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Abstract—In this paper, we introduce a framework for
automatic generation of dynamic equations for modular self-
reconfigurable robots and investigate a few adaptive control
strategies. This framework enables to analyse the kinematics,
dynamics and control for both, serial and branched multi-body
robot topologies with different dyad structures. The equations
for kinematics and dynamics are automatically generated using
geometrical formulation methods and recursive Newton-Euler
method. Different benchmarks examples are used to evaluate
serial and branched robot configurations. As control strategies,
computed torque method linearisation method together with
Extended Kalman Filter estimator are used. A graphical tool
has been developed, that enables easy to use interface and
functionalities such as graphically selecting of robot topologies,
visual feedback of trajectories and parameters editing.
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I. INTRODUCTION

Modular robotics has its origin in the late eighties with
the robotic platforms such as CEBOT developed by Fukuda.
Most of the existing modular robotic platforms can only be
assembled into different configurations manually, however, a
few novel platform designes are able to locomote and therefore
to assemble into various configurations autonomously. The
framework introduced in this paper is primarily developped to
be applied on two modular robots Scout and Backbone [1],
which have been developped in projects Symbrion [2] and
Replicator [3], but can also be used for diverse other modular
systems. The state of the art of modular robot system can be
reviewed for example in [4] or in [5]. Autonomy is one of the
key challanges for such systems and opens a new spectrum
of possible application scenarios especially in dangerous and
hazardous environments [6], where robots are able to operate
without human intervention.

Modular robotic systems are advantageous in comparison
to specialised robots because they can help to reduce the
developmental and production costs and can also easily be
adapted to different situations and applications. However, the
complexity for modelling and control also grows rapidly with
each additional degree of freedom (DOF). The dynamics of
such systems differ from those systems, which are operating
in a fixed environment and without the capability to reconfigure
and move. Consequently, new methods are required, which can
reduce the modelling complexity of kinematics and dynamics
as well as for control design.

In classical mechanics, dynamical systems are usually de-
scribed by setting up the equations of motion. The most
common methods in the robotics are Newton-Euler [7], La-
grange [8], and Hamilton [9] formulations, all ending up with
equivalent sets of equations. Different formulations may better
suit for analysis, teaching purposes or efficient computation on
robot.

Lagrange’s equations, for example, rely on energy properties
of mechanical systems considering the multi-body system as
a whole. This method is often used for study of dynamics
properties and analysis in control design.

More applicable on real robots are the Newton-Euler for-
mulation of dynamics. In this method, the dynamic equations
are written separately for each body. This formation consists
of two parts describing linear (Newton) and angular (Euler)
motion [7].

In case of modular reconfigurable multi-body systems, ob-
taining of equations of motions can be a challenging and time
consuming task. In this paper, we use a method using geo-
metric formulation of motion equation, which was originally
introduced by Park and Bobrow [10]. This method is based
on recursive formulation of robot dynamics using recursive
Newton-Euler combined with mathematical calculus of Lie
groups and Lie algebras [11]. The description of motion is
based on twist and wrenches summarizing angular and linear
velocities as well as applied forces and moments in six-
dimensional vectors [12]. This theory is also known as a Screw
Theory [13] and was first published by Sir Robert Stawell Ball
in the year 1900.

In the framework presented in this paper, the Newton’s
second law (F = ma) and Euler’s equations are applied in two
recursions: the forward (outward) and the backward (inward)
recursion. Therefore, this approach is also called as a two-
step approach. In the forward recursion, the velocities and
accelerations of each link are iteratively propagated from a
chosen base module to the end-links of multi-body system.
During the backward recursion the forces and moments are
propagated vice versa from the end-link to the base forming
the equations of motions step-by-step. Recursive derivation of
the equations makes it applicable to different types of robot
geometries and moreover allows automatizing the process.
There exist several publications generalising this method for
variety of applications [14][15][16]. Most of efficient results
use Newton-Euler algorithms, for example Luh, Walker, and
Paul [17] expressed the equations of motion in local link
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reference frames and by doing this reduced the complexity
from O(n3) to O(n). This approach was lately improved
by Walker and Orin [18] providing more efficient recursive
algorithm. Featherstone [19] proposed the recursive Newton-
Euler equations in terms of spatial notation by combining
the linear and angular velocities and wrenches into six di-
mensional vectors (Plücker notation). His ‘Articulated Body
Inertia’ (ABI) approach becomes widely accepted in current
research and is also of complexity O(n).

(a) (b)

(c)

Figure 1: Modular robots developed in projects Symbrion and
Replicator [20]. (a) Backbone, (b) Scout, (c) Robots docked.

