
102

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reducing Requirements Defect Density by Using Mentoring to Supplement

Training

John Terzakis

Intel Corporation, USA

john.terzakis@intel.com

Abstract—In a previous short paper [1], data

demonstrating that using mentoring to supplement training

had a significant impact on reducing requirement defect

density levels from initial to final versions of requirements

specifications for a software product was presented. This

paper provides additional details of the initial training,

mentoring and review methods delivered by the requirements

Subject Matter Expert (SME). In addition, data from a third

generation of the requirements specification is now available,

which supplements the existing defect data from the earlier

two generations. Requirements authors typically receive little

formal university training in writing requirements. Yet, they

are expected to write requirements that will become the

foundation for most future product development. Defects

introduced during the requirements phase of a project impact

multiple downstream work products and, ultimately, product

defect and quality levels. Many companies, including Intel

Corporation, have recognized this skills gap and have created

requirements training classes to address this issue. While

effective in providing the fundamentals of good requirements

writing, much of this knowledge can be misapplied or lost

without proper mentoring from an experienced requirements

SME. Our experience over the last decade at Intel has found

that adding SME peer mentoring improves both the rate and

depth of proper application of the training, and improves

requirements defect density more than training alone. The

data from case studies across three generations of a software

product will expose the issues with training alone and the

benefits of combining training with SME mentoring in order

to reduce requirements defect density levels. All three

generations of requirements specifications achieved at least a

90% reduction in requirements defect density from initial to

final releases.

Keywords-requirements specification; requirements defects;

requirements defect density; training; mentoring; multi-

generational software products.

I. INTRODUCTION

This paper is an extension of a previous short paper [1]

that presented data demonstrating the benefits of using

mentoring by an experienced requirements SME to

supplement requirements training. Details of the training

materials, additional mentoring and review examples and

additional defect density data from a third generation of the

software requirements specification will be presented.

While bachelor’s degrees exist for a variety of

Engineering disciplines, degrees and even undergraduate

courses in Requirements Engineering are scarce. Primary

requirements authors (those whose primary role is to elicit

and write requirements) may have some training.

However, secondary authors (those whose primary role is

architecture, development, testing, etc.) may have little or

no requirements training. As Berenbach, et al, state

“Requirements analysts typically need significant training,

both classroom and on the job, before they can create high-

quality specifications.” [2] To close this skills gap, many

companies have created in-house requirements courses or

contracted third-party trainers to teach the basics of well-

written requirements. Many are based on the IEEE 830

standard, [3], or the good, practical books published in the

field over the past fifteen years [4][5]. At Intel, in-house

requirements courses have been taught to over 15,000

employees since 1999. While useful for providing an

initial understanding of the issues and challenges of

requirements authoring, the knowledge gained through

these courses can be misapplied or lost due to the

inexperience of authors in writing effective requirements.

By pairing them with an experienced requirements SME,

the authors can be provided with early feedback on the

deficiencies of their requirements.

 This paper is organized into six sections. Section I is

the introduction. Section II reviews the requirements

training materials in detail. Section III discusses the

backgrounds of the authors and the review process for the

requirements. Section IV provides information on trust,

early requirements samples and mentoring. Section V

presents the requirements defect densities for all three

requirements specifications. Section VI analyzes the data

and derives conclusions based on the data.

II. REQUIREMENTS TRAINING MATERIALS

The requirements authors attended a training session on

requirements writing (some details of which are available

publicly [6]) prior to beginning work on the Software

Requirements Specification (SRS) for their generation of

the software. These training sessions focused on the issues

with natural language, attributes of well-written

requirements, a consistent syntax for requirements and an

103

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

introduction to Planguage (“Planning Language”) [7]. This

training class was a full day in length.

The training begins with the purpose of requirements.

Specifically, requirements help establish a clear, common,

and coherent understanding of what the system must

accomplish. Clear means that all statements are

unambiguous, complete, and concise. Common indicates

that all stakeholders share the same understanding.

Coherent ensures all statements are consistent and form a

logical whole. Given the number of people that consume

requirements and their differing experiences and

backgrounds (SW, HW, testing, etc.), it is essential to

project success to create a set of requirements that produces

this clear, common and coherent understanding of what is

being architected and designed. Without this, assumptions

will be made and differences of interpretation will form

leading to defects, rework, and schedule slips. A defect is

defined as a mistake in a work product (SRS, code, etc.).

Defects can be caused from lack of knowledge, lack of

attention or both. Minimizing defects improves product

quality.

A good analogy is building a house. If a house is built

with improper specifications and with shoddy workmanship

(i.e., a poor foundation), it will likely be unstable and

require “propping up” (rework) to improve its stability.

Similarly, a software product built with a poorly written set

of requirements (i.e., high defect rate) will also be unstable

and require “propping up” (defect fixes) to stabilize it. An

unhappy customer is the likely result in both cases.

