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Abstract—Application specific interaction models will be required
to support efficient communications between distributed applica-
tions with disparate network requirements within the Internet of
Things. This paper shows that intelligently selected transport
protocols are able to provide increased efficiency of network
resource usage under specific network conditions. Real-time
adaptive selection of transport protocols makes it possible to
achieve a distributed embedded system with heterogeneous actors
that can react to both application-specified Quality of Service
(QoS) requirements and varying network conditions. vNET, a
custom, virtualisation based, distributed network emulation test
bed will be presented and validated using an MQTT performance
analysis before using it to validate the premise of multi-protocol
transport layer QoS.
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I. INTRODUCTION

This paper is an extended piece based on [1]. It provides
additional content on the virtualisation based network emula-
tion test bed developed for this work.

Traditionally networked applications are designed with
a pre-selected transport layer protocol. Optimisations for a
specific application are done at the application layer and all
messages are transported using the same protocol, either TCP
(Transmission Control Protocol) [2], UDP (User Datagram
Protocol), or with an overlay transport protocol such as RTP
(Real Time Protocol) [3]; Figure 1 represents this paradigm.
This is typically fixed at application development; however,
there is no fundamental requirement for this to be the general
rule. Whilst networked applications need to exchange infor-
mation, there is no reason why application layer code should
be concerned with how that information is transported. There
are a multitude of existing, mature transport layer protocols
available each designed to tackle specific network problems
[4]. Utilising these many protocols, a single application could
leverage the advantages of each protocol individually at the
appropriate time given an environment with dynamic network
conditions and application requirements. Acknowledging these
points raises the challenge of defining a generic framework
that allows for run-time selection of transport protocols to dy-
namically match specific application requirements and, specif-
ically, message patterns used by the application. If the low
level network interactions enforced by a specific transport
protocol and higher level architectural messaging pattern are
completely decoupled from the application then dynamically
modifying the combination can be used as standard. If certain

transport protocols and messaging pattern combinations are
able to provide higher performance in terms of bandwidth,
latency and reliability in certain network environments than
others can do, then by supporting adaptive selection of these
combinations it becomes possible to have a distributed real-
time embedded (DRE) system with heterogeneous actors that
can react to both dynamic application QoS requirements and
network conditions. This model is shown in Figure 2. The
middleware system required for managing the selection of the
large numbers of transport protocols referenced in Figure 2 has
been developed and presented in DIRECTOR: A Distributed
Communication Transport Manager for the Smart Grid [5].

Figure 1. Traditional: Applications are supported by a single interaction
model (in this case, TCP Request / Reply). The utility represents systems

providing the back end infrastructure.

Figure 2. Proposed: Applications using multiple run time optimised
interaction models (managed using middleware) instead of only TCP

Request / Reply.

An ”interaction model” as used throughout this work
describes the virtual patterns of packets, datagrams or frames
(transport protocol and messaging pattern combination) that
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constitute a data communication session between at least two
networked devices. A specific interaction model will commu-
nicate over compatible interfaces. For example there is a clear
difference in interaction model between communicating with
unicast and communicating with multicast transports. Figure
3 further demonstrates how multi-protocol QoS could be used
to exploit the under utilised optimisation opportunities using
a more specific example. Both approaches shown achieve the
same overall goal - the three receiving nodes obtain the sending
nodes data. However, in this scenario, multicast offers clear
bandwidth efficiency increases compared to unicast. Therefore,
an intelligent system should be able to automatically make this
determination to improve performance in a selected metric.
This premise extends much further than unicast, multicast and
bandwidth efficiency however. There are numerous approaches
to getting packet X to destination(s) Y. Each interaction model
has its own set of attributes which affect the performance of
both the application and the underlying network in different
ways. The attributes can be classed and characterised to
provide groups of interaction models that provide specific
advantages in certain communication scenarios. So while it
is possible to support many disparate IoT applications with a
fixed interaction model, typically tied in with a single transport
protocol, it would be more efficient in terms of network
resources to be able to provide tailored interaction models on a
per-application basis. These tailored interaction models would
be designed to meet specific Quality of Service (QoS) levels
utilising network resources more efficiently than the case when
only a fixed interaction model approach, often set at system
design stage.

Figure 3. Interaction model differences for disseminating the same data
using Multicast vs. Unicast

This paper shows experimental results which demonstrate
that specific interaction models will provide performance gains
over a pre-defined communication transport architecture and
that certain combinations provide useful gains over other
potentially viable options. The potential of generating a large
scale mapping of transport combinations and application re-
quirements will be explored. The main contributions of this
paper are:

1) An analysis of performance of a distributed system
for different interaction models by running applica-
tion scenarios using a fixed, realistic, network topol-
ogy.

2) Results that show that the performance of the Dis-
tributed Real-time Embedded (DRE) applications

varies significantly for different interaction models,
suggesting that this then can be used to optimise the
performance of the individual transactions that make
up the application network traffic.

3) Presentation of vNET, a virtualisation based, dis-
tributed network emulator.

The paper is organized into the following sections: section
II provides the related material and further motivation for
this work. Section III presents the experimental emulation test
bed setup and the viable communication interaction models.
Section IV presents the experimental parameters and the
results. Section V presents a potential middleware solution
that can capitalise on these findings. Section VI presents the
conclusions from the experiments and the direction of future
work.

A. Related Work and Motivation
Environments targeted by this work have the follow char-

acteristics:

1) They are distributed and built from a large number of
heterogeneous embedded devices, running a number
of different applications.

2) They are typically loosely-coupled.
3) The majority of the actors are communication

network-constrained rather than resource-constrained.
4) Each device is expected to run many different appli-

cations with varying network requirements.