In the projects Symbrion and Replicator two autonomous
modular self-reconfigurable robots have been developped,
which are capable of building multi-robot organisms (Fig-
ure 1(c)) by aggregating or disaggregating into various dif-
ferent configurations [6]. In this paper, we orientate our
approach on the method proposed by Chen and Yang [21],
which allows generating the motion equations in closed form
based on Assembly Incidence Matrix (AIM) representation for
serial as well as for tree-structured modular robot assemblies.
The approach has been adapted to modular robots Backbone
and Scout, because the geometry of modules differs from
those proposed by Chen and Yang. Autonomous deriving of
the motion equations enables studying model based control
strategies for modular and self-reconfigurable multi-robot as-
seblies. In this paper, the second focus is set to investigate
the robustness and scalability of classical control strategies
for non-linear systems. There are different possibilities how

to deal with non-linearities in complex systems either using
standard linearisation approach such as Jacobi linearisation
or try to compenstate the non-linear terms through feedback
linearisation techniques. In this paper, we use the second
method, additionally combining it with Extended Kalman
Filter (EKF), which allows to simulate the behaviour of real
robots with limited sensor capabilities.

The paper is organized in the following way. In Section
II, we give basic theoretical background about geometrical
formulations for rigid body transformations. In Section III,
we describe how the robot kinematics can be formulated for
modular robots. Section IV describes representation techniques
for self-reconfigurable robot assemblies. Section V contains
the recursive approach for calculation of dynamics equations.
In order to evaluate the approach a graphical user interface
called MODUROB is built and is explained in Section VI.
Section VII describes the evaluation of a branched robot
organism. Section VIII contains the control strategies for self-
reconfigurable robotic systems and present the results based on
computed torque method and Extended Kalman Filter. Finally,
Sections IX concludes the work and gives a short outlook.

II. THEORETICAL BACKGROUND

For kinematics analysis two Lie groups play an important
role, the Special Euclidean Group SE(3) and the Special
Orthogonal Group SO(3). SE(3) group of rigid body motions
consists of matrices of the form

[
R p
0 1

]
, (1)

where R ∈ SO(3) is the group of 3× 3 rotation matrices and
p ∈ R3×1 is a vector.

Lie algebra is also an important concept associated with
the Lie groups. Lie algebra of SE(3), denoted as se(3), is a
tangent space at the identity element of G. It can be shown
that the Lie algebra of SE(3) consists of matrices of the form

[
ω̂ v
0 0

]
∈ R4×4, (2)

where

ω̂ =

[
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
. (3)

Lie algebra is defined together with the bilinear map called
Lie bracket, which satisfy following conditions:
• Skew-symmetry: [a, b] = − [b, a].
• Jacobi identity: [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

If elements are square matrices, the Lie bracket is a matrix
commutator [A,B] = AB −BA.

The connection between Lie Group SE(3) and Lie algebra
se(3) is the exponential mapping [22], which maps se(3)
onto SE(3). Exponential mapping allows an elegant way to
formulate rigid body motions.

The exponential mapping eŝq can be interpreted as an
operator that transforms a rigid body from their initial pose
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to new pose combining rotations and translations at the same
time [15]:

gab(q) = eŝqgab(0), (4)

where gab(0) ∈ SE(3) is an initial pose and gab(q) is the final
pose. A twist associated with a screw motion is formulated as

si =

[
−ωi × pi

ωi

]
=

[
vi
ωi

]
, (5)

where ω ∈ R3×1 is a unit vector denoting the direction of the
twist axis, vi ∈ R3×1 is a unit vector facing in the direction of
translation and qi ∈ R3×1 is an arbitrary point on the axis.
Revolute joints perform only pure rotations about an axis.
Therefore the twist has the form:

si =

[
0
ωi

]
. (6)

Analogous, the pure translation is much simpler,

si =

[
vi
0

]
. (7)

Linear mapping between an element of a Lie group and its
Lie algebra can be performed by the adjoint representation.
When X is given by X = (R, p) ∈ SE(3), then the adjoint
map AdX : se(3) 7→ se(3) acting on y ∈ se(3) is defined
by AdX(y) = XyX−1. In [15] is also shown that AdX(y)
admits the 6× 6 matrix representation

AdX(y) =

[
R p̂R
0 R

] [
v
ω

]
, (8)

where p̂ is the skew-symmetric matrix representation of p ∈
R3. Linear mapping between an element of Lie algebra and
its Lie algebra can be performed via the Lie bracket

adx(y) = [x, y] . (9)

Given x = (v1, ω1) ∈ se(3), and y = (v2, ω2) ∈ se(3), the
adjoint map admits corresponding 6× 6 matrix representation

adx(y) =

[
ω̂1 v̂1
03×3 ω̂1

] [
v2
ω2

]
. (10)

Similar to twists that contain angular and linear velocities
in one vector, wrenches or general forces are described in a
similar way. Wrenches are vector pairs containing forces and
moments acting on a rigid body.

F =

(
f
τ

)
, (11)

where f ∈ R3 is a linear force component and τ ∈ R3

represents a rotational component. In contrast to general velo-
cities as elements of se(3), wrenches are acting on se(3)∗, the
dual space and therefore behaves as covectors. For this reason
wrenches transform differently under a change of coordinates
by using so called adjoint transformation,

Fa = AdTgbaFb, (12)

where forces acting on the body coordinate frame B are written
with respect to coordinate frame A. In spatial representation,
this is equivalent as if the coordinate frame A were attached
to the object.

