
739

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Giving Predictive Abilities to OLAP Systems’ Caches

Pedro Marques and Orlando Belo
ALGORITI R&D Centre

Department of Informatics, School of Engineering, University of Minho
PORTUGAL

pcmarkes@gmail.com, obelo@di.uminho.pt

Abstract — It is not new that on-line analytical processing
systems arose to companies to stay. They have the ability to
change the most common application scenarios that decision-
makers use on their everyday tasks. The large flexibility in
data exploration and high performance response levels to
queries these systems have make them very useful tools for
exploring multidimensional data accordingly to the most
diverse analysis perspectives of decision-makers. However,
despite all the computational resources and techniques we have
today, sometimes, it is very hard to maintain such levels of
performance for all application scenarios, analytical systems,
or user demands. When context conditions and application
requirements change, performance losses may occur. There
are a lot of strategies, techniques and mechanism that were
designed and developed to avoid (or at least to attenuate) such
undesirable low performance situations with the purpose to
reduce especially data servers load. On-line analytical
processing systems caching is one of them, designed for
maintaining previous queries and serving them upon
subsequent requests without having to ask the server
repeatedly. In this paper, we present an on-line analytical
processing systems caching technique with the ability to
identify the exploration patterns of its users, i.e., what queries
a user will submit during a working session, their frequency
and resources involved, and to predict what data they will
request in a near future, as well as the sequence of those
requests. To do that in an efficient manner, we need to
maintain a positive ratio between the time spent to predict and
materialize the most relevant views to users, and the time that
would be spent if no prediction had been done. Using
association rules and Markov chains techniques, we designed a
flexible manner to provide an effective caching system for on-
line analytical processing systems.

Keywords – on-line analytical processing; analytical servers;
caching; association rules mining; Markov chains; cache
content prediction.

I. INTRODUCTION
Due to the amazing increase of companies’ data

repositories in the last decade, attentions turned to the
implementation of more powerful ways of analyzing data.
As a consequence, Decision Support Systems, and more
specifically, On-line Analytical Processing (OLAP) systems

[1][2][3][4] are being implemented in a large scale, when
compared to what was being done a few years ago. A little
everywhere, OLAP and data mining systems have captured
the attention of many research teams and creators of large
software systems. OLAP systems provide sophisticated
mechanisms for the analysis of large volumes of data in a
very expeditious way, accordingly to the several exploration
perspectives of decision makers. Based on this type of
systems, decision-making processes are much more oriented
and more effective, being supported by well-structured
analytical information and not, as so may times happen, by
the simple intuition of a decision-maker supported by a
package of statistical data. OLAP mechanisms for data
exploration and analysis allow for data to be related in a
non-trivial manner, making possible to change the current
perspectives of analysis whenever necessary. Thus, they are
quite flexible. This is only possible due to the fact that data
is stored in very specific structures that were especially
designed for this type of analytical processes, faithfully
following the multidimensional nature of the data as well as
its most regular exploration processes.

The high efficiency of OLAP systems for exploring
multidimensional data is based primarily on the pre-
materialisation of the data that we believe to be necessary to
meet the needs (and sometimes the expectations) of a
decision-maker. This pre-materialization process is done
recurring to the use of materialized views that potentially
allow for satisfying "immediately" any question (query) that
is launched to the system by its users. As this ideal case of
querying satisfaction is practically impossible to achieve,
due in part to the limitations of memory and processing
capacity of the systems, several techniques have been
developed to improve how these views can be materialized
a priori. Caching techniques are one of them. For a long
time, they were applied in Web systems with very positive
results. Since the beginning of its implementation, caching
techniques were seen as a way to accelerate the process for
responding requests (queries) posted by users. The
implementation of a caching system in a Web platform aims
mainly to maintain the information that has static properties,

740

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in order to provide it through a cache (and not through the
primary data source) to users that request it repeatedly. This
gives us two important advantages. First of all, it allows for
a great reduction in responses time-to-user – a caching
server usually is “closer” to the user than the main
information source. On the other hand, this avoids repetitive
accesses to the main server, freeing it to answer requests
that only it can compute.