One example of such a system is the SG, and in particular,
the subset of applications that intend to use consumer / demand
side equipment and systems to achieve grid specific goals such
as load shedding or load shifting or in more general terms,
Demand Side Management (DSM). Section A introduces the
SG and its edge applications. Several related works exist
which support with the premise of providing DRE software
applications, such as those that will operate in a SG, with
flexible communication choices in order to either achieve better
network resource allocations or meet specific communication
requirements. These overviews are presented in sections B and
C.

1) The Smart Grid and Demand Side Management (DSM):
The SG can be seen as a large scale distributed IoT system,
with a large component being embedded sensor-actuator net-
works to support distribution power network monitoring and
control and DSM interactions. DSM focuses around the control
of demand side loads in the electricity distribution network
in order to manipulate network conditions [6]. DSM breaks
down into a number of related but still significantly different
enough sub-applications to warrant different communications
approaches. DSM can be broken down into two major sub
categories, Demand Control (DC) [7] and Demand Response
(DR) [8]. DC is defined as DSM programs that have centralized
direct control over consumer loads [7]; DR is defined as DSM
programs that use indirect methods (typically pricing) to affect
changes [9]. Each approach requires a different communica-
tions paradigm in order to utilise network resources efficiently
and operate optimally. The above presents an ideal system for
this work. It presents the rare opportunity to take a completely
different approach to facilitating machine-to-machine commu-
nications in a DRE environment. The SG will eventually call
for millions of networked geographically-distributed embedded
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devices to be deployed into the demand side of the power
distribution grid. These devices are either designed to utilise
existing networks such as domestic broadband or cellular
networks and coexist with the existing traffic, or to utilise
purpose built resource constrained networks such as various
forms of wireless mesh or power line communications [10].
Both approaches result in strict network resource constraints
for the applications. These constraints further increase the
impact run-time transport level adaptive QoS will have in
such environments. The main argument against dynamically
matching interaction models to application requirements and
real time network conditions has been one of complexity.
With sensor networks, the SG and the Internet of Things
(IoT) in general becoming more prevalent, the environment is
changing and these arguments are no longer valid. Our propo-
sition is that the performance gain introduced by dynamically
matching interaction models outweighs the required increase
in complexity of the architecture and embedded hardware.
DSM can be shown to be a good example of how tailored
communication paradigms could be beneficial in the SG and
similar environments.

2) Transport Mechanisms : The concept of adaptive trans-
port layer services for resource-constrained environments is
well explored; however, the approach taken usually consid-
ers the transport protocol to be used already pre-selected at
development stage, and only considers adaptations above the
transport layer. They do not propose to provide application op-
timisations at the lower transport level. However, applications,
regardless of the type of resource-constrained environment, can
benefit from tailored communication service at the transport
layer. Mutlu et al. [11] presents a middleware solution for
performing transport level QoS focused on Bluetooth appli-
cation profiles and uses CORBA (Common Object Request
Broker Architecture) [12] to facilitate the middleware. While
the scope is clearly limited, and transport protocol choices
are not part of the QoS mechanism, the motivation is similar.
Furthermore, it can be shown that different communication
protocols have inherently different QoS characteristics and that
using targeted protocols with specific applications can improve
performance with a number of chosen metrics. Weishan et al.
[13] recognise this and provide experimental results related to
protocol switching overhead and also implement the system
using a middleware solution. They conclude that protocol
switching overhead is minimal with their chosen transport
protocols and that protocol switching is beneficial to DRE
environments.

3) QoS Architectures for DRE systems: The works high-
lighted here are attempting to improve or maintain DRE ap-
plication performance in sub-optimal or resource-constrained
networks by utilising real-time adaptive QoS management
mechanisms. [14], [15], [16] focus on a single interaction
model and attempt to provide adaptive QoS within these
confines. It demonstrates that additional QoS optimisation
opportunities are available if the scope of the system includes
controlling lower level attributes such as interaction models
in conjunction with the adaptive QoS mechanisms. For ex-
ample Wenjie et al. [15] propose a QoS adaptive framework
for Publish-Subscribe Service called QoS Adaptive Publish-
Subscribe (QAPS). They define several QoS policies and focus
on fault tolerance and dependability of services. Schantz et al.
[17] present a distributed, real-time embedded system capable

of adaptive QoS. They describe in detail several methods
of implementing end-to-end adaptive QoS mechanisms and
explain how the work gives DRE applications more precise
control over how their end-to-end resource allocations are man-
aged. These proposed adaptive QoS mechanisms all address
the same problem as this paper, but these implementations
are limited to the application layer instead of considering a
multi-protocol transport layer to access additional optimisation
opportunities. Zieba et al. [16] develop the concept of quality-
constrained routing in publish / subscribe messaging archi-
tectures. They develop a system which integrates application
quality requirements into the message routing architecture in
order to better support dealing with varying network conditions
such as dynamic network topologies and link characteristics.
The idea of integrating the dynamic application requirements
into the communication paradigm provides a critical distinction
from the others and further reinforces the need for verified
optimised communication paradigms in order to meet these
dynamic requirements.

II. VNET: A VIRTUALISED NETWORK EMULATION
TEST-BED FOR THE EMBEDDED INTERNET OF THINGS

Developing and evaluating network solutions for IoT envi-
ronments, especially those near deployment, requires a method
of allowing the participating entities and critical hardware
components to interact in a controllable, scaled way. A real
world trial would be ideal as it would produce highly detailed
and accurate results but the cost of this approach is often
prohibitive. Another solution is to run simulations which are
cheap, especially if there is no real-time requirement, but
only provide results as accurate as the models used and the
assumptions made. There are many network simulation tools
available such as Qualnet and NS2/3 [18], [19] that already
have tried and tested networking models for a variety of
scenarios. However, for systems that can be described as com-
plex networks of discrete components like multi-application
IoT environments, simulation does not naturally lend itself.
Providing models for each disparate networked entity is time
consuming and furthermore if the goal is to evaluate how
software or devices that utilise custom interaction models
perform in a distributed network, simulating these entities
would often require re-implementing the network code so
that it is compatible with the simulator. This is inefficient
and difficult especially if the system is required to react to
unscripted network events.