III. ROBOT KINEMATICS

In modular reconfigurable systems the robot kinematics
varies according to modules that are connected to each other.
In homogeneous systems with the same physical parameters
the kinematics depends only on the orientations of modules
relative to each other. Such modular design is advantageous
for autonomous systems. Using heterogeneous modules the
modelling complexity grows with the number of different
modules that are used. Therefore, in most cases we assume
identical or similar structure of the modules with similar phy-
sical properties. Both robots have been designed with similar
geometry, same docking units and differ mostly in several
insignificant properties such as number of sensors, different
sensors or actuators. Nevertheless, even if the differences are
not crucial, we speak about heterogeneous modules because of
the additional Degree of Freedom (DOF) in Scout robot that is
able to rotate the docking element even if only in limited way.
Table I summarizes the mechanical properties of Backbone and
Scout modular robots.

TABLE I: Major differences between mechanical properties of
Scout/Backbone robots.

Cubic Modules (I. M. Chen) Backbone / Scout
Module types homogeneous heterogeneous
Joint types revolute, prismatic revolute
# ports 6 4
DOFs rot.: ±180◦ Backbone: bend.:±90◦;

Scout: bend.:±90◦, rot.: ±180◦

Using only revolute joints without any prismatic joints
simplify additionally the autonomous and recursive model
generator for kinematics and finally for the dynamics model.

A. Dyad Kinematics
Dyad dependencies are common in recursive formulations

because the calculation proceeds from one module to the next
comprising only two modules. The calculation is done from
the base module to all pendant links. In the approach proposed
by Chen and Yang [21], a dyad is defined as two adjacent
modules (vi,vj) connected by a joint ej (Figure 2(a)). A link
assembly is defined by taking one of those modules (link)
together with one joint. The relative position and orientation of
one frame attached to one module with respect to next frame in
the second module can be described under joint displacement
by a homogeneous 4× 4 matrix Hi,j(q) ∈ SE(3):

Hi,j(qj) = Hi,j(0)e
ŝjqj , (13)
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where ŝj ∈ se(3) is the twist of joint ej and qj is the angle
of rotation. The relative position and orientation between the
modules can be recognized by the robot through different kind
of on-board sensors such as accelerometers, compass or by vi-
sion system. In project Symbrion and Replicator the geometry
of the Backbone (Figure 1(a)) and Scout (Figure 1(b)) robots
differ from modules proposed by Chen and Yang. Backbone
and Scout modules consist of two moving parts and one main
hinge motor placed inside of each module and for this reason
already implies a complete dyad as defined by Chen and
Yang in each robot. In order to adapt the recursive kinematics
approach to Backbone and Scout robot we need to extend the
system boundaries of a dyad (Figure 2(b)). Since the most
weight is concentrated in the middle of the modules where the
main motors are placed, the attached coordinate frames for
each module coincide with the centre of mass. Because of two
robots and hence two revolute joints in a dyad only one joint
is involved into calculation in each recursive step.

(a) (b)

Figure 2: (a) A dyad defined by Chen and Yang [21], (b)
Dyad for two Scout robots.

The orientation of axes of rotations depends on how robots
are docked to each other. The relative pose can be described
by 4× 4 homogeneous matrix like in Equation (13).

B. Forward Kinematics
Forward kinematics for modular reconfigurable robotic sys-

tems determines the poses of the end-links providing joint
angles as an input. In this section, we introduce the modelling
technique for forward kinematics based on local frame repre-
sentation of the Product-of-Exponential (POE) formula origi-
nally proposed in [23] or in [15]. This technique can be easily
applied to tree-structured robots with many branches (e.g.,
multi-legged robots). Based on recursive dyad kinematics, the
calculation can be done simultaneously for all branches. In
this paper, all robots are considered to be cube shaped robots
based on Backbone or Scout geometries consisting of one
major DOF. In general case, the forward kinematics for serial
connected robots can be obtained for an arbitrary number of
links by simply multiplying the exponential maps as follows:

gst(q) = eŝ1q1eŝ2q2eŝ3q3 . . . eŝnqngst(0), (14)

where ŝ1 to ŝn have to be numbered sequentially starting with
the chosen base module (Figure 3).

For a tree or branch structured robot configurations, the
forward kinematics can be obtained in parallel way starting

Figure 3: Multi-robot organism [24].

the calculation from a chosen base module to each pendant
end-link in all branches. One possibility how the connecting
order can be obtained is to use the AIM proposed by Chen
and Yang [21]. For branched type of robots, two traversing
algorithms are common to find the shortest paths: the Breadth-
first search (BFS), and the Depth-first search (DFS) algorithms.
The forward kinematic transformations for the branched robot
configuration starting from base to each of the pendant links
an of path k with m branches can be formulated as follows:

H(q1, . . . , qn) =




H1

H2

...
Hk

...
Hm



=




. . .