The class continues with a discussion of natural

language, the language used in everyday conversations and

writing (e.g., emails and other correspondences). It is

typically the easiest form of language to learn and usually

requires no formal training. Infants learn natural language

by listening and repeating the words spoken by their

parents or siblings. While this is true for any language, the

training (and this paper) focuses on the natural language of

American English.

While easy to learn, natural language presents a plethora

of issues for requirements. These issues include ambiguity,

weak words, unbounded lists and grammatical errors.

Ambiguity occurs when a requirement can have multiple

interpretations. Weak words lack a precise or common

meaning (i.e., they are subjective). Unbounded lists have

no beginning, no end or lack both. Grammatical errors

include improper verb selection, using a slash (e.g., does

read/write mean “read and write” or “read or write”),

compound statements and passive voice.

Here are few examples that demonstrate the issues with

natural language:

The software should log invalid access attempts.

Issue: “should” implies that this is optional

The software shall be easy to install.

Issue: “easy to install” is subjective

An error report shall be generated.

Issue: passive voice—who or what is generating

the error report?

The software shall support 25 or more users.

Issues:

 “support” is a weak word, i.e., it lacks a

precise meaning

 25 or more is an unbounded list (there is no

upper limit)

In order to reduce the issues with natural language, the

class next presents the ten attributes of well-written

requirements. They are listed in Table I below.

TABLE I: 10 ATTRIBUTES OF WELL-WRITTEN REQUIREMENTS

Attribute Attribute

Complete Prioritized

Correct Unambiguous

Concise Verifiable

Feasible Consistent

Necessary Traceable

A requirement is complete when development can

proceed with minimal risk of rework or wasted effort. If a

requirement is not complete enough, the development team

will have to make assumptions about its meaning. These

assumptions can lead to differences of interpretation among

architects, coders and testers, which will result in a higher

number of defects being filed by the testing team, and

ultimately to inefficiency and unnecessary work.

Not Complete: The software shall allow some number

of incorrect login attempts.

Complete: When more than 3 incorrect login attempts

occur for a single user ID within a 5 minute period, the

software shall lock the account associated with that user

ID until reset by the administrator.

A requirement is correct when it has been reviewed by

stakeholders and SMEs (both technical and requirements)

and any errors have been fixed. These reviewers should

ensure that the requirement is accurate and does not contain

invalid assumptions, logic errors, typos, or conflicts with

internal documents or industry specifications.

Not Correct: The software shall calculate the area of a

triangle as the base multiplied by the height.

Correct: The software shall calculate the area of a

triangle as one-half of the base multiplied by the height.

A requirement is concise when it conveys its intent as

succinctly as possible. A requirement is not concise if it

contains more words than necessary, multiple requirements

104

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(“ands” or multiple sentences), or superfluous information

(opinions, rationale, etc.). A concise requirement is written

using the least number of words needed to express its

intent.

Not Concise: We’ve had a lot of negative feedback

about the format of the current local time. It is now

displayed only in 24 hour format. We should have a

configuration menu option to select 12/24 hour format.

Concise: The configuration menu shall display an

option to display the current local time in either 12 hour

or 24 hour format.

A requirement is feasible if it can be shown to be

implementable. Feasibility can be demonstrated through

implementation in previous products, simulations, analysis

and prototyping. Evolutionary requirements, those based

on pre-existing, verified requirements, are typically easier

to prove feasible. Revolutionary requirements, those that

have no current basis for development, will require a much

more thorough analysis by experienced architects and

developers.

Not Feasible: The software shall allow an unlimited

number of concurrent users.

Feasible: The software shall allow a maximum of two

thousand concurrent users.

A requirement is necessary when it is needed from a

customer, stakeholder, business or competitive perspective.

These requirements may have been gathered during an

elicitation process (internal or external), included as part of

a strategic roadmap or business plan, required as the result

of a competitive analysis or created to provide a product

differentiator. Requirements that are not necessary create

wasted effort and bloat project budgets.

Not Necessary: The software shall be distributed on

magnetic tape, 5.25 inch floppy disks, 3.5 inch floppy

disks, CD-ROM and DVD media.

Necessary: The software shall be distributed on DVD

media.

Rationale: DVD media listed as the top choice for

distribution based on feedback from our top 50 OEMs.

A requirement is prioritized when it is assigned a rank

or order level relative to other requirements. Priority can

be determined by a number of factors including value, risk,

development time, project cost, and resources required.

Priority levels are typically on a three point (High, Medium

and Low) or five point scale (1 = Highest and 5 = Lowest).

An alternative is to rank each from 1 to n, where n is the

total number of requirements. However, this method is

usually eschewed by most development teams if there are

more than fifty requirements due to the time required to

assess and assign a unique value to each.

Not Prioritized: All requirements are critical and must

be implemented.

Prioritized: 80% of requirements High, 15% Medium

and 5% Low.

Priority is an important attribute for requirements to

possess. Too often, all requirements are deemed “critical”.

If the schedule slips, the team has no basis for determining

which requirements can be postponed to a future release

since all are of equal priority.