In OLAP systems, the information to keep data in cache
is very dynamic, but it is not updated very often (perhaps
only once in each refreshing cycle of their data structures)
and when it happens that is usually done in an incremental
manner. The challenges posed by all these constraints are
not easy to solve, and this is where caching can help. It is
already considered as one of the key factors that contributes
to a significant part of the improvement in performance of
any OLAP system. As an OLAP system evolves, so must
the caching system associated to it – Figure 1 illustrates a
simple view of a basic caching system for a
multidimensional database.

As in Web systems, caching systems were firstly centred
on the individual perspective of the user that was the only
one to benefit from its own caching architecture (client-side
caching). Businesses were quick to realize that this
somewhat less-sharing way of caching was not the best
approach. Later, the development of caching systems
followed the strand of sharing caches between users,
whether they were available on the server side or on the
customer side.

Multidimensional
Database

Application

Cache

Procedure usingDBCache;

begin
 receive_query_from_app(Application, Query)
 search_on_cache_required_data(Query, Results)
 if empty(Results) is true then

 search_on_database_required_data(Query, Results)
 endif
 return_data_to_app(Application, Query, Results)
endProcedure

OLAP System

Figure 1. Illustration of a basic caching system for an OLAP system.

As we know, one of the great advantages of OLAP
systems is the fact that they can cope with large volumes of
data, and execute ad-hoc queries within various analysis
perspectives giving to decision makers an exceptional way
to get more structured insights about company’s data. OLAP
systems were so well accepted by decision makers that they
soon started loading more and more data into them and
issuing more complex queries, which quickly surfaced some
critical performance issues. As fast as an OLAP Server
could be, there is always some space to apply new
optimization strategies, trying to improve OLAP servers’
performance and OLAP users’ satisfaction. Thus, the usage
of caching mechanisms in OLAP platforms is a natural (and

viable) technological choice when one is concerned to
improve the quality of service of an OLAP platform.

Despite being widely implemented and tested,
conventional caching mechanisms were not prepared to
handle OLAP data. One of the reasons why this type of
information was not ideal for caching was due to its
dynamic nature (i.e., versus the static nature of HTML
information where caching techniques have a particularly
good fit). Other aspect to be considered when dealing with
OLAP data is the dimension of the data to be kept in cache,
both in terms of volume of data as well as in terms of data
structure complexity. Comparing again with HTML data,
which represents a little effort in terms of space needed to
keep it in cache, OLAP data requires a great amount of
space, simply due to the fact that any response to a typical
MDX (Multidimensional Expression) query involves a lot of
data, usually materialized in a multidimensional data view
(a data cube). Even with the diversity of the data to be
maintained, several techniques were developed to apply
caching mechanisms to OLAP data [5][6][7], revealing
benefits good enough to keep the focus on improving
caching techniques in order to integrate them effectively on
OLAP server systems.

The work we developed was based on an analysis of
today’s caching mechanisms and their application in the
OLAP field, and based on selected information about user’s
querying patterns [1]. In order to obtain these patterns,
OLAP server logs were fetched, analysed and mined in
order to obtain a set of association rules that represent the
actions (and consequences) of user’s queries (usage
profiles), providing us the means to predict future user’s
querying tendencies. Such predictions unlock the possibility
of issuing a query even before a user post it, putting it in
cache and finally providing it faster than if no cache was
available in the OLAP platform.