. . .
...∏n

i−1(Hai−1ai
(0)eŝai

qai )
...
. . .



,

(15)
where H(q1, . . . , qn) represent all poses of all pendant end-
links by using homogeneous 4× 4 matrix representation.

IV. ROBOT ASSEMBLY REPRESENTATIONS

Matrix notation is a powerful method to represent modular
robots kinematic dependencies. The most common matrices
used in robotics are the Adjacency and the Incidence matrix.
Both matrices represent the connections between the neigh-
bouring nodes. In [21], Chen proposes a method based on AIM
that allows to represent the whole robot assembly consisting
from links and joints additionally carrying the information
about the type of robot and about used joints. A dynamic model
for modular robot assembly is created autonomously from the
AIM. This method was developed for a homogeneous kind of
robots varying only in size with different joint possibilities
including revolute or prismatic joints. Scout and Backbone
robots contain only revolute joints however the number is not
limited to one DOF. Therefore, the approach proposed in [21]
cannot be directly used for this kind of modules and need to
be adapted.
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A. Adapted Assembly Incidence Matrix

The Backbone and the Scout robots are both cubic shaped
robots, however provide only four sides that are equipped
with docking units. Therefore, using the notation of gaming
dice only ports 2 − 5 are able to set a connection. A dif-
ference between modular robots proposed in [21] and the
Scout/Backbone modules is that joints are not considered as a
separate mechanical parts (joint modules), which are required
to connect two modules, but rather are placed inside each of
the modules. For these reasons each robot builds a full dyad
already.

For simplicity, we allow docking only in horizontal plane
and we also use the principle of gaming dice for side notations.
Robot organisms have to go into initial configuration when
additional robots decide to dock. Using this assumption, we
distinguish between three major dyad configuration classes:
the serial DS, the parallel DP and the orthogonal DO dyad
class, where the second letter determines the axes of rotation
of module j with respect to module i. A serial coupled dyad
(DS) is given when the axes of rotation are in one line.
When the rotational axes are parallel than the dyad becomes
a member of a parallel class (DP ). Finally, when the axes
are orthogonal to each other, the robots are classified as the
orthogonal to each other connected robot assembly (DO).
This information can be easily extracted from the matrix and
used for direct computation. Additionally, the symmetry of the
platform allows neglecting the sign of the orientation because it
does not affect the calculation. Table II summarizes all possible
configurations considering that top and bottom side of the
robots and hence the sides 1 and 6 of a gaming dice do not
contain docking units.

TABLE II: Connections table between Scout and Backbone
robots.

Set DS: Set DP : Set DO:
Dyad: Serial Axes Dyad: Parallel Axes Dyad: Orthogonal Axes

1st Mod. 2nd Mod. 1st Mod. 2nd Mod. 1st Mod. 2nd Mod.
2 2 3 3 2 3
2 5 3 4 2 4
5 2 4 3 3 2
5 5 4 4 3 5

4 2
4 5
5 3
5 4

The autonomous docking procedure is based either on IR
sensor communication [25] or also can be fulfilled by using
vision system [26][27]. Backbone and the Scout robots have
one revolute joint as a major actuator, therefore, the informa-
tion about the kind of actuators in the last row of the AIM is
unnecessary. Instead, we use the last row for the three types
of docking orientations for serial, parallel or orthogonal case.
The last column in the AIM contains the information about
the kind of robot, which is used. We denote the modified AIM
as AIMSB, where index ‘SB‘ denotes the first letters of both
robots: the Scout and the Backbone robot. In Figure 4, a small
example of an organism and the corresponding graph is shown.
The AIMSB for this organism is shown in Figure 5.
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Figure 4: (a) Multi-robot organism example, (b) Directed graph
representation.

AIM =

2
666666664

e1 e2 e3 e4 e5 Links

v0 3 0 0 0 0 S
v1 4 2 0 5 0 S
v2 0 5 3 0 0 S
v3 0 0 2 0 0 S
v4 0 0 0 2 3 S
v5 0 0 0 0 5 S

Joints DP DS DO DS DO

3
777777775

Figure 5: AIM of robot assembly from Figure 4(a).

B. Direct/Indirect Recursive Transformations

Structuring the kinematics dependencies into an AIMSB, we
are able to apply the transformations Tij between the modules
directly once the AIM is determined. By reusing the already
calculated dependencies that are stored into lists it is fast and
efficient to calculate the kinematics for big robot organisms.
We use two lists: one list containing transformation results
between consecutive joints, we call it a Direct-Transformation-
List (DTL) and another list called Indirect-Transformation-List
(IDTL) for non-consecutive transformations between joints
however still in the same kinematics path.

In DTL as shown in Table III, each line represents one direct
transformation. The first two columns indicate the connected
modules and the last two columns hold the information, which
sides are connected. IDTL contains the indirect transforma-
tions, which are calculated by two successive transformations
(Tij = Tix · Txj). The first two columns denote the desired
transformation. Next four columns hold two multiplied trans-
formations that are stored in DTL or in IDTL. Both tables
refer to the example shown in Figure 4.