A requirement is unambiguous when it has the same

meaning for everyone. Since requirements will be read and

utilized by many different stakeholders, writing them

unambiguously is critical to achieving a common

understanding. Each stakeholder has a different

background and experience level, so the requirements must

be written with precise language that is not open to

different interpretation. All subjectivity must be removed.

Ambiguous: The software must install quickly

Unambiguous: Where using unattended installation

with standard options, the software shall install in under

3 minutes 80% of the time and under 4 minutes 100% of

the time.

A requirement is verifiable if it can be determined that

the requirement will be or has been implemented properly.

This can be accomplished in a number of ways including

prototyping, analysis or testing. A requirement is not

verifiable if it is incomplete, incorrect, not feasible or

ambiguous, so there is a dependency on some of the other

attributes.

Not Verifiable: The user manual shall be easy to find on

the DVD.

Verifiable: The user manual shall be located in a folder

named “User Manual” in the root directory of the DVD.

 A requirement is consistent when it does not contradict

any other requirements or documents. This is an attribute

that must be evaluated for against the entire set of

requirements, not just an individual requirement. The

consistency test must be applied to other requirements,

roadmaps, internal specifications and industry standards.

Of all the attributes of a well-written requirement, this one

is the most difficult to determine because of all the

interrelationships that must be examined.

105

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Not Consistent:

#1: The user shall only be allowed to enter whole

numbers.

#2: The user shall be allowed to enter the time interval

in seconds and tenths of a second.

Consistent:

#1: The user shall only be allowed to enter whole

numbers except if the time interval is selected.

#2: The user shall be allowed to enter the time interval

in seconds and tenths of a second.

 A requirement is traceable if it has a unique and

persistent identifier. Unique means that each requirement

has its own identifier and there are no duplicate names.

Persistent indicates that an identifier, once associated with a

requirement, can never be used for another requirement.

Traceability allows requirements to be linked to other

design artifacts like use cases, test cases and even source

code. Many requirements management tools automatically

assign these identifiers.

Not Traceable: The software shall prompt the user for

the PIN.

Traceable: Prompt_PIN: The software shall prompt the

user for the PIN.

Many of these ten attributes are interrelated. For

example, a requirement cannot be complete if it is

ambiguous. Likewise, a requirement cannot be correct if it

is not verifiable. With the exception of consistent, each

requirement can be evaluated individually relative to the

nine other attributes.

In order to provide consistency, the Intel requirements

training introduces a requirements syntax of the form:

 [Trigger][Precondition] Actor Action [Object]

Note that the objects in square brackets are optional. The

actor is the part of the software or system that implements

the requirement. The action is the act taken by or event

done by the actor. Finally, the object is what the actor

takes the action on. When present, a trigger is some event

or state that causes the requirement to occur. When

present, the precondition must be satisfied for the

requirement to be executed.

Intel has adopted the convention of using the imperative

“shall” for functional requirements and “must” for non-

functional requirements, which aligns with the common

usage in industry. The words “should” and “may” imply

optionality and thus are not used for requirements.

Developers should not be given the option as to whether to

implement the requirement or not. Any requirement

assigned to a developer must be implemented.

While the words “shall” and “must” are generally

recognized as imperatives in the U.S., it is not the case in

some other countries. In fact, sometimes the exact opposite

is true. The word “should” carries a stronger meaning than

the word “shall”. This discrepancy can be resolved by

adding a note at the beginning of any requirements

specification indicating that “shall” is the imperative.

Here is an example of a requirement written using the

syntax above:

When the high temperature threshold limit is exceeded

and event logging is enabled, the event monitoring

software shall record the date and time of the high

temperature event in the system log.

Trigger: the high temperature limit is exceeded

Precondition: event logging is enabled

Actor: event monitoring software

Action: record

Object: date and time of the high temperature event

To complement this syntax, the Intel requirements

program has adopted EARS (Easy Approach to

Requirements Syntax) that was developed by Alistair

Mavin et al [8] at Rolls-Royce. This group applied EARS

to requirements for the aviation industry. It establishes a

small number of specific constrained natural language

patterns for various types of requirements. They are

summarized in Table II.

TABLE II: EARS PATTERNS

Pattern Name Keyword(s) Description

Ubiquitous N/A Always occurring or a

fundamental property

Event-Driven When Occurring as the result of an
event or trigger

Unwanted

Behavior

If…then Occurring as the result of an

unwanted behavior or error

condition

State-Driven While Only occurring while in a

particular state

Optional Feature Where Only occurring where an

optional feature is present

Complex Combinations

of the patterns

when, if/then,
while, and

where

Occurring as the result of

multiple patterns

Ubiquitous requirements are universal. They exist at all

times and state a fundamental system property. They do

not require any stimulus in order to execute. For most

products, ubiquitous requirements are usually in the

minority. Here is an example:

The software shall be available for purchase on the

company web site and in retail stores.