Network emulation provides a viable and valuable alter-
native in these cases. With emulation, the network and the
devices that a system consists of are completely represented
and inherently provide the same interfaces and functionality
the real world system would. This allows real development
code to be directly evaluated in an easily controllable and
scalable manner without resorting to a physical deployment.
The emulation test-bed can be seen as a condensed version of
a real life system with all the varying levels of complexity a
real world system would have, from the standard open source
software running on each node down to the physical layer
of the network. In addition to this, the ability to pass real
hardware to specific nodes within the network allows OS driver
interactions and hardware choices to be evaluated potentially
revealing incompatibilities and areas for optimisation before
moving onto scaled real-world trials. Until relatively recently,
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full network emulation on a useful scale for evaluating DRE
environments has been difficult to achieve, mainly due to com-
puting resource constraints. Recent advances in virtualisation
technology can be used to address this problem. Furthermore,
as IoT devices are typically resource constrained and relatively
low performance, large numbers can be fully emulated with
modest, and therefore inexpensive, host hardware. This makes
an emulation test-bed a valuable and more suited tool in evalu-
ating embedded distributed networks compared to simulation.
Furthermore, real network hardware is incorporated into the
test-bed as a proof-of-concept for hardware-in-the-loop (HIL)
emulation based testing which provides the ability to evaluate
real hardware and driver choices for possible incompatibilities.

This section presents:

1) A virtualisation based network emulation test bed that
allows unmodified code and real hardware / driver
interactions to be evaluated in an extensible, fully
controllable distributed, software defined, networked
environment.

2) A series of experimental scenarios based on the IBM
MQTT performance analysis [1]. These experiments
will focus on analysing CPU and bandwidth con-
sumption of the various QoS levels MQTT provides
and will demonstrate the functionality and capabili-
ties of the test-bed.

A. Network Emulation Related Work
Basic requirement set for a viable distributed network,

embedded device test-bed:

• Complete flexibility in terms of evaluating software in
both user and kernel space.

• Full integration with physical networks.
• Ability to evaluate real hardware and driver choices.
• Scalable in terms of node numbers.
• Low emulation overhead.

Several candidates were identified which met some of these
requirements. The rest of this sections evaluates these potential
choices.

Network analysis through the use of emulation and virtu-
alisation is not a new area [20], [21], [22], [23]. There is a
large amount of work that uses network emulation due to the
benefits it provides over purely simulation based analysis.

The Common Open Research Emulator (CORE) used by
[23] provides an ideal example of the capabilities of existing
emulation test-beds. CORE is the closest comparable technol-
ogy to the emulation test bed described in this work. However,
there are 2 areas where CORE lacks features that allow access
to previously unexplored analysis opportunities:

1) CORE does not support passing through physical
hardware such as NICs, storage controllers and other
application specific hardware.

2) The LXC (Linux Containers) used by CORE must use
the same host system kernel and so each emulated
node cannot use a custom kernel or kernel level
modifications and this limits flexibility.

Mininet [24] is another network emulator that uses LXC.
It is provides the ability to evaluate large networks using

consumer grade PC hardware. Mininet explicitly targets Soft-
ware Defined Network (SDN) environments and allows vendor
independent OpenFlow interface compatible controllers to be
experimented with. While Mininet, like CORE, are extremely
useful network emulation tools, they are still limited by LXC.
While LXC allows greater numbers of nodes to be emulated,
the lack of complete isolation and ability to implemented
kernel level or individual network stack modifications is clearly
limiting.

Cooja [25] is a Java based contiki [26] mote simulator.
Contiki is an OS for small embedded sensor platforms and
Cooja was developed in order to evaluate interactions between
small numbers of them without resorting to physical trials.
Cooja is able to simulate at multiple layers including, the
network layer, the OS layer and the machine instruction set
layer if required. While Cooja is ideally suited for testing
small (<100) node mote networks, its usefulness outside such
network environments is limited.

TABLE I. Related Network Evaluation Tools [27] [28]

Key
Tech

Node
Limits

Network
Limits

Target
Scens

Comments / Use cases

CORE LXC, NS No hard
limit

Not
Real
Time

Non
specific

Limited interactions with
physical networks

Cooja Java, NS <100
nodes

Mote
Inter-
faces

Contiki
wireless
mesh

Limited to evaluating motes.

Mininet LXC 4096 per
host

4Gbit/s
with
4GHz
CPU
core

SDN
Open-
Flow

Large scale topology evalua-
tion, SDN algorithms, Limited
interactions with physical net-
works

vNET ESXi,
VMs

512 per
host

9.5Gbit/s
vmxnet3

Near
deploy-
ment
testing

Embedded Hardware Eval-
uation. Efficient interactions
with physical networks. Soft-
ware flexibility.

Expanding on these points:

Using a virtualisation technology that can take advantage of
AMD-V’s IOMMU or Intel’s VT-d virtualisation technologies
would allow real hardware devices to be passed to a virtual
machine. The virtual machine kernel recognises the hardware
as it would in a real system and loads the standard drivers
for its operation. This allows the intricacies of real driver /
hardware interactions to be evaluated. For example, a previ-
ously emulated key backbone connection could be seamlessly
brought out into the real world using physical connections
and network interfaces so that hardware chip sets and driver
optimisations could be tested under varying load levels before
resorting to comparatively expensive and time consuming real
world scaled trials. This physical hardware can quickly be
assigned to any hosted virtual machine and used natively. This
is especially useful for systems that are near deployment.