Basically, having the ability to establish the exploration
patterns of a community of OLAP users give us the
possibility to define a priori the contents of a cache with a
satisfactory confidence label. With this, it will be possible to
have, in advance, a predefined set of materialize views that
correspond to the most frequent multidimensional queries
that were done previously during a certain period. Of course
that the success of this strategy depends a lot from the
tendencies (and routines) of data exploration that users may
have. However, in general terms, an OLAP user uses to
apply systematically for a particular set of queries as the
starting point of his OLAP session. Knowing that, and
having also an exploration profile, we can establish the
initial state of a cache, adjusting it dynamically during the
execution of an OLAP session accordingly the prediction
we have made based on past OLAP sessions - more
adequate caches’ contents in a shorter time. In short, this
was the goal of our work.

In the next sections, a more in-depth analysis to this
process will be conducted, explaining the various stages
reached along the evolution of the work, as well as

741

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

discussing some of most relevant considerations needed to
understand the complexity of predicting the
multidimensional content of a cache for a specific OLAP
platform. This paper is organized as follows: Section II
presents a brief relation about some caching techniques and
caching maintenance algorithms; Section III shows a
detailed overview about OLAP caching, its advantages and
disadvantages; Section IV presents and discusses the major
characteristics of problems we could face when using high
specialized caches as OLAP caches; Section V reveals our
technique for a new model of OLAP caching; Section VI
reveals and discusses the results of the tests we have done
for validating the proposed OLAP caching model; and
finally, Section VII presents final remarks and conclusions,
as well as point out some lines for future research.

II. RELATED WORK
The introduction of caching mechanisms in OLAP

systems brings some great advantages. Firstly, because
queries are answered directly from the cache system,
decreasing accesses to the OLAP server. Secondly, since
caches are usually closer to the users, the network traffic
between the nodes closer to the OLAP server decreases -
providing better network latency and quality of service. As a
result, OLAP server availability and performance increase.

As we know, the concern of improving services of a
server, and in particular of an OLAP server, is not new.
Many researchers have developed effective work in this
area, with particular emphasis in areas such as cache
management algorithms and caching systems architectures.
Usually, algorithms for managing caches are used to decide
whether a given piece of data should be placed (or not) in a
cache. This allocation decision affects the contents of the
cache and consequently its own performance. Thus, by
analyzing the consequences of these decisions positively or
negatively it is possible to make an evaluation about the
quality of the cache management algorithm that was used,
applying a set of metrics especially defined for this purpose,
namely the Hit Ratio or the Byte Hit Ratio metrics.

Over the years many proposals presented a large
diversity of algorithms for managing caches. On this domain
we should reveal the work that led to the emergence of
algorithms such as the First In First Out (FIFO), the Least
Frequently Used (LFU) [8], or the Least Recently Use
(LRU) [9] algorithms. The operating way of these
algorithms is very similar. They are regulated through the
definition of static criteria that defines the way as data is
removed from a cache when the cache gets full.
Independently from the different implementations of data
structures that exist to support queues (FIFO), determining
the frequency of access of each of the elements maintaining
in a cache (LFU) or to sustain a specific time label relative
to the time at which data was accessed (LRU), data elements
are removed from a cache without concerning their utility
for the users of the system.

FIFO, LRU and LFU still are today some of the most
popular and theoretically important algorithms for caching
management as well as the algorithms Least Recently Used
Second-to-Last Request (LRU-2) [10], an evolution of the
LRU algorithm that was developed to be used in database
disk buffering. Finally, a brief reference to a last caching
management algorithm: ARC (Adaptive Replacement
Cache) [11], which has the ability to balance in adaptive
manner the workload of a cache in a self-tuning fashion.
All algorithms for managing caches mentioned earlier aim
to manage the information that should be added or removed
from a cache system. Similarly, with another level of
abstraction, we can refer other works in this domain that
address many relevant aspects in the implementation of a
caching system, namely the problem of the location of the
cache. Alternatively to the implementation of a caching
system on the client side, we can do it on the server side, as
already referred, creating mechanisms that benefit all users
of a given community. From the simple to more complex
caching systems, this last approach involves, among others,
peer-to-peer, active caching, or chunks based caching
architectures. Chunks were defined in Deshpande et al. [12]
and are a new indivisible unit. This data unit, with a low
granularity level, is mapped in the cache in order to be
aggregated to satisfy user requests. The mapping occurs in
the server and denotes the relationship between a chunk and
the basic units stored in the OLAP Server, allowing for the
complementary fetching of data from a main data source.