106

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Requirements that are event-driven occur as the result

of an event or a trigger. In other words, there must be some

stimulus that causes the requirement to execute. The

keyword “when” denotes this pattern. Here is an example:

When a DVD is inserted into the DVD player, the

software shall illuminate the “DVD Present” LED.

The unwanted behavior pattern applies to requirements

that handle unwanted behaviors including error conditions,

failures, faults, alarm conditions, disturbances and other

undesired events. The keywords “If” and “then” designate

this pattern. Here is an example

If there are not sufficient funds in the account, then the

software shall reject the withdrawal request.

A state-driven requirement occurs if and only if the

system is in a particular state. States can be conditions like

operating on battery power, using cruise control and

holding down a key. The keyword “while” indicates this

pattern. Here is an example:

While the AC power is off, the software shall illuminate

the yellow LED.

The optional feature pattern applies to requirements

that only occur if an optional feature is present. These

features may be software or hardware related. Here is an

example:

Where a HDMI port is present, the software shall allow

the user to select HD content for viewing.

A complex requirement occurs when multiple patterns

are needed to describe the action or actions. It uses

combinations of the four previous keywords (when, if/then,

while, and where). Here is an example:

While in startup mode, when the software detects an

external flash card, the software shall store video on the

flash card.

The last part of the class teaches an overview of Tom

Gilb’s Planguage [7], along with exercises to reinforce the

concepts. Planguage utilizes a series of keywords to help

define a more complete requirement by using a standard

format. The result is that requirements have fewer

omissions or missing information, reduced ambiguity and

increased reuse. Examples of essential keywords for

functional requirements appear in Table III.

TABLE III: KEYWORDS FOR FUNCTIONAL REQUIREMENTS

Keyword Description

Name a short, descriptive name for the

requirement

Requirement text defining the requirement

Rationale justification for the requirement

Priority importance of this requirement relative

other requirements

Status current state of the requirement

Contact who to contact with questions

Author who originally created the requirement

Revision revision number for the requirement

Date date of the latest revision

Defined an acronym or term definition

Additional essential keywords for non-functional

requirements appear in Table IV that follows. These

keywords help bound the testing space for quality and

performance requirements. The Scale and Meter define

what the measure is and how it will be measured. Intel uses

Minimum, Target and Outstanding (referred to in

Competitive Engineering [7] as Must, Goal and Stretch) to

define success for the non-functional requirement. Note

that Planguage is flexible in allowing keyword names to be

changed and other keywords to be added.

TABLE IV: KEYWORDS FOR NON-FUNCTIONAL

REQUIREMENTS

Keyword Description

Scale scale of measure used to quantify the

requirement

Meter process or device used to establish location

on a Scale

Minimum minimum level required to avoid political,

financial, or other type of failure

Target level at which good success can be claimed

Outstanding feasible stretch goal if everything goes

perfectly

The requirements previously presented would be entered

into the “Requirement” keyword field. The other fields

would be entered by the original author or added by others

as more details about the requirement become available.

The essential keywords should be entered for all

requirements. Additional, optional keywords can be added

as needed by team responsible for the requirements. If a

Requirements Management Tool (RMT) is used, it may

populate many fields automatically (e.g., persistent ID,

author, revision, and date).

An example of a functional requirement written using

Planguage is shown in Table V. The name is short and

succinct. The text is written for an optional feature using

the EARS pattern (“where”) and the proper requirements

syntax. All other keyword fields are populated. Any

missing information is quickly identifiable.

107

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V: EXAMPLE FUNCTIONAL REQUIREMENT

Keyword Description

Name Display_Optional_Thesarus_Icon

Requirement Where a thesaurus is present, the software shall

display a thesaurus icon on the toolbar.

Rationale Only display the icon if the thesaurus has been
purchased.

Priority High

Status Implemented

Contact John Jones

Author Sue Morris

Revision 1.1

Date January 18, 2013

An example of a non-functional requirement written

using Planguage is presented in Table VI. The word

“minimize” in the requirement is ambiguous. However,

since this is a non-functional requirement, the additional

keywords Scale, Meter, Minimum, Target and Outstanding

define what “minimize” means (between 2 and 5 seconds).

The requirement describes what will be measured in the

Scale (time) and how it will be measured in the Meter

(from order submit to order complete displayed). Optional

keywords could include Past (a list of previous order

processing times), Record (the fastest processing time

recorded) and Current (current order processing time).

TABLE VI: EXAMPLE FUNCTIONAL REQUIREMENT

Keyword Description

Name Order_Processing_Time

Requirement The software must minimize order processing

time.

Rationale Improvement request from top 5 customers

Priority High

Status Committed

Contact Nick Terry, Director of Marketing

Author Kristina Smith

Revision 0.7

Date November 19, 2012

Scale Time

Meter Measured from the user clicking on the “Submit

Order” icon to the display of the “Order Complete”

message on the order entry menu.

Minimum 5 seconds

Target 4 seconds

Outstanding 2 seconds

III. AUTHOR BACKGROUNDS & REVIEW PROCESS

The three lead requirements authors (denoted as

Author1, Author2 and Author3) attended the requirements

writing training described in the previous section. None

had any prior experience writing requirements. All were

senior software developers with extensive product

experience and were located in the United States.