LXC does not provide virtual machines, it provides a
virtual environment. Therefore, the major problem with using
LXC and similar container based virtualisation technologies, is
the lack of complete isolation between virtual machines. Each
LXC container shares the same kernel with one another and
also the host itself. This means all software must be compiled
for the same CPU architecture and kernel modifications be-
tween nodes are not possible. Emulating a network of disparate
devices with this technology is therefore more difficult and
restrictive.
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For these reasons a new and custom fully virtualised
network emulator was required.

B. Test-bed Components
The following section describes the various software tools

and components that make up the virtualised emulation test
bed. The following components are discussed:

1) Virtualisation hypervisor. Provides the virtual dis-
tributed environment and resource usage monitoring.

2) WANem. Provides control over the behaviour of spe-
cific individual communication links and network
segments

3) TCPDump and WireShark. Provides data capture and
offline analysis.

4) A set of custom Windows Power Shell VMware
vSphere CLI scripts for deploying and manipulating
custom virtual machines and their allocated resources
quickly and efficiently.

C. Hypervisor Choice
There are a number of commercial and open source virtu-

alisation technologies available. Specifically a native or ‘bare
metal’ hypervisor was desired over a ‘hosted’ hypervisor in
order for the computational virtualisation overheads to be as
small as possible.

Figure 4. Native (bare metal) vs. hosted hypervisors.

Figure 4 shows the key difference between the choice of
native and hosted hypervisors. A hosted hypervisor requires
the support of an underlying general purpose operating sys-
tem (OS), or host OS. This host OS requires computational
resources such as CPU time, storage I/O and Memory I/O
in order to operate and this means these resources are not
available to the hosted hypervisor guest OS. A bare metal or
native hypervisor does not require this support and therefore
more resources are available to the guest OS. The requirement
of a bare metal hypervisor limits the technology choices to:

1) VMWare ESXi
2) Xen Hypervisor
3) Microsoft Hyper-V
Each of these technologies has the same basic functionality

and could have been used to implement the emulation test-
bed. ESXi is largely considered the most mature product

within enterprise and provides a robust VM management
infrastructure that would make implementing and operating
the test-bed easier. For these reasons ESXi was chosen as the
emulation test beds native hypervisor.

D. Virtualised Distributed Environment - ESXi
Enterprise-class virtualisation provides a convenient ap-

proach to large scale cheap and efficient emulation. The test-
bed described in this paper uses the VMware ESXi 5.1 bare
metal hypervisor virtualisation technology [29]. ESXi allows
the complete virtualisation of x86-64 based computers on a
large scale. The proliferation of enterprise class technology
such as Intels VT-x and AMDs AMD-V into consumer PC
hardware provides dedicated on die hardware for accelerat-
ing virtualisation operations. This significantly improves the
performance of virtualisation over previous generations of
hardware. While typically this virtualisation technology is
used to consolidate services onto a single set of server grade
hardware it also has the potential to be used in unconventional
ways. In this case the technology has been used to host 350
micro guests. Each of these guest nodes can be allocated a
fixed amount of computing resources and / or physical hosted
hardware in order to emulate a specific real world resource
constrained device. Figure 5 shows an overview of the test
environment. Each network segment represents an isolated
network. Each network segment has an network bridge which
connects it to neighbouring segments. Traffic is controlled here
to emulate various network types and conditions. The system
is managed by an external desktop computer which runs the
VMware vSphere client and executes the custom CLI scripts
detailed in section II-G. WAN access through Network Address
Translation (NAT), and DHCP and DNS services are optionally
provided to experimental nodes using a dedicated VM running
the open source pfsense [30] 2.1 routing OS. The diagram
shown in Figure 5 shows a network topology for emulating a
Open Automated Demand Response Real Time Pricing usecase
(OpenADR RTP) [31] but the topology is easily reconfigured
through the vSphere software.

The physical hardware of the host consists of a 3.12GHz
8 core AMD FX-8120, 32GB DDR3 memory and 960GB
of Solid State Drives (SSD). This hardware provides enough
computing performance to support 350 fully implemented
nodes. This hardware is now several generations old. Com-
mercial offerings from both AMD and Intel have increased
both Instructions Per Clock and base clock speeds of their
processors. This means that for the same cost more nodes can
now be supported.

E. Network Connectivity Emulation WANem
Network connectivity is emulated through the use of

virtualised switches, traffic shaping and virtualised software
network bridges. Complex network topologies can be emulated
by introducing these virtual components at specific points in
the virtualised environment. Traffic shaping is provided by
WANem [32] a software WAN emulator. It provides the ability
to manipulate many common network characteristics including
bandwidth limitation, latency, packet loss and random network
disconnections. Non ideal networks can be emulated by setting
various levels of packet loss and packet corruption and this
allows a system’s behaviour to be evaluated under sub optimal
conditions. Multiple, dedicated TCPDump traffic sinks are
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Figure 5. Overview of vNET. S1 represent a NAN. S2 represents a utility’s
systems. S3 represents the utility’s network infrastructure. All segments are

software defined and are reconfigurable.

deployed throughout the topology to collect packets at key
points.

F. Result capture and analysis TCPDump, Wireshark and
ESXi

Utilised computing resources (CPU, Memory, Disk and
RAM IO etc.) are recorded using the built in monitoring
features of the ESXi host which provides statistics for all
virtual machines. This feedback allows development code
to be optimised before deployment potentially reducing the
end target hardware cost. TCPdump[33] provides a packet
level capture of all transmissions and Wireshark [34] provides
the facility to analyse this capture in detail for lost and
corrupted packets, retransmissions, packet latency and protocol
behaviour. This is a key feature for developing distributed
application code. It allows code to be certified as functional
before deployment.

