interference prices just 
before the initiation of the i

th
 transmission power adjustment 

and the (i+1)
th
 we label the decision accordingly (i.e., Yi is 

beneficiary, neutral or non beneficiary). The comparison is 
done using the Euclidian distance metric. This procedure 
results to a set (S) of labeled decisions which have been 
correctly labeled (at a great level of certainty) through the 
afore-described phase. Table II presents the key points of 
monitoring/labeling part of the developed algorithm. 

 

TABLE II.  MONITORING/LABELING ALGORITHM 

Input: Approximation Parameter ε, Sample Size N 

Output: Set of observations S 
1. S�O 

2. i=0  

3. while true 

4.1 i++ 

4.2 Retrieve vector Z→i and IP→i 

4.3 αi� fuzzy logic ({# WiFi APs, # Users, Update 

Interval}) 

4.4 Calculate TxPower 

4.5 Wait for Z→i+1 and IP→i+1 

4.6 Calculate Ifactor
i+1 

4.7 If (|Ifactor
i -  I

factor
i+1|<ε) → Yi=Neutral 

 Else (|Ifactor
i -  I

factor
i+1| >ε) and (Ifactor

i -  I
factor

i+1> 

0) → Yi = Beneficiary 

 Else (|Ifactor
i -  I

factor
i+1| >ε) and (Ifactor

i -  I
factor

i+1< 

0) → Yi = Non Beneficiary 

4.8 S � S U { Z→i+1, IP→i+1, Yi} 

5. return S 

 
On sequence, we formulate three clusters using the 

labeled data in order to exclude the misclassfied data from 
the previous step; the clustering is performed using k-Means 
Thus, each network element maintains a set of three clusters, 
one for classifying every decision type. By representing each 
cluster to a 3D grid we map each cluster to a geometrical 
object (i.e., sphere Si). Each sphere is centered at 
Cj=Σi=1

|Ci|
Si/|Ci| and has radius Rj=maxi=1

|Ci|
||CEi-Si||. 

For each couple of clusters i, j, the cluster centers Ci, Cj 
define a line ε that interconnects the two points. This line can 
be described by the following equation: 

 ( ),  1...
m m m m

p x u y x m d= + ⋅ − =  (7) 

Line ε intersects with spheres Si and Sj in four points 
which can be retrieved by substituting the pm values into the 
following hypersphere equations: 

 2 2

1
( )

d

i m m im
D p x R

=
→ − =∑  (8) 

 2 2

1

( )
d

j m m j

m

D p y R
=

→ − =∑  (9) 

A simple way of identifying the bounds would be to 
extract the intersection points which belong to different 
hyperspheres and exhibit minimum distance from each other 
[16]. Then, as shown in Fig. 7, we map the identified bounds 
to the input membership functions of the fuzzy reasoner; this 
results to the modification of the environment perception of 
each network element. 

 

 
Figure 7: Clustering and bounds extraction mechanisms 

VI. DEPLOYMENT 

In order to experiment with the developed solution, we 
have proceeded in a series of real life experimentations in 
our premises. For this purpose we have used the proof of 
concept that we have implemented, which instantiates the 
algorithm described in Section V. 

A. Environment Description 

For the experimentation a set of Soekris devices has been 
used; such devices are low-power, low-cost, Linux-based 
communication computers (500MHz AMD Geode LX, 
512MByte DDR-SDRAM) that act as re-programmable 
WiFi APs by using IEEE 802.11b/g radio access technology 
[17]. In all Soekris devices we consider two wireless 
interfaces, one is the actual AP interface and the other one is 
used for monitoring; the former is the AR5413 mini-PCI [18] 
Card whereas the latter is the WUSB54GC USB card [19]. 
The APs deploy their own network and route the information 
to the internet through NAT. APs are connected through the 
backbone network and communicate with a standalone 
machine which aggregates information and provided triggers 
for the initiation of algorithms. The CPC implementation is 
based on Java programming language using several external 
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(a) (b) 

Figure 8: (a) Physical topology of the experimentation environment, (b) network topology of the experimentation environment. 

libraries. The most important of them are the jFuzzyLogic 
[20] for the “Power Control” module and Apache MINA 
[21] for the “CPC communication” module. For the 
“Monitoring” module the Linux kernel utilities are exploited. 

Four Soekris devices have been placed in our premises, 
which suggest a typical small office environment consisting 
of three rooms, with 15 researchers (Fig. 8(a)). The 
researchers used these APs for 3 consecutive days for 10 
hours each day (from 10:00 CET until 20:00 CET on July 9

th
 

2012, where our algorithms are not installed and the 
measurements are used for extracting the control data, and on 
July 10

th
 and 11

th
 2012 where our algorithms operate for the 

transmission power control) in order to access the internet 
and perform all normal, working-day, activities. Overall 
traffic throughout the day ranged from 1 to 10 Mbps while 
APs were configured to operate at 5.5Mbps throughput. The 
network layout is depicted in Fig. 8(b). 

In all three days of our experiment, the one for the 
control data generation and the two where the CPC was 
embedded in the Soekris devices, we have attempted to 
procedure almost identical experimental conditions. The 
bandwidth requirements were reproduced – however user’s 
mobility could not be identically reproduced.   