Author1 created the first SRS for the software (SRS1).

Prior to this SRS, the “requirements” that existed were

scattered across a variety of locations (documents,

presentation slides, spreadsheets, emails and web sites) and

lacked a consistent syntax. This author captured a

combination of important legacy and new requirements that

were stored in a RMT. No other authors wrote

requirements for SRS1.

Author2 started with the final set of requirements from

the first author’s SRS (SRS1, revision 1.0). Due to the

increasing complexity of the product, Author2 was assisted

by four other authors starting with revision 0.4. They

contributed to about 25% of the new requirements. None

of these authors received the requirements writing training

and they were all located in different countries. Their

impact on requirements defect density will become

apparent when the data is presented in a subsequent section.

Author3 began with the final set of requirements from

the second author’s SRS (SRS2, revision 1.0). This author

was assisted by over a dozen other authors starting at

revision 0.5. They wrote approximately two thirds of the

new requirements. About half of these authors were in the

United States and attended the requirements writing class.

Those outside the U.S. did not. Only the composite data

for all authors will be reported. No defect statistics by

geographic location were collected.

Each of the requirements authors followed a similar

process. After completing the requirements writing

training, the authors began work on their SRS and

submitted early samples for review. The same

requirements SME provided feedback to each of them to

provide consistency. Since requirements were reused

across SRS generations, Author2 and Author3 were able to

benefit and begin their work from a stable, well-reviewed

set of requirements from their predecessors, although some

defects did remain. There was approximately one year

between the start of each SRS.

The early review samples (part of the revision 0.3

release for each SRS) showed requirements defect densities

of about 10, 5 and 4 defects per page for Author1, Author 2

and Author3 respectively. These figures represent the

baseline for this paper. While some of the key concepts

taught in the requirement writing training were applied

(e.g., a consistent syntax and use of Planguage), other key

concepts were not (including the authors’ continued use of

weak words, failure to check requirements for the ten

attributes, and logic issues). With this baseline in place, the

requirements SME began mentoring each of the authors.

Each SRS followed a similar path to a mature document.

Revision 0.5 documents captured feedback from peer (other

software developers) reviews of previous revisions.

Revision 0.7 documents incorporated stakeholder (testers

and other cross functional team members) feedback.

Formal change control was started at revision 0.8. At that

point, any changes to the requirements had to be formally

submitted to and approved by a change control board.

Revision 1.0 was the “official” release. All SRS revisions

were managed from the RMT.

108

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that the examples that follow have been slightly

modified from their original form to maintain author and

product confidentiality. Also, only the requirement itself is

presented, not the full complement of Planguage keywords.

IV. EARLY REQUIREMENTS SAMPLES & MENTORING

To be most effective, requirements mentoring needs to

occur early in the requirements lifecycle. In this way,

writing style mistakes and tendencies can be corrected

before they are copied and repeated on the hundreds of

requirements that will follow. This is known as defect

prevention (versus the defect detection that occurs as part of

the testing process). However, many authors are reluctant

to release requirements before they are “ready” from their

perspective. At this point, many bad habits may have

already been developed. To avoid this situation, the

requirements SME must establish a trust relationship with

the author.

How is this trust relationship established? First, the

requirements SME must demonstrate a level of

understanding of the product domain. The SME does not

have to be a content expert but should know about the key

functionality of the software. Second, the SME has to offer

constructive feedback. The requirements should be

reviewed against a checklist of criteria and the specific

deficiencies clearly identified using objective feedback

(“this word is ambiguous” vs. “this wording is bad”).

Third, confidentiality has to be maintained. The author

must feel comfortable that the feedback on the early

requirements samples provided will not be provided to

management or used in any way as part of a performance

review. Fourth, the requirements SME has to provide the

feedback in a timely manner. Otherwise, writing issues

will propagate to other requirements.

 Outside of an initial introductory face-to-face meeting,

all interactions between the requirements SME and the

primary authors were conducted over the telephone since

they worked at different locations. In the case of the

international authors, all meetings were held via telephone.

As the data will demonstrate, geographic dispersion was

not a detriment to the mentoring and learning process.

After establishing the trust relationship with Author1,

the requirements SME reviewed early requirements

samples, identified quality issues, documented those issues

and then worked with the author to rewrite the requirements

to remove the defects. Here is an initial sample

requirement from Author1:

The software should have radio style buttons to

enable/disable graphics cards.

Issues with this requirement include its optionality, the

design constraint, use of a slash and over generalization.

Specifically, the word “should” implies optionality. In

other words, it is not mandatory. The word “shall” is the

preferred choice for functional requirements. The term

“radio style buttons” is a design constraint. Requirements

should focus on the “what”, not the “how”. Why is this

style of button specifically called out? Requirements

should not constrain designs unnecessarily--leave the

implementation details to the software developers. The

slash (“/”) can cause confusion as it can mean “and” or

“or”. In this case, the meaning is clear (“or”) but in other

cases, it may create confusion (e.g., administrators/users.