G. PowerShell scripts

A method of managing this network of virutal machines
was needed. This was provided through Windows PowerShell
which is a task automation and configuration framework.
The VMWare vSphere CLI can be controlled using custom
PowerShell. Therefore, to take advantage of the management
interface, a number of custom scripts and a CLI was developed
to facilitate the following operations:

1) Begin executing the chosen scenario.

2) Set Maximum Transmission Unit (MTU) of specific
nodes. This is useful for emulating transactions with
increased protocol overhead.

3) Clone VMs from template. Useful for deploying new
scenarios rapidly.

4) Destroy VMs.
5) Power up all VMs.
6) Set CPU limit with MHz resolution. Useful for em-

ulating CPU constrained devices.
7) Set CPU reservation. Useful for guaranteeing certain

nodes specific processing resources.
8) Power on specific VMs.
9) Restart specific VMs.

10) Change VM network host name.
11) Issue custom command. Useful for providing addi-

tional configuration flexibility - takes standard BASH
commands and passes them to the chosen nodes.

These scripts allow easy manipulation of the emulation test
bed and the virtual machines within it. These files are currently
being made publicly available and in the mean time can be
requested by email.

III. VNET VALIDATION: EXPERIMENTAL SCENARIOS

For these experimental scenarios the Message Queue
Telemetry Transport (MQTT) [35] protocol was chosen.
MQTT is designed to be an efficient, broker-based, pub-
lish / subscribe transport protocol. MQTT was chosen to
demonstrate vNET as it is well suited to environments with
constrained resources, for example where the network is ex-
pensive or the embedded devices involved are CPU or RAM
constrained. This, coupled with the existing IBM performance
[36] analysis will provide a good base for vNET validation.

Few performance analyses have been attempted for MQTT
to date [36], [37] and neither has attempted a fully emulated
testing approach. Fenton [36] used physical server grade
hardware to analyse the performance of the IBM MQTT
broker software under load but used artificial traffic gener-
ation techniques to emulate incoming traffic which limited
the scope of the performance analysis to the broker. Perez
took a fully simulated approach using the OMNeT++ [38]
network simulator, which restricts the flexibility and limits
usefulness of the test-bed. The experiments described here take
the fully emulated approach with the addition of real hardware
at critical points in the network topology in order to evaluate
HIL potential. Unlike the experiments performed by Fenton
which focused solely on the broker, the whole network is
emulated all the way from broker to clients.

The IBM performance analysis of MQTT [36] specified
two scenarios. These have been replicated (but scaled down)
in order to show the emulator it can be used to experiment
with arbitrary scenarios and network topologies. They are:

1) Multi-publisher, single-subscriber.
2) Multi-publisher, multi-subscriber.

In the first scenario messages are sent to the broker at a
rate of 100 per second from randomly selected clients. A single
subscriber receives all of the publishes.

In the second scenario each client subscribes to one single
topic. Message rates are the same as in scenario 1. It also
publishes to a different single topic. Each topic a client sub-
scribes to is published to by only one other client. Therefore,
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Figure 6. Scenario 1. The broker bridge link uses HIL and brings the traffic
into the real world using physical network adapters.

this scenario can be seen as each client having a one to one
mapping with another client.

Figure 7. Scenario 2. HIL is used in the same position.

For each scenario all three MQTT QoS levels are experi-
mented with.

1) QoS 0 - The broker/client will deliver the message at
most once, with no confirmation.

2) QoS 1 - The broker/client will deliver the message at
least once, with confirmation.

3) QoS 2 - The broker/client will deliver the message
exactly once, with confirmation.

These six experiments provide results on CPU and network
utilisation for both broker and clients.

While the IBM experiments have influenced the scenarios
tested in this work, we are are not simply replicating them
and there are several key differences. The experiments are
scaled to 350 nodes. This is the limit of the hardware being
used. Additonal VM hosts would be needed to increase the
number. Open source mosquitto [39] is used instead of the IBM
Websphere suite. Mosquitto has a smaller resource overhead
than the IBM Websphere making it more suited to embedded
environments. The clients generating the traffic are individually
fully emulated; there is no use of Telemetry Device Daemons
to increase the traffic as with the IBM experiments. Since the
aim of this experiment is not to simply benchmark the broker,
emulating all the clients provides new results which will be
used to further analyse MQTT QoS levels and validate the test-
bed. The payload for the MQTT messages is a 717 byte XML
file that represents a metering update message. The syntax has

been borrowed from the Zigbee SEP [40]. Each node client is
connected to the broker sequentially. This will allow the CPU
time and network bandwidth consumption to be monitored as
the number of nodes is increased from 1 to the maximum
node number for the experiment. Once the number of nodes
reaches this maximum the simulation runs for 15 minutes and
automatically shuts down. The network connection between
the broker and the software Ethernet bridge utilises a real
hardware Intel gigabit ET dual port server adapter looped back
on its self. This presents a proof-of-concept for HIL in the test-
bed.

Further experimental scenarios based on OpenADR [31]
have been performed using the test-bed and the results and
analysis of these have been published in DIRECTOR: A
Distributed Communication Transport Manager for the Smart
Grid [5].

A. vNET Validation: Results
Figures 8 and 9 show a predictable increase in both

CPU usage and bandwidth consumption as the QoS level is
increased from 0 to 2.

Figure 8. Scenario 1 Broker CPU usage

Figure 9. Scenario 1 Broker Network Usage

It can be noted that QoS level 2 is significantly more
expensive in terms of processing and networking resources
than the previous two levels. This can be seen in Figures 8,
9, 10, and 11. For comparison the average CPU usage for a
publishing node in this scenario has been given in Table II.