Let us now look at other approaches, starting by the
peer-to-peer architecture. In [5] it was said that, a little bit
like as all other proposals in the area of distributed caching,
if all participants in a network share their personal caches,
everyone would benefit, and proposed a network
architecture that enables such features – the PeerOLAP.
Additionally, they also presented some other policies for
renovating and maintaining data in distributed caching
system. In [13] and [14] it was approached an active caching
system technique. This technique was presented as an
effective solution to the problem of creating a caching
system for dynamic information manipulated by Web
proxies. As we know, performing caching of static HTML
pages is a common practice. But the implementation of a
caching system for OLAP queries (and correspondent
results) in Web proxies is not very usual. This is due to the
fact that proxies usually are not prepared to maintain
dynamic information, and especially because they do not
have the necessary mechanisms to deal with the necessary
post-calculations. On the other hand, in [15] there is a
proposal to by-pass problems at the level of caching queries,
allowing for the use of data in cache to respond partially to a
query. The rest of the answer will be obtained directly from
the server. This was accomplished by dividing data into
chunks stored directly in the cache. When the level of
aggregation of a chunk is lower than of the query, chunks
could be used to partially calculate the results of the queries
presented. Through the use of mapping mechanisms,

742

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between the data of the query and corresponding chunk
number, it was possible to determine all the chunks needed
for the calculation of the solution of a given query.

Later, in [16] were proposed other algorithms to group
proxies dynamically in "neighbourhoods", regrouping them
whenever necessary according some predefined requisites.
This approach can be regarded as second level caching, at
which information refers to maintain the best neighbours of
a certain proxy. The process is relatively simple. When a
proxy discovers that there is another one that is not his
neighbour but it can bring greater benefits, it adds it to its
list of neighbours, eliminating any other proxy in that list
that is less beneficial, if necessary – the complexity
associated to this process relies mostly in maintaining
accurate statistics about the other proxies behaviour and
performance.

In OLAP, selecting views to materialize is an NP-
complete problem [17]. Some of well known approaches -
e.g., [18], [19] or [20] - propose this selection to be
performed statically before each set of queries, being results
used to respond to subsequent queries. To avoid the problem
that arises with the fact that the usage patterns are dynamic,
in [21], [22] and [7] it was developed some other techniques
to exploit this kind of situations. An evolution of the
proposal of the system Dynamat [21] was the
implementation of a mechanism regarding the usage
patterns of users as well as its dynamic structure [23]. In the
same line of research we find the system PROMISE [22],
which has the ability to predict in a more accurate manner
what was the structure of a query based on some previous
usage patterns, as well as the current query issued.

Any proposal that intends to respond to the fundamental
problems of a dynamic selection of views – e.g., what is the
amount of information that is required to draw a good user
profile, and what is the right time to bring such views to
memory (only when requested or trying to predict what is
the next view to be required), can be found in [23]. As we
can see a lot of proposals to design and implement caching
systems were done during the last decade. Here, we just
enumerated some of them, trying to enhance some important
issues about some techniques to put and manage data in a
cache. All these issues can be exploited and adjusted for the
implementation of specific caches for OLAP systems.

III. TO CACHE OR NOT TO CACHE
To cache or not to cache is not a simple decision. The

implementation of a caching system in an inappropriate time
entails additional costs and does not bring any benefits to
the entire system. There are many aspects that must be
considered before deciding on the implementation of a
caching system. Many of these aspects are related, directly
or not, with the existence of a performance problem. To
detect or prove it, we can use, for example, profiling or
logging techniques that reveal us how the system is being
exploited and respond to the information requests. With this,
we can find what the information that is most often used is

and make sure the system presents it expeditiously. If the
system is unable, for performance reasons, to quickly
deliver this information, we can improve the system’s
performance by placing this information in a caching
system, which will reduce the number of disk accesses,
decrease querying processing time and, consequently,
decrease the overall time to get querying results.
Additionally, through caching, one achieves the basis to
have a more scalable and flexible system, with high service
availability and better performance.