A short example demonstrates the first traversing calcula-
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TABLE III: Direct and indirect transformation list referred of
example in Figure 4(a).

DTL
Tij Sides

i j from to

0 1 3 4
1 2 2 5
2 3 3 2
1 4 5 2
4 5 3 5

IDTL
Tij = Tix · Txj

i j i x x j

0 2 0 1 1 2
0 3 0 2 2 3
0 4 0 1 1 4
0 5 0 4 4 5

tions using both lists:

T01 = T01(0)e
ŝ1q1 direct

T12 = T12(0)e
ŝ2q2 direct

T02 = T01 · T12 indirect
T23 = T23(0)e

ŝ3q3 direct
T03 = T02 · T23 indirect
T14 = T14(0)e

ŝ4q4 direct
T04 = T01 · T14 indirect
T45 = T45(0)e

ŝ5q5 direct
T05 = T04 · T45 indirect

(16)

This algorithm can be compared with DFS algorithm,
providing a flexible way to calculate the order all possible
transformations can be calculated during run-time. ACreateTcell(,AIM,twists,q,L,module=0)

Module i has connection on 
this joint?

Next Joint

j = connected Module

AIM
i=currentModule

set currentJoint=1

Calculate Direct Transformation
T{i,j}=AGetTijFromPair()

Calculate Indirect Transformations
T{x,j}=T{x,i}*T{i,j}

x durchläuft sämtliche Module

ACreateTcell2(AIM,twists,q,L,j)

RECURSIVE!!!

Delete ModulConnection From AIM

Initial Call: function(AIM,module=base=0)

Next 
Module

j = connected Module

Call traverse(AIM,module)

joint = 1
i=module

Calculate Direct Transformation
-> SaveToList('direct')

Calculate Indirect Transformations
T{i,j}=T{i,x}*T{x,j}

-> SaveToList('indirect')

Recursive Call
traverse(AIM,module=j)

Next 
Joint

Yes

No

module has 
connection on this 

joint?

Figure 6: Traversing algorithm.

The flowchart of the algorithm is illustrated in Figure 6.

V. MODULAR ROBOT DYNAMICS

In general, two main branches of robot dynamics problems
are mostly considered, namely the forward and the inverse
dynamics problems. Forward dynamics play an important role
in simulation of multi-body systems, also called as direct dy-
namics. Forward dynamics problem determines accelerations
and external reaction forces of the system giving initial values
for positions, velocities and applied internal/external forces,
whereas the inverse dynamics problem determines the applied
forces required to produce a desired motion. The first problem
that appears in modular self-reconfigurable robotics is that
the model of the robot assembly cannot be known a priori.
Therefore, the robot should be able to generate its own model
autonomously without human intervention.

A. Recursive Two-Step Approach
The original idea for recursive formulation and computation

of the closed form equation of motion was introduced by Park
and Bobrow [10]. The idea was extended by Chen and Yang by
introducing the AIM. Starting with the AIM, that contains the
information about how robots are assembled, the formulation
of equations of motion is done in two steps: first applying
forward transformation from base to the end-link, followed
by the second recursion backwards from the end-link to the
base module. Finally, we get the equation of motion in a
closed-form. Before starting the recursion, some assumption
and initializations should be done. In the first step, the system
has to choose the starting module denoted as the base module.
Starting from this module, the AIM is filled based on path
search algorithms such as BFS or DFS. After the AIM is built
and all paths are determined the recursive approach can be
started.
• Initialization: Given V0, V̇0, F e

n+1

Vb = V0 = (0 0 0 0 0 0)T (17)

V̇b = V̇0 = (0 0 g 0 0 0)T , (18)

where Vb and V0 denote generalized velocities expressed in
the starting frame 0 and all other quantities are expressed in
link frame i.
• Forward recursion: for i = 1 to n do

Vi = AdH−1
i−1,i

(Vi−1) + Siq̇i, (19)

V̇i = AdH−1
i−1,i

(V̇i−1)− adAd
H

−1
i−1,i

(Vi−1)(Siq̇i) + Siq̈i. (20)

• Backward recursion: for i = n to 1 do

Fi = Ad∗
H−1

i−1,i

(Fi−1)− F e
i +MiV̇i − ad∗Vi

(MiVi), (21)

τi = sTi Fi. (22)

Here, Mi is the generalized mass matrix of the form

Mi =

[
I 0
0 mI3

]
, (23)

where I is 3 × 3 inertia matrix and I is the identity matrix.
The non-diagonal terms are zero because in our case the center



72

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of mass coincides with the origin. F e
i+1 are the forces acting

on the end-links of chained robots. This values can either be
estimated or read from force or tactile sensors such as [28][29],
which can be attached to the robots. Fi is the total generalized
force traversed from link i − 1 to i consisting of internal
and external wrenches and τi is the applied torque by the
corresponding actuator.