B. Assumptions 

As mentioned afore, the CPC scheme is based on the 
assumption that it will operate on an urban area. Thus, the 
generic assumptions of the algorithm should be also adapted 
accordingly.  

The WiFi APs are placed in an indoor environment and 
communicate via specific communication interfaces. This 
implies that the distance among the network elements needs 
to be defined. In the proposed approach, the methodology of 
[22] and [23] is being followed.  

The propagation obeys to certain models, from which the 
log-distance model is one of the most simple; the following 
equation describes the behaviour of such model: 

1
log ( 20 log 20 log(4 ))

10
TX RX TX RX ad P P G G X

n
λ π= − + + − + −

⋅
   (10) 

Where  

• d (m): the estimated distance between the transmitter 
and the receiver, 

• PTX (dBm): the transmitted power level, 

• PRX (dBm) is the power level measured by the 
receiver, 

• GTX (dBi): the antenna gain of the transmitter, 

• GRX (dBi): the antenna gain of the receiver, 

• n: measure of the influence of obstacles like 
partitions and ranges from 2-5 (2 for free space, 4-5 
in case obstacles are considered), 

• Xα: normal random variable with standard deviation 
of α. This variable captures the variance of the 
fading phenomena in an indoor environment, 

• λ (m): the wavelength of the signal (for WiFi can be 
considered 0.12). 

In the proposed experimentation, and for a typical office 
environment, n has been set to 5 and Xα to 20. Regarding the 
transmission power, which is the actual parameter of our 
implementation, it is related to the equipment’s capabilities. 
Specifically, TxPower, is limited by the WiFi card’s 
capabilities; 10dBm is the lowest price whereas 27dBm is 
the highest. 

VII. EXPERIMENTATION ANALYSIS  

For the evaluation of the CPC algorithm, we have 
followed an extensive experimentation scenario, in a real 
office environment in order to validate the applicability of 
the proposed solution and also to highlight the energy and 
network benefits from the incorporation of our algorithms. 
The experimentation analysis moves towards two directions, 
on the testing of the CPC and its applicability in the use case 
under consideration (i.e., a realistic WiFi office environment) 
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(a) (b) 

  
(c) (d) 

Figure 9: Transmission power adjustments in the four Soekris APs using the Cooperative Power Control scheme in (a) Soekris AP1, (b) Soekris AP2, 

(c) Soekris AP3, (d) Soekris AP4 

and on the evaluation of the learning/adaptation capabilities.  
Fig. 9 and 10 capture our experimentation results for the 

first day, where the CPC algorithm operates without the 
learning part; this implies that the first day of 
experimentations the algorithm operates in order to gather 
data which will be used for the adaptation of the situation 
perception (i.e., first day of the experimentations). The 
experiment has started 10:00 CET and has finished 20:00 
CET. The four Soekris APs have been placed in our testbed 
and we have been measuring for this period the transmission 
power of their WiFi cards; the transmission power ranges 
from 10 to 27 dBm. Fig. 9 presents the transmission power 
for the 10 hours of the experiment. In order to evaluate the 
operation of the network for several topologies, initially we 
have all four Soekris operating, whereas as the experiment 
proceeds we turn them off one by one and we leave only one 
operational. For each of the Soekris devices (and considering 
that the 10dBm is the basis of the TxPower for each AP) we 
see the actual gain compared to setting the transmission 
power to the maximum TxPower (i.e., 27 dBm). The energy 
gain at each of APs 1, 2, 3, and 4 is 12.51%, 10.75%, 
33.33% and 21.23% respectively. Also, it is obvious that the 
more the APs, the more energy gains we have, due to the 
collaborative nature of the algorithm. Also, what should be 
noticed is the fact that the APs change very often their 
TxPower levels. This is related to the highly volatile office 
environment, with moving users and the many interference 
sources (i.e., moving users, cell phones, Bluetooth devices, 

etc.), in relation to the fact that the APs identify the network 
topology considering indoor path loss models. Such models, 
if we assume static environments, without moving users 
operate with accuracy, however in the case under discussion, 
the network elements need to calculate the topology on a 
constant basis, in every CPC loop. 

Fig.10 provides the 6
th
 degree polynomial function of the 

SINR measurements during the experimentation. At any 
case, the SINR is better compared to the case where 
maximum TxPower has been set to the APs. For the AP 3 
and 4 the experiment stops at the time that these APs are 
being turned off (13.20 and 14:20 respectively) and we see 
that when all four Soekris operate, the SINR to all of them is 
low. When we start turning off AP we observe that the SINR 
to all the operating ones starts increasing; this is related to 
the fact that the interference that is caused reduces as well. 
Finally, only one, AP 2, remains operational and we have a 
huge increase in the SINR, which has started when we turned 
off AP3 and AP4; however we should take under 
consideration that the overall capacity reduces. 

Fig.11 presents the number of iterations every time the 
CPC is being triggered. We consider that the CPC is being 
triggered periodically, every 5 minutes. The Soekris APs 
exchange messages asynchronously; everyone using its own 
intervals. We observe that the scheme converges in small 
number of iterations most of the times (mean value of 
iterations 3.876). 