Usually, a database system can make three types of
caching, namely results, execution plans and data objects.
Although they are all important, in our case, we only
approached the caching of results, by studying the
application of some profiling techniques to querying
processing of a given OLAP system. However, whatever the
specific area of implementation could be, when
implementing caching mechanisms one has to remember
that the space available for storing the cache is not
unlimited. As a direct consequence we need to choose (and
evaluate) what data should be kept (or not) in a cache and
what data should be removed giving space for new (and
hopefully more relevant) data to the users’ needs. Keeping
this in mind, researchers started to test quite well known
algorithms – frequently referred as cache management
algorithms – that up to that time had only been used in other
types of environments such as for caching HTML pages
with great success. As results became known, there was a
clear notion that there should be promoted some additional
efforts to develop new breads of algorithms that focused
OLAP scenarios in particular.

A caching management system is a crucial element in
the overall performance of a caching system. Basically, its
main function is to decide on which information must be
maintained (or removed) from a cache in order to allow the
addition of new data when necessary. With the aim of
measuring the performance of such a system, there are two
basic metrics, the Hit Ratio and the Byte Hit Ratio. The Hit
Ratio is one of the most common ways of evaluating the
value of any caching algorithm. This metric is the ratio
between the number of requests that were in cache and the
total number of requests that were made, and can be
calculated using the following expression:

Hit Ratio ← RequestsSatisfiedByCache / TotalRequests

However, Hit Ratio is not a perfect metric. For instance,

even with a higher Hit Ratio, the number of bytes served
directly by the cache could be smaller than a cache with a
lower Hit Ratio, which led to the creation of another metric:
the Byte Hit Ratio. This last metric has been vastly used to
evaluate how a cache can satisfy its clients’ requests.
Contrary to the previous metric, this one is intended to take
account not only how many requests were satisfied from the
cache, but also how much information was served this way.
If the scenario is caching small pieces of data, it is natural

743

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that the percentage of requests answered directly from it is
high, but it is also possible that the number of bytes of
information satisfied in this way can be low. Conversely, it
is possible that a small portion of large pieces of data results
in a reverse scenario. The Byte Hit Ratio metric is defined
according to the following expression:

Byte Hit Ratio ← BytesSatisfiedByCache / TotalBytes

As a user of any OLAP (or other) system launches his
queries, the cache management algorithm has to check if the
necessary information is stored in the cache or. If not, it
needs to decide whether it should or should not be added to
the cache. If the request cannot be satisfied directly from the
cache, there are two possible outcomes:

1) the cache still has space to accommodate the new
data, and so it is added without further due, or

2) the cache does not have enough space to store the
new data.

In the former case, the content is added, and after that time,
when it is requested, it will be served from cache instead of
being satisfied directly by the OLAP Server. If there is no
space available in the cache management system, the
algorithm can either discard this information or free some
space in cache in order to add this new data. This is the
main decision that cache algorithms have to make. As we
know, this decision will affect the way a cache behaves in
the presence of new information to be added. One of the
most basic ways to do this selection is to use a FIFO
approach, which means that the oldest record to have been
added to cache will be removed in order to create space for
a new entry. If this is not enough, the second (the third, and
so on) oldest records will be removed as necessary, record
by record. The main problem with this technique is the fact
that it does not consider the nature of the data. Despite of its
size or actuality, data has an intrinsic value that cannot be
measured as simplistically as these approaches propose.
Other (more sophisticated) decision metrics were developed
using a timestamp of the last access to a specific piece of
data [9], the frequency of access to the data [8], or other
more complex metadata such as the ones used by the
Greedy Dual algorithm [24], for instance. All these metrics,
in one way or another, take into account the intrinsic value
of data and the relevance each piece of data has to the users
and, therefore, they are much more suited to do the
(caching) job correctly than others that simply look at the
characteristics of the data neglecting its nature and its
relevance to users.