B. Equations of Motion
By expanding the recursive equations (19)-(22) in body

coordinates, it can be shown that the equations for generalized
velocities, generalized accelerations and forces can be obtained
in matrix form:

V = TSq̇ (24)

V̇ = TH0
V̇0 + TSq̈ + TadSq̇V (25)

F = TTF e + TTMV̇ + TTad∗VMV (26)
τ = STF (27)

where

q̇ = column[q̇1, q̇2, . . . , q̇n] ∈ Rn×1

q̈ = column[q̈1, q̈2, . . . , q̈n] ∈ Rn×1

V = column[V1, V2, . . . , Vn] ∈ R6n×1

V̇ = column[V̇1, V̇2, . . . , V̇n] ∈ R6n×1

F = column[F1, F2, . . . , Fn] ∈ R6n×1

F e = column[F e
1 , F

e
2 , . . . , F

e
n] ∈ R6n×1

τ = column[τ1, τ2, . . . , τn] ∈ Rn×1

S = diag[S1, S2, . . . , Sn] ∈ R6n×n

M = diag[M1,M2, . . . ,Mn] ∈ R6n×6n

adSq̇ = diag[−adS1q̇1 ,−adS2q̇2 , . . . ,−adSn ˙qn ] ∈ R6n×6n

ad∗V = diag[−ad∗V1
,−ad∗V2

, . . . ,−ad∗Vn
] ∈ R6n×6n

The n index represents the number of elements containing also
virtual joints that are required to move the robot in space [30].

TH0
=




AdH−1
0,1

AdH−1
0,2

...
AdH−1

0,n



∈ R6n×6 (28)

T =




I6×6 06×6 06×6 · · · 06×6

AdH−1
1,2

I6×6 06×6 · · · 06×6

AdH−1
1,3

AdH−1
2,3

I6×6 · · · 06×6

...
...

...
...

...
AdH−1

1,n
AdH−1

2,n
AdH−1

3,n
· · · I6×6



∈ R6n×6n,

(29)

where T is the transmission matrix for the whole robot
assembly. The elements Hi,j in TH0 and in T can be read
out directly from the DTL and IDTL lists.

The closed-form equation of motion of the classical form

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ (30)

is obtained by substituting the equations 24-27, where M(q) is
the mass matrix; C(q, q̇) describes the Coriolis and centrifugal
accelerations and N(q) represents the gravitational forces as
well as the external forces.

M(q) = STTTMTS (31)
C(q, q̇) = STTT (MTadSq̇ + ad∗VM)TS (32)

N(q) = STTTMTH0
V̇ + STTTF e (33)

VI. MODUROB - MODULAR ROBOTICS SOFTWARE
TOOL

MODUROB is a tool built in MATLAB R© that contains
a possibility to build robot topologies by simply clicking on
topology matrix grid (Figure 7). Currently, two types of robots
are provided: the Backbone (Figure 1(a)) and the Scout robot
(Figure 1(b)). For simplification, robots are only allowed to as-
semble or disassemble in planar configurations on the ground.
The automatic model can be built in two ways: analytically or
numerically. The symbolic formulation in MATLAB is done by
using the symbolic toolbox. For solving of differential equa-
tions the user can choose between the numerical integrators
that are provided by MATLAB. In order to move the robot in
a joint space, different gait generators are provided either using
rhythmic generators based on rhythmic functions [30] or gait
generators that use chaotic map. We use an approach proposed
in [31], that allows to generate periodic gaits that result from
synchronization effects of coupled maps. Such approach can
help to control complex multi-body structures by mapping the
active joints to an individual chaotic driver [32].

(a)

Figure 7: Benchmark example of Double pendulum.

For evaluation or benchmarking of the framework two
examples are implemented based on Lagrangian equations and
can be compared with the geometrical approach. One example
is a double pendulum example (Figure 7(a)) for example
derived in [33] and the second is an extended pendulum that
is movable on a shaft like a crane presented in [1].
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(a)

(b)

(c)

Figure 8: Verification (dashed line) of geometrical POE
approach with Lagrangian method using double pendulum
model. (a) Position; (b) Velocity; (c) Accelerations.

The example (Figure 8) shows absolutely identical be-
haviour between implementation based on Lagrangian equa-
tions and with the geometrical approach based on twist and
wrenches.

VII. EVALUATION OF BRANCHED MULTI-BODY SYSTEMS

In the previous section, two basic examples, a pendulum and
a crane example are used to evaluate the correct functionality
of the geometrical approach proposed in this thesis. However,
pundulum-like structures are the simplest form of robot as-
semblies, therefore, another benchmark with branched robot
configuration (Figure 9) has been generated to make deeper
evaluation of the framework.

While single or double pendulum example code can be eas-
ily found and downloaded from many sources, e.g. from [33],
the code for more complex structures of multi-body systems
are hardly available. For this reason, in order to evaluate other
robot configurations, a new branched modular robot has been

Figure 9: Crab-like multi-robot structure assembled with Scout
robots.

modelled within the MATLAB SimMechanics toolbox [34].
This tool allows to simulate physical properties and dynamics
of multi-body systems by use of Euler-Lagrangian modelling
technique [35].