The initial configuration of the network elements is a 
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(c) (d) 

Figure 10: SINR evolution during the experimentation period for (a) Soekris AP1, (b)Soekris AP2, (c)Soekris AP3, (d)Soekris AP4 

generic one and captures a great variety of environments. 
However, for both the physical and network topology which 
has been used for experimentation, this configuration is not 

the most suitable one. Thus, the adaptation scheme that has 
been presented in Section V.C has been incorporated. 

During the first experimentation day of the CPC in the 
Soekris devices, the inputs of the fuzzy reasoner are being 
collected. Then, the tuples are being clustered and the 
overlapping areas are being mapped to the uncertainty 
bounds in the input membership functions. Fig. 12 provides 
the transmission power throughout the second 
experimentation day for all Soekris devices, with the adapted 
input membership functions (learning-based CPC scheme). 

As it is obvious, the CPC scheme is more sensitive to the 
environment, compared to the previous day of 
experimentations. Given the fact that they operate in the 
same environment, the APs proceed even more often in 
transmission power adjustments. Also, when only two APs 
remain operational, as the experimentation proceeds, we 
observe that they proceed in transmission power 
adjustments, according to the environment stimuli, contrary 
to the first day, where the transmission power adjustment 
mainly occurred when all the APs were operational. 

 
Figure 11: Number of iterations every time the CPC is being triggered 
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(c) (d) 

Figure 12: Transmission power adjustments in the four Soekris APs using the Learning enhanced Cooperative Power Control scheme in (a) Soekris 

AP1, (b)Soekris AP2, (c)Soekris AP3, (d)Soekris AP4 

 
(a) (b) 

 
(c) (d) 

Figure 13: SINR evolution during the experimentation period for (a) Soekris AP1, (b)Soekris AP2, (c)Soekris AP3, (d)Soekris AP4 

Furthermore, we observe significant energy gains, in 
relation to the case without learning capabilities. More 
specifically, AP 1 has 24.73% less power consumption 
compared to the maximum transmission power, whereas AP 
2 consumes 18.01% less power, AP 3 14.69% and AP 4 
5.65%. Given the fact that AP1 and 2 are the APs that 

remain operational almost throughout the experiment, we 
conclude that the energy gains are even more significant. 
Regarding the SINR, it remains in the same levels as in the 
case of the core CPC algorithm (Fig. 13), due to the fact that 
the objective function to be optimized is the same. The APs 
proceed in power adjustments in lower transmission power 
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levels resulting in less interference as well; however the 
SINR remains at the same levels, due to the decrease in both 
metrics (i.e., TxPower and interference). Fig. 14 presents the 
number of iterations every time the CPC is being triggered 
after the learning procedure. Similarly to the core CPC, we 
observe that the scheme converges in small number of 
iterations most of the times; furthermore, we observe a slight 
decrease in the overall mean value of iterations (3.47) which 
also highlights that the system has become more suitable to 
its environment. Finally, considering that the algorithm is 
being triggered periodically, every 5 minutes for 10 hours, 
we observe that the adaptation algorithm enhances the 
situation perception scheme using relatively small amount of 
measurements (4 AP * 120 measurements/AP = 480 
measurements). 

 

VIII. CONCLUSION AND FUTUREWORK 

This paper proposes an algorithm for power control and 

interference mitigation. The solution also incorporates 

learning capabilities in order to enable the network elements 

to adapt to their situation perception according to the 

environment stimuli. The learning procedure captures the 

positive or the negative impact of an action (i.e., 

transmission power set value) in the interference that a 

network element causes to its neighbors.  

The novelty of our contribution is the combination of the 

merits of fuzzy logic and data clustering for the optimal 

interpretation of the network uncertainties and its 

incorporation to the CPC algorithm. The network 

uncertainties have been identified using the cluster overlaps; 

the latter are then being translated in the environment 

perception of the fuzzy reasoners (i.e., input membership 

functions).   

The proposed solution has been tested in a realistic office 

environment in a real life experiment. The algorithm has 

been deployed in WiFi APs and used for their transmission 

power control. The experimental analysis proved the 

applicability of the CPC and the benefits from its 

incorporation. More specifically, the network elements have 

significant energy gains by incorporating the CPC; the 

addition of the learning capabilities in the APs makes them 

more sensitive in the environment stimuli. The experimental 

analysis proved that also the WiFi APs SINR benefits from 

the incorporation of the CPC; in every case the SINR is 

improved compared to an environment where all APs set 

their TxPower to maximum levels. Thus, the network 

elements achieve higher SINR levels and also have energy 

gains by setting their TxPower to the most suitable level for 

them and for the overall network. 

Our future work includes the incorporation of more 

sophisticated data mining techniques (e.g., Support Vector 

Machines, C-Means, Subtractive clustering, etc.) in order to 

have better adaptation to the environment. Furthermore, the 

incorporation of outlier detection techniques will be 

investigated in order to ensure that only valid measurements 

will be used for the learning procedure. 
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