Figure 10 shows that at most the single subscriber is using
approximately 6 times the CPU resources the publishers are
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Figure 10. Scenario 1 Single subscriber CPU usage.

even though the network utilization is as much as 360 times
as large (The average network utilization for the publishing
nodes was between 0.5 and 1 KBps).

Figure 11. Scenario 1 Single Subscriber Network Usage

Overall the results show that while increasing the QoS
level has a significant effect of the resources consumed by
the broker, the effect is much less apparent on the individual
subscribing nodes. The results from the single subscriber
experiments show that as the number of connections increases
the cost of higher QoS levels also increases. All results show
that the jump from QoS 1 to 2 is much larger than QoS 0 to
1 in terms of processing and networking resources.

TABLE II. CPU usage of the nodes and the host

MQTT QoS Level CPU per Node (%) CPU VM Host (%)
0 0.971 69.0
1 0.977 69.7
2 1.022 71.1

B. Scenario 2 - Multi-publisher, multi-subscriber
Figure 12 shows that changing the network topology had

little effect on the broker’s CPU usage compared to Figure 8.
Figure 13 however, does show a significant difference.

In this scenario the data received rate matches the data
transmitted rate almost exactly where as in scenario 1 Figure

Figure 12. Scenario 2 Broker CPU Usage

Figure 13. Scenario 2 Broker Network Usage

9 shows that the receive rate was always significantly higher
than the transmit rate for a given QoS level. This is due to
the single subscriber being overwhelmed by the large flow of
traffic being directed at it. Where as in the second scenario
this load is distributed across a much larger number of virtual
CPUs.

C. Packet Level Analysis
Using TCPdump to collect the traffic passing over the

bridge and then Wireshark to analyse it, the following results
were obtained.

Figure 14. Scenario 1 Distribution of packet sizes

Figure 14 shows that as the QoS level is increased the
distribution of packets sizes shifts to having a larger number
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of smaller packets and fewer larger ones. The packets lying in
the 40-79 byte range are either ARP packets (less than 0.05%)
or TCP control messages such as individual ACK, SYN,
RST, FIN packets. The 80-159 bytes range are MQTT control
packets that have very small payloads such as CONNECT,
DISCONNECT or SUBSCRIBE etc. The 640-1279 range are
exclusively the PUBLISH packets containing the example
XML data. This indicates the large majority of packets are
actually TCP control packets, i.e., over 80% of all packets
regardless of QoS level are TCP overhead.

Figure 15. Scenario 1 Proportion traffic that is TCP payload (goodput)

Figure 15 also supports this analysis. At QoS level 1 only
30% of packets actually had a data payload. This includes all
of the MQTT packets as well as a large number of PSH-ACK
packets with 2-4 byte payloads.

Finally, the use of the Intel Gigabit ET Dual Port Server
Adapter presented no noticeable issues. The driver included in
the Linux 2.6.32 kernel showed no compatibility issues and its
use validated the HIL facility of the test bed.

The results presented are as would be expected. MQTT
Level 2 consumes the most bandwidth and CPU time, fol-
lowed by Level 1 and then Level 0 consumes the least. The
results do however provide a valuable step in validating the
emulation test-bed. The test-bed was able to produce accurate
and detailed results which can actually be used to comment
on the appropriateness of using MQTT in resource constrained
environments. The main issue is that MQTT operates on top
of TCP and that the MQTT replicates large portions of TCP
functionality. This means that for DRE environments, MQTT
is arguably not well suited. For example, QoS 0 is supposed
to be for non-critical messages. There is no confirmation
or guarantee that this message is received at the application
level. But due to TCP, at the transport level, there inherently
is. Normally a low priority, low QoS level message, should
provide a low overhead method of communicating. However,
due to operating on top of TCP there is in fact a very
good chance that the message will be delivered due to TCP’s
inherent reliable transmission mechanisms. This reduces the
usefulness of all the application level QoS levels. Low priority
messages do not benefit from as much overhead reduction as
they could and high priority messages are partially redundant
and overhead is increased with little gain. If MQTT were to
not operate over TCP exclusively some transactions would be
more efficient in terms of network resources and therefore
more appropriate for resource constrained environments. For
example, UDP with no reliability features and therefore low

overhead, would seem to be a better choice for MQTT QoS 0.

IV. MULTI-PROTOCOL QOS: EXPERIMENTAL SCENARIOS

Using the validated flexible emulation test-bed, vNET, the
network topology shown in Figure 16 was configured. The
topology is a simple fan out type network where one node
is distributing data to a group of 300 nodes representing
consumer smart meters.

Figure 16. Test bed network topology. 300 nodes are connected to a utility
system through a software Ethernet bridge. The Utility publishes the update.

The topology represents the logical grouping that could
be used in a Real Time Pricing DSM operation [41]. Traffic
shaping is provided by WANem [32], which is a software
wide-area network emulator. It provides the ability to manipu-
late many common network characteristics including available
bandwidth, latency and packet loss. The network connection
between the utility system and the software Ethernet bridge
utilises a real hardware Intel gigabit ET dual port server
adapter looped back on its self. This presents a proof-of-
concept for HIL in the test-bed.

A. Selected Communication Paradigms
Four viable interaction models were chosen to experiment

with; these are shown in Tables III and IV. All are tested with
both ideal and resource constrained, lossy network conditions
in a set of eight experiments.