Figure 10: Simulink SimMechanics model of crab-like robot.

Figure 10 present a SimMechanics model of a crab-like
robot organism, which is shown in Figure 9. The corresponding
AIM and the graph representation of this organism structure
can be reviewed in Figures 4-5. This structure has been chosen
because it contains all three types of dyad structures (serial,



74

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

parallel and orthogonal), which are also listened in Table II.
This structure implies also the case, where due to mechanical
limitations, robots are not able to move with respect to each
other and in this case the state space of dynamic model needs
to be reduced. For this reason the framework should detect
such cases and adapt the framework accordingly.

Figure 11: Position, velocity and acceleration of links based
on crab-like robot structure.

In order to evaluate the proposed geometrical framework,
identical robot structure, which is used in SimMechanics simu-
lation (Figure 10) is also modelled with our model generator.
The behavaiour of dynamics of both models can be examined
in Figure 11. In this plot, it can be observed that both models
produce identical set of results that similar like in the previous
section, also proves the correctness of the framework.

VIII. CONTROL OF MULTI-BODY SYSTEMS

Classical control theory provides a huge spectrum of con-
troller design strategies for linear and non-linear systems
including for example methods such as sliding mode con-
trol [36], optimal control [37], robust control [38], back-
stepping control [39] and different adaptive control mecha-
nisms [40][41][42]. In the previous sections, an automatic
model generator is presented, that enables to generate the
dynamics model of the multi-robot organism based on ge-
ometrical formulation of motion equations. The generated
model is a non-linear model, and to design a controller for
a robot that is able to reconfigure and hence requires a new
model representation is a huge challenge. One of the most
used methods to deal with non-linear models is to linearise
the model at a certain operation point by use of Jacobian
linearisation techniques [43]. These methods are most common
used in control theory, because it distinctly reduces modelling
and computational complexity. During the last decades, the
technological progress in microprocessor technologies opens
new opportunities to apply methods for nonlinear control
design techniques direct on embedded systems. Feedback
linearisation also known as exact linearisation is an approach
of nonlinear control design, that has attracted lots of research
in recent years and is probably the first choice for mechanical
systems containing only active joints.

In this section, a non-linear control design for a multi-body
reconfigurable robots is presented based on computed torque
method and EKF.

A. Inverse Dynamics
Most of robotic systems has a non-linear character. One of

the concepts that currently becomes popular is the feedback
linearisation [44] control strategy. This technique is a gene-
ralized concept and a special branch of it in robotics is also
known as inverse dynamics or computed torque [45] control.

q̈ = M(q)�1(⌧ � C(q, q̇)q̇ � N(q))

Nonlinear System

⌧ = C(q, q̇)q̇ + N(q) + M(q)v

Feedback Linearisation
PID

⌧v
+�qd

e
x =


q
q̇

�

q̇

q

q

Figure 12: Structure of Computed Torque Method.

The block diagram of this approach is depicted in Figure 12.
The inverse dynamics problem can be formulated in a joint
space as follows:

τ =M(q)q̈ + C(q, q̇)q̇ +N(q), (34)

which applied to Equation (30) yields to q̈ = v. The new
control input v needs to be designed and is typically chosen
as:

v = q̈d −K0(q − qd)︸ ︷︷ ︸
eq

−K1(q̇ − q̇d)︸ ︷︷ ︸
ėq

, (35)

where K0 and K1 are positive definite matrices. The error
dynamics for the closed loop system can be formulated as:

ëq +K1ė+K0eq = 0, (36)

where matrices K0 and K1 are the gain matrices. The error
dynamics can be achieved to be exponentially stable by the
proper choice of K0 and K1. In the framework presented in
this paper, the torque can be computed for every selected robot
configuration. The limitations are not given by the framework
itself, but rather by the computation time for very big robot
structures. Figure 13 shows step responses of the active joints
in a crab-like robot structure from the Figure 9. Due to selected

Figure 13: Step response of active joints of simulated crab-like
robot configuration with applied computed torque linearisation.

robot configuration and its mechanical restrictions the number
of active joints is reduced to three DOFs. As a conclusion we
can summarise that with computed torque method and PID
control we are able to stabilise the non-linear system in an
acceptable short time.
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B. States Estimation with EKF

Mutli-robot organisms, which are introduced in this paper
are built of modular robot with one rotational degree of
freedom. The electronics of the modular robots [46] Backbone
or Scout allows to detect the absolute hinge angle of rotation by
the use of hall sensors, which are placed inside the hinge motor.
However, measuring only the hinge position is not enough to
get the full set of states for a nonlinear system model. One
of the promising approaches to estimate the missing or noisy
states of a dynamical system is the Kalman filter. The EKF [47]
is the nonlinear version of the classical Kalman filter. This
recursive predictive filter runs in two steps: the prediction and
the correction step. In this section, we give a short introduction
of theoretical background of EKF and present the achieved
results.