IV. OLAP CACHING
Some of the most common operations performed when

querying an OLAP server are the well-known drill-down
and roll-up operations. The first of these two operations
consists of lowering the grain at which the data is being
analysed. For instance, we can go down in a hierarchy,
detailing systematically, level by level, the grain of the data,

from a country-level view to a district-level one, for
instance. The roll-up operation is its direct counterpart,
allowing viewing data at a higher level following as well a
determined hierarchy.

In an OLAP server, the data is stored at the lowest level
of granularity and then aggregated to a level required by a
specific multidimensional request. In [5] a solution was
proposed where this characteristic is explored, mainly by
sharing the cache over several cache servers, specifically
OLAP Cache Servers (OCS). In this approach, each OCS
has the capability to apply transformations (aggregations
and other operations) to multidimensional structures, and
thus combine them to satisfy at least part of a request that
has been launched by a user. This way, whenever a user
issues a query, the various OCS are asked if they have the
needed information and, even if they do not, they are asked
again if they can compute it from the data they have at a
lower grain than the user requested. This means that an OCS
can satisfy not only requests that have been issued before
(and cached) but also other issues that involve computations
over the data that exists in the OCS.

When configuring an OCS is important to indicate what
is the granularity of the data that you want to maintain in a
cache, as this will define the type of applications that can
satisfy a specific peer. Physically, the data is stored in
secondary memory and only brought into primary memory
when required or, more accurately, when the fetching
algorithms decide the most appropriated time to do that.
This operation does not have to necessarily be on-demand
and can follow, for instance, some kind of predictive
approach [22] or any another technique for fetching data.
Another alternative was proposed in [6], where individual
caches of users are shared through a peer-to-peer network
created between users of a same OLAP System –
PeerOLAP. Essentially, this approach was based on the
Piazza System [25], and intended to allow a very high level
of autonomy in the cache network due to the dynamic nature
of Peer-to-Peer networks, where users can connect and
disconnect without significantly affecting the overall
usability and performance of the system.

As in other proposals following a decentralized
architecture, a challenge that this system often faces is the
need to establish a mechanism to avoid the uncontrolled
spread of messages, which can, as we know, create
congestion in the network, deteriorating the overall system
performance. A possible solution to overcome this is the
definition of a maximum number of "jumps" that a message
could give before lose their validity. This is quite intuitive.
A message after a given number of “jumps”, even if it can
find a peer that has an adequate response, will be hardly
provided in the best possible time. Another problem that
arises here is when a message is being resent to other users,
even before reaching the maximum number of jumps, and
the only place where this can be resubmitted it is the data
warehouse itself. In this case, the message is not relayed to
the central peer such as this could lead to the repetition of

744

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

messages sent to the data warehouse, which breaks any kind
of goal of a caching system.

As mentioned before, OLAP data is quite dynamic by
nature, which means that it is very difficult to predict when
the cached data will become out-dated. To deal with this
problem, an active caching technique was created [25]. It
consists of keeping in the cache server a Java applet that is
invoked every time a cache hit occurs. This applet has the
role to check with the OLAP Server if the cache information
stills valid or if it has changed since the last time it was
requested by one or more users. If data stills valid, it will be
returned to the user who requested it. If not, the full request
will be redirected to the OLAP Server.