Does this mean “administrators and users” or

“administrators or user”?). Finally, the term “graphics

cards” is an over generalization. Which type of graphics

cards? All graphics cards? Specific graphics cards?

Having identified and documented the issues, the

mentoring sessions focused on answering the questions

about the missing pieces of information, discussing how to

correct the defects and then rewriting the requirements.

Some of this information could only be obtained through

direct interaction with the author. In the previous example,

the updated requirement became:

The software shall display an option to enable or

disable graphics cards installed in the PCIe bus.

The requirement now has an imperative (“shall”) and

clearly identifies the action to be taken without ambiguity

or unnecessary implementation details. Other requirements

in this initial sample had similar types of defects.

Additional mentoring sessions were conducted to discover

and correct these requirements.

For later revisions of the SRS, the requirements SME

reviewed all requirements and provided detailed feedback

on the defects identified. Each requirement was then

updated in a mentoring session. By the latter revisions of

the SRS, this author was self-reviewing requirements using

the checklists provided in the requirements training class.

These SRS revisions required only minor rewrites and

contained far fewer defects.

 Author2 had the advantage of starting with the well-

reviewed set of requirements from Author1. This author

had to determine what changes were needed from the

baseline of existing requirements and then started writing

requirements for new features. Despite the strong

foundation, initial samples from Author2 demonstrated

similar issues as Author1. Here is a sample:

The software needs to provide the ability to wake on a

wireless LAN event.

An analysis of this requirement reveals that it is written

as a ubiquitous requirement when it really is not ubiquitous,

lacks an imperative, uses weak words and is ambiguous

with respect to the wireless LAN event. First, this is not a

requirement that is universal. It does require a stimulus.

What causes the software to wake? Second, the word

“needs” should be replaced with “shall”. Third, the action

109

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“provide the ability” uses a weak set of words. How is it

provided? What ability? Finally, there are many different

types of wireless LAN events. Which specific one is being

referenced here?

During a mentoring session with Author2, the

requirements SME was able to elicit the missing

information. The key pieces of information were that this

requirement should only occur in a certain OS state (sleep)

and that there needs to be a trigger (detection of a “Magic

Packet” on the wireless network). Once all the pieces of

the requirement were identified, the rewrite became:

While the operating system (OS) is in a sleep state, when

the software detects a Magic Packet on the wireless

network, the software shall wake the OS.

Defined: Magic Packet: A broadcast frame containing

anywhere within its payload 6 bytes of 1’s (0xFFFF

FFFF FFFF) followed by 16 repetitions of the system

MAC address.

The requirements SME reviewed all new requirements

from revision 0.3 through revision 1.0. Starting with

revision 0.4, four additional international authors

contributed to the SRS. Unfortunately, the requirements

training was not available at their work sites. This made

the mentoring more difficult as they were not familiar with

the rules and concepts from the course. It also resulted in a

noticeable increase in requirements defect density.

However, the one-on-one mentoring sessions to discuss

feedback and rewrite their requirements were eventually

effective in counteracting that original trend. The SME

was assisted by Author2, as this particular author embraced

the training to the extent that he would help others to

correct their requirements during review meetings.

Author3 benefited from the requirements work done by

the previous two authors. This author inherited a document

of slightly over 100 pages and feature requests from

software developers and testers that added another 200

pages to the initial SRS release. The requirements SME did

not get the opportunity to review any early samples of

requirements. The first review of SRS3 was done at

revision 0.3. Here is an example of a requirement from it:

In the past, we didn’t handle image errors well. Need

the ability to recover from a corrupt image.

This requirement has multiple issues. The first sentence

is additional information and should not be part of the

requirement text. The second sentence is written in the

passive voice. There is no actor identified to do this

“recover”. In addition, “ability to recover” is vague and

ambiguous. It needs to be defined more clearly. Finally,

what is a corrupt image? How is that determined? With

mentoring, this requirement became:

If the calculated and stored software image checksums

do not match, then the software shall:

 Display an error message indicating that the

image is corrupt

 Prompt the user to select loading a new image

from a USB port or to exit the update process

Rationale: Customer feedback from our top OEM has

indicated that error handling for corrupt software

images needs to be improved.

V. RESULTS

The data in the tables that follow documents the

requirements defect densities (measured in defects per page

or DPP) for each revision of the SRS documents. A single

requirement could have multiple defects (e.g., not feasible,

weak words, ambiguity, etc.). Note that these formatted

revisions were generated from requirements that were

stored and maintained in the RMT. The elapsed time from

initial to final release was approximately one year in each

case. The same requirements SME mentored all

contributing authors and reviewed all SRS revisions.