The structure of the model containing computed torque
linearisation from previous section and the EKF are illustrated
in the Figure 14.

q̈ = M(q)�1(⌧ � C(q, q̇)q̇ � N(q))

Nonlinear System

⌧ = C(q, q̇)q̇ + N(q) + M(q)v

Feedback Linearisation
PID

⌧

Kalman filter

v+� +qd
e q

q̇

Measurement
Noise

Kk =
P�

k HT
k

HkP�
k HT

k +VkRkV T
k

x̂k = x̂�
k + Kk(yk � h(x̂�

k , 0))
Pk = (I � KkHk)P�

k

q

Figure 14: Schematic of system structure with computed
torque, EKF and PID control.

Consider the nonlinear discrete-time model written in the
standard state-space representation:

xk = f(xk−1, wk−1) ∈ Rn,

yk = h(xk, vk),

(37)

where k describes the time step; xk is a vector of actual states;
yk is the actual output vector; wk and vk the system and the
output noise.

The actual state and measurement vector can be approxi-
mated as

x̂−k = f(x̂k−1, 0),

ŷk = h(k̂−k , 0).

(38)

The linear approximation of the Equation (37) can be
formulated as:

xk ≈ x̂−k +A(xk−1 − x̂−k−1) +Wwk−1,

yk ≈ yx̂−k +H(xk − x̂−k ) + V vk,

(39)

where Ak is the Jacobian matrix defined as

Aij =
∂fi
∂xj

(x̂k−1, 0). (40)

Wij is the Jacobian matrix of partial derivatives of f with
respect to w:

Wij =
∂fi
∂wj

(x̂k−1, 0). (41)

Hij is the Jacobian matrix of partial derivatives of h with
respect to x:

Hij =
∂hi
∂xj

(x̂k, 0). (42)

Vij is the Jacobian matrix of partial derivatives of h with
respect to v:

Vij =
∂hi
∂xj

(x̂k, 0). (43)

The a priory prediction error can be defined as:

ê−xk
= xk − x̂−k . (44)

The a priory measurement residual is:

ê−yk
= yk − ŷ−k . (45)

Using both equations (44) and (45), the prediction and
measurement error can be approximated:

ê−xk
≈ A(xk−1 − x̂k−1) + εk,

ê−yk
≈ Hεxk

+ ηk,

(46)

where εk and ηk are independent random variable with zero
mean and covariance matrices WQWT and V RV T .

The second Kalman process that models the error estimates
over time can be obtained by

x̂k = x̂−k + êxk
. (47)

The Kalman filter equation used to estimate êk becomes:

êxk
= Kkê

−
yk
. (48)

Substituting the Equation (48) back into (47) leads to:

x̂k = x̂−k +Kkê
−
yk
. (49)

The prediction step can be computed as:

x̂−k = f(xk−1, 0),

P−
k = AkPk−1A

T
k +WkQk−1W

T
k .

(50)

Finally, the correction step becomes:

Kk =
P−

k HT
k

HkP
−
k HT

k +VkRkV T
k

,

x̂k = x̂−k +Kk(yk − h(x̂−k , 0)),

Pk = (I −KkHk)P
−
k .

(51)

The correction step corrects the state and covariance esti-
mates with the measurement yk.
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C. Example
In the previous section, computed torque method (Figure 12)

is applied to linearise the non-linear system 34. However, on
a real robot not all states can be measured and therefore the
EKF as an estimator has been included into the system. The
structure of the system together with EKF is illustrated in
Figure 14. In this example, the crab-like robot configuration is
used again to investigate the system behaviour. Figures 15(a)-
15(d) show the smulated output, states, estimate states and the
error, which is the substraction between the real and estimated
states.

For this example the matrices Q, W , R, V have been
selected as:

Q =




0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001



, (52)

W =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (53)

R =

[
1 0 0
0 1 0
0 0 1

]
, (54)

V =

[
1 0 0
0 1 0
0 0 1

]
. (55)

Looking the results produced by the system that uses the
EKF, we can assume that the framework enables correct
estimations of missing or noisy states and therefore coclude
that this control strategy can be used in modular multi-body
robot configurations.

IX. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate a MATLAB framework that
enables to analyse the kinematics, dynamics and control of
modular self-reconfigurable robots. The autonomous calcula-
tion of self-adaptive model is based on a recursive geometrical
approach. The proposed two-step approach for autonomous
generation of motion equations was inspired by the work from
Chen and Yang and has been modified and adapted to the
needs of robot modules developed in projects Symbrion and
Replicator. This paper is an extended version of the work
presented in [1] and has been extended with non-linear control
methods and with a state estimator for values that cannot
be measured on a real mashine. The analysis and evaluation
of the model and control strategies are inalienable before
porting the software to the robots. A corresponding ongoing
C++ framework, which will run on robots is currently in
development and will be presented in a future publications.

(a)

(b)

(c)

(d)

Figure 15: Simulation results for crab-like robot configuration.
(a) Step response of active joints with simulated sensor noise;
(b) system states; (c) estimated states; (d) error.
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