TABLE III. - Downlink (utility to consumers) transport choices

Scenario Transport Protocol Messaging Pattern
1 TCP Router / Dealer
2 TCP Publish / Subscribe
3 PGM Publish / Subscribe
4 UDP Request / Response

TABLE IV. Uplink (consumers to utility) transport choices

Scenario Transport Protocol Messaging Pattern
1 TCP Request / Response
2 TCP Request / Response
3 TCP Request / Response
4 UDP Request / Response

Router / Dealer is a tightly-coupled request-response style
messaging pattern belonging to the ZeroMQ [42] socket API.
It allows messages prefixed with a globally unique identifier
(GUID) to be routed to a socket, remote or local, which has
that same GUID. Each message sent needs to be prefixed with
a valid GUID of a node, which requires additional initialisation
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steps in order to acquire this information. Publish / Subscribe
is a loosely coupled data distribution style messaging pattern.
A publisher publishes a message prefixed with a topic /
channel identifier. Only subscribers which have confirmed
their interest in messages belonging to this topic / channel
get the message routed to them. Scenarios 2 and 3 both use
publish / subscribe but they use different transport protocols.
Scenario 2 uses standard TCP. TCP is a unicast transport which
implies that if a pricing update is to be sent to 300 nodes the
Utility node will have to generate and send 300 individually
addressed packets (assuming no fragmentation). Conversely,
Pragmatic General Multicast [43] (PGM) is an experimental
IETF (Internet Engineering Task Force) transport protocol
designed to provide reliable multicast communications. In this
case, the utility generates only a single packet (again assuming
no fragmentation). Whereas TCP and PGM are both reliable
transport protocols, UDP is unreliable. It does not have any
mechanisms for ensuring reliable delivery but this does mean
that it exhibits a lower network overhead.

B. Link configurations of selected network scenarios
Table V shows the network condition scenarios used in

conjunction with the scenarios shown in Tables III and IV.

TABLE V. Network Conditions

Network Condition Description
Ideal No restrictions on bandwidth (10Gbps nominal

effectively unlimited) or any additional latency
or packet loss

Resource Constrained Bandwidth limited to 250Kb/s, additional 30ms
+/- 5ms latency and 30% packet loss.

The resource constrained experiment emulates specific
network conditions and represents a hypothetical resource-
constrained lossy network on the link from the consumers to
the utility such as an IEEE 802.15.4 based solution. Even
though this represents two opposite extreme scenarios the
results would still support the conclusions made for other
network conditions. Further experimental details are:

1) In all experiments, the application layer maximum
transmission unit (MTU) was configured for each
transport protocol to ensure the packet size on the
wire did not exceed 127 bytes. This was done to
emulate the larger transport overhead (due to frag-
mentation) that would be seen when using these
transport protocols with data link layers that can only
support small packet sizes.

2) The virtualised Ethernet bridge interface cards were
configured for half duplex communication in order to
emulate a half-duplex radio link.

3) The payload used was a 1699 byte Extensible Markup
Language (XML) string which is compatible with the
OpenADR EventState.xsd XML schema [44].

4) A price update was issued every 0.15 seconds in
the request / response architectures and every 45
(0.15*300 = 45) seconds for the publish / subscribe
architectures. This approach produces comparable
test results as the fundamental differences in how
the data is distributed between request / response and
publish / subscribe would otherwise make this diffi-
cult. All scenarios achieve the goal of generating the
same total number of responses from the consumers.

5) All experiments issued price updates for up to 90
seconds and generated 600 responses from the con-
sumers. Tests were allowed to run until all inflight
responses were obtained.

The frequency of the Real Time Pricing (RTP) update is
higher than any real world application. However, as the number
of packets being generated, and hence the congestion, vary
linearly with the RTP update frequency, using this frequency
simply allows results to be collected easier. The higher fre-
quency has no effect on the conclusions that are made in these
experiments.

V. MULTI-PROTOCOL QOS: EXPERIMENTAL RESULTS

The results in this section use the UDP scenarios as a base-
line. The raw results are shown in Table VI. This is done due
to the UDP scenarios representing the simplest combination
being experimented with. By using this scenario as benchmark
it is easier to see how the other combinations perform in the
given network topology against a well understood, ubiquitous
transport protocol.

TABLE VI. The raw UDP results that can be used for comparison when
results are shown as percentage increases.

Ideal Constrained
Utility Data 1.424 MBytes 1.424 MBytes
Consumer Data 1.424 MBytes 1.202 MBytes
Overhead 586.080 KBytes 586.080 KBytes
Message Round Trip Delay 2.183 ms 46.814 ms
Message Loss 0 % 39.3 %

TABLE VII. Message Latency Round Trip Delay (RTD) and Message Loss
(PS: Publish / Subscribe, RD: Router / Dealer, RR: Request / Response)

Experiment Number Message Round Trip
Delay (RTD) (ms)

Message Loss (%)

1. TCP PS Ideal 345.6 0.00
2. TCP PS Constrained 21500.0 0.33
3. TCP RD Ideal 5.4 0.00
4. TCP RD Constrained 604.3 0.00
5. PGM PS Ideal 363.7 0.00
6. PGM PS Constrained 17040.0 0.33
7. UDP RR Ideal 2.2 0.00
8. UDP RR Constrained 46.8 39.30

Under the lossy, congested network conditions it took on
average 17.04 seconds to complete a round trip for the PGM
experiment (Experiment 6) and 21.5 seconds for the TCP
(Experiment 2). This is extremely high and is due to the way
the consumers are responding; the PGM and TCP publish
/ subscribe consumers use the same TCP request response
architecture to respond with. There is no rate limiting which
is causing a large amount of congestion. PGM provides an
interface to limit the multicast data rate which would be very
useful in this case. It can also be seen that even under perfect
network conditions, rate unlimited publish / subscribe architec-
tures are not suitable for applications requiring low latency as
individual message delays are over 150 times that of the UDP
case (Experiment 1 and 5 vs. 7). The results indicate that the
publish / subscribe architectures need a mechanism for rate
limiting publishes and responses. The congestion generated
when a published pricing update is sent and then responded to
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Figure 17. Data sent by the Utility system compared to the UDP scenario.