Table VII presents the requirements defect density for

SRS1, which was written by Author1. From revision 0.3 to

1.0, the defect density dropped from 10.06 DPP to 0.22

DPP, a reduction of about 98%! Without mentoring, this

author would have continued to inject about 10 defects per

page of requirements. At revision 1.0, there would have

been approximately 450 defects in the SRS. As a result of

SME mentoring, the actual document had only 10 defects, a

difference of 440 defects. The vast majority of these

defects would have eventually propagated into the code,

requiring rework to remove them.

TABLE VII: REQUIREMENTS DEFECT DENSITY SRS1

 Revision # of

Defects

of

Pages

Defects/

Page (DPP)

%

Change

in DPP

0.3 312 31 10.06

0.5 209 44 4.75 -53%

0.6 247 60 4.12 -13%

0.7 114 33 3.45 -16%

0.8 45 38 1.18 -66%

1.0 10 45 0.22 -81%

Overall % change in DPP revision 0.3 to 1.0: -98%

The data in Table VIII shows the requirements defect

density for SRS2. This document was written primarily by

Author2, who was assisted by four additional authors

starting at revision 0.4. Their impact is immediately

evident from the table. While the defect rate dropped

slightly from revision 0.3 to 0.4, it rose by 20% from

revision 0.4 to 0.5 with the contributions from the untrained

authors. However, with mentoring from the requirements

SME, the downward trend in defect density resumed with

110

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

revision 0.7 and subsequent revisions. Overall, this SRS

went from an initial 4.58 DPP to a final 0.94 DPP, an

overall decrease of 79%. Again, the importance of

mentoring is quite apparent. At the 5.40 DPP rate present

at revision 0.5 (due to the injection of requirements from

untrained authors), the final revision of the SRS would

have had about 659 defects versus the 115 defects present

in revision 1.0. The result is 544 fewer defects introduced

into the software development process.

As mentioned previously, the four additional

requirement authors that contributed to SRS2 were located

outside of the United States. The key challenges for the

requirements SME were to provide mentoring without these

authors having taken the training and to establish trust

relationships without meeting these authors in person. The

first challenge was addressed by reviewing the training

materials with the authors on a one-on-one basis. While

not as effective as full classroom training, the key concepts

were conveyed. The second challenge was a bit more

difficult due to the distance and language barriers.

However, by providing previous testimonials on the

advantage of mentoring and the data on the importance of

minimizing requirements defects, the trust relationships

were built. All requirements mentoring sessions were

conducted via email and phone.

TABLE VIII: REQUIREMENT DEFECT DENSITY SRS2

Revision # of

Defects

of

Pages

Defects/

Page (DPP)

% Change

in DPP

0.3 275 60 4.58

0.4 350 78 4.49 -2%

0.5 675 125 5.40 +20%

0.7 421 116 3.63 -33%

0.75 357 119 3.00 -17%

1.0 115 122 0.94 -69%

Overall % change in DPP revision 0.3 to 1.0: -79%

The requirements defect density for SRS3 appears in

Table IX. It was initially composed by Author3. Due to a

significant increase in functionality and requirements

requests from members of the cross functional team, the

first release of SRS3 had almost triple the number of pages

as the final release of SRS2. The initial defect density for

Author3 was 3.67 DPP, which reflected the good

foundation of requirements that the first two requirements

authors had provided. With mentoring, this rate went down

to 2.54 DPP at revision 0.5 (about a 31% decline).

Starting at revision 0.5, over a dozen other authors

started contributing requirements to the SRS. Those

authors located in the U.S. received the requirement writing

training prior to entering requirements into the database.

Those authors located elsewhere in the world were not

trained. Again, the consequence of having untrained

authors writing requirements is apparent. While the defect

density dropped by 31% from revision 0.3 to revision 0.5

(as the requirements SME mentored Author3), it rose by

9% when the new authors contributed requirements for

revision 0.6.

An intensive mentoring period ensued that focused on

the large number of open defects (830 in total). The

requirements SME scheduled phone meetings with the

domestic authors. Due to the time zone differences, most

of the mentoring with the international authors was done

primarily via email. Requirements defects were identified

and an explanation was provided as to the nature of the

problem. Any defects that could not be resolved via email

were eventually addressed with a phone meeting. While

perhaps not as effective as one-on-one calls, the email

mentoring was successful in reducing the number of defects

from 830 to 212 from revision 0.6 to 0.68 (an almost 75%

decrease). Overall, the requirements defect density for

SRS3 dropped from 3.67 DPP at revision 0.3 to 0.40 DPP

at revision 1.0 (an 89% decrease), despite the large influx

of authors. At the original 3.57 DPP rate, the final 425

page document would have had over 1500 defects versus

the actual number of 172. Mentoring continued to be very

effective in reducing requirements defects.

TABLE IX: REQUIREMENT DEFECT DENSITY SRS3

Revision # of

Defects

of

Pages

Defects/

Page (DPP)

% Change

in DPP

0.3 1126 307 3.67

0.5 750 295 2.54 -31%

0.6 830 300 2.77 +9%

0.65 335 298 1.12 -60%

0.67 212 377 0.56 -50%

0.80 177 404 0.44 -21%

1.0 172 425 0.40 -9%

Overall % change in DPP revision 0.3 to 1.0: -89%

VI. CONCLUSIONS

This multi-year study yielded three key results. First,

limited training alone is not sufficient to take untrained

requirements authors and turn them into authors capable of

writing high quality software requirements specifications.

There is simply too much information for them to absorb

and apply in a one or two day course. Second, mentoring,

when combined with training, is effective in quickly

correcting bad writing habits. The focus on requirements

defect prevention yields dramatic reductions in overall

defect density rates within several document revisions.

Third, distance is not a barrier to mentoring. Excellent

results can be achieved even with thousands of miles and

double digit time zone differences separating the mentor

from the mentee.

To the inexperienced requirements author, training on

best requirements writing practices can be like “trying to

drink from a fire hose”. There are so many new concepts

presented, rules to follow and syntaxes to adhere to that the

student may be overwhelmed and unable to fully apply all

111

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the concepts. In this study, the defect rates for the three

lead requirements authors at their initial SRS release were

10.06, 4.58 and 3.67 DPP (the defects rates for Author2 and

Author3 are actually higher if the number of defects and

pages that existed in the prior revision 1.0 documents are

removed). Without mentoring, these authors would have

produced final versions of their software requirements

specifications with hundreds to thousands of defects. A

significant percentage of these requirements defects would

have appeared as code defects.

The impact of mentoring to supplement training is

immediately evident in the defect density data. Author1

demonstrated a 50% defect density reduction in the first

revision following the start of mentoring and a 98% drop

by revision 1.0. Author2 and Author3 showed decreases of

2% and 31% respectively in their first revisions with

mentoring. The defect density rate for the four new

requirements authors on the second SRS declined by a

collective 33% following mentoring. Similarly, there were

reductions of 60% and 50% in the DPP rates for the

requirements authors on the third SRS after engaging with

the requirements SME. The benefits of this defect

prevention focus were exemplified by the final defect

density rates of less than 1 DPP at revision 1.0 for all three

documents.

As noted, all requirements mentoring sessions were

conducted remotely. Requirements authors were scattered

across the United States and several other countries. Most

of the lead authors were located several thousand miles and

three time zones away from the requirements SME, so

frequent in-person meetings were not economically

feasible. When the international sites were added, travel

was not an option. Hence, the majority of the mentoring

time was conducted via the telephone. Despite the lack of

direct contact, dramatic decreases in SRS defect density

rates (>79% in each case) were made in all three

documents.

This paper has provided data demonstrating the benefits

of combining requirements SME mentoring to supplement

classroom requirements training in order to produce higher

quality software requirements specifications. Even with

classroom training, inexperienced authors will continue to

inject defects into their requirements. In a SRS with

several hundred pages, a requirements defect rate of

between 5-10 DPP will result in thousands of defects.

Ultimately, these defects will need to be corrected in the

software at a much higher cost than correcting them in the

requirements phase. Requirements mentoring, which

focuses on defect prevention through early reviews, is a

cost effective way of improving SRS quality. This is a

process requiring human interaction and evaluation. While

word processors can be used to detect some defects (e.g.,

weak words or unbounded lists), the majority of the defect

detection must be done by a requirements SME using

established criteria. The benefits of fewer requirements

defects will lead to less project rework and ultimately to

improved overall software quality.

ACKNOWLEDGEMENTS

The author would like to acknowledge Erik Simmons,

who authored the Intel requirements training course

materials referenced in this paper (sections available from

several conference proceedings including the 2011 Pacific

Northwest Software Quality Conference [6]) and Bob

Bogowitz and Sarah Gregory for their contributions to the

review of this paper.

REFERENCES

[1] J. Terzakis, “Requirements defect density reduction using

mentoring to supplement training,” Proceedings of the
Seventh International Multi-Conference on Computing in the
Global Information Technology (ICCGI 2012), 2012, pp.
113-114.

[2] B. Berenbach, J. Kazmeier, D. Paulish, and A. Rudorfer,
Software & System Requirements Engineering in Practice,
McGraw Hill, March 26, 2009.

[3] IEEE Std 830-1998, “IEEE recommended practice for
software requirements specifications,” the Institute of
Electrical and Electronics Engineers, Inc., June 25, 1998 .

[4] K. Wiegers, Software Requirements, 2nd Edition, Microsoft
Press, March 26, 2003.

[5] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques, John Wiley & Sons Ltd., August
25, 1998.

[6] E. Simmons, “21st century requirements engineering: a
pragmatic guide to best practices,” Proceedings of the 2011
Pacific Northwest Software Quality Conference (PNSPC),
2011, pp. 21-40.

[7] T. Gilb, Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software
Engineering Using Planguage, Butterworth-Heinemann, June
25, 2005.

[8] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak,
“EARS (Easy approach to requirements syntax),”
Proceedings of 17th International Requirements Engineering
Conference (RE ‘09), 2009, pp. 317-322.