by all of the consumers simultaneously quickly overwhelms
the resource constrained network generating message losses,
which in turn cause retransmissions which contribute to the
large amount of data generated. This can be seen in Figures
17 and 18. The TCP publish / subscribe scenario shows this
better than the PGM scenario. In this scenario the resource
constrained, lossy network test actually performs better than
the ideal case as the artificially imposed packet delay is having
the effect of limiting the packet rate which even with the
30% packet loss and the retransmissions this would introduce,
causes the scenario to generate less traffic than the ideal case.
This also indicates that a component in the virtual network
is being stressed to the point of packet loss under the high
packet rates being generated by the low MTU. Even with
acknowledging this it shows that high messages rates with
relatively large payload compared to the MTU will cause worse
congestion problems than 30% packet loss does.

Figure 18. Data sent by the consumer nodes compared to the UDP scenario.

The latency (Tables VI, VII, Experiment 7 and 8) and
overhead (Figure 19) results show the UDP experiments out-
perform both the TCP or PGM equivalents with the TCP. This
is not unexpected given the TCP and PGM are both reliable
transports, with retransmissions that introduce increased delays
against UDP. The notable observation is the performance gap
between them. TCP is a generic transport capable of serving
many different application requirements quite adequately, but
the overhead involved in being so generic is clearly shown in
these experiments. There is a clear opportunity to bridge this
large gap with a number of UDP based messaging patterns,
both unicast and multicast, and apply various application layer
reliability mechanisms to them. This would allow applications
access to a range of communications service combinations at
a higher granularity, so that applications can get a communi-

cation service with only the features they need and avoid the
general overhead of a one-transport-fits-all approach. Figure

Figure 19. Protocol overhead compared to the UDP scenario measured as
any data that was not the XML payload. (Percentage increase is shown)

19 shows a large PGM percentage overhead. Given the much
lower overall bandwidth consumed using multicast, this is to
be expected. Overhead is calculated as any bytes put onto the
wire that are not part of the XML payload. In order to generate
the 600 responses (the experimental scenario criteria) from
the consumers the utility only has to generate 2 PGM packets
(ignoring fragmentation due to the low MTU). The overhead
is almost entirely due to the TCP request response uplink
from the consumer to the utility. Normalising these results
against the total data exchanged shows the PGM architectures
are in fact the most efficient next to the UDP architectures.
The results show that even though TCP publish / subscribe
would appear to be a potential choice for this type of scenario
(data distribution with a large fan-out) given that on face value
it appears to provide the necessary interface for providing
efficient data distribution, it actually performed the worst.
TCP-based publish / subscribe involves a high amount of
overhead to effectively allow a unicast architecture to emulate
services that require a multicast architecture in order to operate
efficiently. It provides no network orientated benefit over TCP
Router / Dealer. The only benefit it provides is the ability
to distribute messages at a more abstract level due to the
use of topics / channels. In fact the lack of control on the
distribution rate of the messages means that TCP router / dealer
is more flexible and consistently generates less overhead and
congestion as can be seen in Figures 17-19.

VI. CONCLUSIONS

This paper has presented and validated an argument for
exploiting the performance gains achievable by specifically
selecting application appropriate transport protocols dynami-
cally at runtime based on specific application requirements.
Given the varied network requirements demanded by SG
applications and DRE applications in general this approach
provides previously inaccessible optimisation opportunities.
Furthermore, these gains are achievable without the need
to perform costly modifications to any intermediate network
infrastructure and would only require modifications to existing
networked applications network interfacing code. The cost of
this modification could be mitigated by using a middleware
system for managing the transport selection. To summarise,
the results have shown:

1) For an ideal RTP update distribution use case PGM
publish / subscribe and UDP request / response
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should be used on the down links and up links
respectively for best performance and lowest resource
utilisation.

2) For the non-ideal case, the unreliable UDP is only
viable if the application can suffer lost responses
from the consumer this is a possible scenario. If
more reliability is required then another low overhead
reliable transport should be used with TCP based
options used as a last resort.

3) There is a significant gap between the performance of
the Reliable TCP / PGM scenarios and the unreliable
UDP scenario in terms of overhead and latency.
Additional transports are needed to fill the gap.

4) TCP based Publish / Subscribe provides no network
level benefits.

5) Rate unlimited Publish / Subscribe is not viable for
applications with a low latency requirement. The
packet rate needs to be limited at the point of
transmission in order to ensure congestion is not
generated.

A large number of additional supported transport protocols,
would make it possible for a system to generate custom
network interfaces for a much wider range of scenarios in
order to improve application performance through manipula-
tion at the transport level. Future work will consider how to
automatically manage the large number of potential transport
protocol choices which are being suggested using middleware
solutions. The virtualisation based network emulation test-bed
has been shown to produce useful and viable results. The
unique features that the test-bed offers has provided the level
of detail normally reserved for scaled real world trials but at
a much lower cost. Collecting individual CPU, bandwidth and
packet statistics for each node and the overall system has been
shown to be quick and convenient. Reconfiguring the test-
bed for different topologies can be achieved by consuming
much less time and resources compared to a scaled real world
trial. Additionally a hardware-in-loop (HIL) proof-of-concept
has been presented. The ease at which the technology allows
hardware to be assigned and used natively by any virtualized
node presents a powerful hardware / driver evaluation tool. The
other tools highlighted in this work cannot provide a feature
set optimised for the IoT and other distributed, real-time and
embedded environments. Therefore, the development of vNET
has been justified.
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