One other question that was frequently placed by
researchers, was focused on what would be the optimal level
of granularity to store data in a cache, in order to not only be
able to aggregate it as needed, but also to be able to do that in
a timely fashion manner. On such units is the previously
presented chunk, defined by Deshpande et al. [12]. When a
cache server receives a request from a user, it calculates the
parts of that request that it can be satisfied accessing directly
the cache, and the information that it need to be requested to
the OLAP Server (at a low level of granularity). When all the
required data is located in the cache server, it combines it
and sends the results to the user, without him ever knowing if
the information came from the central server or the cache
server. As a last reference we selected the work presented by
Sapia [22], which is an approach particularly interesting to
us. In that work, the author proposed a predictive system for
user behaviour in multidimensional information system
environments that explore characteristic patterns users use to
show when explore multidimensional data structures. It is an
OLAP caching approach that complements other techniques,
such as the ones presented in [26] or [15].

Finally, we should say that the maintenance of caches is
something that must be included in the routine of any OLAP
system administrator. One cannot optimize performance of
such a system simply deciding, from one day to another, the
implementation of some kind of caching mechanisms as a
solution for a current optimization problem. Generally
speaking, implementing a caching system by itself cannot
solve any optimization problem. Frequently such problems
are treated as early as possible, just starting in the querying
design phase and evolving their treatment throughout the
design chain of a query. In some sense, caches help to solve
(or mitigate) such situations. In our case, we were concerned
researching some of the most relevant aspects in the
maintenance of a caching system for analytical servers,
seeing how we could establish a way to "guess" the various
forms of data querying that a specific user community
practiced. Basically, the idea was only to find a way to
characterize their querying patterns, establishing the most
used sequences of queries used, and based on that knowledge
materialize their results (when possible) in a caching system.
And that is what we will explore in the next section.

V. A NEW OLAP CACHING APPROACH
By their nature, OLAP systems allow for identifying, for

each user or group of users, how they access and explore
data cubes. If we take the example of a high-level decision-
maker, most likely he will access only information
regarding to the sales of a specific store or a particular
region, avoiding specific and detailed information relating
to the sales of all company’s products, for example.
Exploring features like this, we can define not only which
areas of impact in terms of data analysis a user usually does,
but also which specific sequence of searches usually he uses
to follow. Thus, it is possible to make predictions about
what will be the next query sent to the OLAP server by a
given user, simply knowing which of the queries he released
in the past when doing some data exploration over a set of
data cubes. One way to acquire knowledge about the
behaviour of a user passes is, for instance, analyzing the log
files of previous sessions of data querying. Through the data
stored in these files and with the application of specific
domain-oriented data mining techniques, it is possible to
extract some useful and accurate knowledge about the user
usage profile.

One of the issues related to the use of this type of
knowledge is his assertiveness and the advantage that comes
from its use. Unlike other caching techniques, this approach
does not aim to reduce the workload of a data server but to
improve the response time satisfying user requests. This
type of technique uses the last query launched by a user, and
based on it (and other historical data) tries to infer which
will be requested next by the user. If it is possible to carry
out this prediction, with a sufficiently high degree of
certainty, the query and the answer will be immediately
placed in the cache so that when the user presents the query
its answer will be already stored in memory and the system
only needs to provide the results to the user, almost
immediately. Another approach involves not only the last
query performed, but also a certain number of queries
before that. Thus, keeping information about the sequence
of requests (queries) made by users it is possible to make
predictions with greater certainty. However, you must also
have a larger amount of information related to the past
behaviour of a user in order to enable the accomplishment
of such predictions.

This work was based on the assumption that OLAP
system’s users have predictable patterns of data that they
use to consult on their regular OLAP sessions. The nature of
most OLAP users in a company – decision makers – usually
means they are focused in a relatively small subset of the
data stored in a data warehouse. The day-to-day activity of a
decision maker may begin with an analysis of a pre-defined
dashboard or an interactive report, and based on the
information gathered from the analysis of the data, he will
continue his exploration in a lower level view of the same
data – probably appealing to a typical drill-down operation.
This shows us that for any given user his behaviour will be

745

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

repeated during a certain period of time, revealing then a
regular usage pattern.

One possible way of extracting these patterns is by
analyzing OLAP Server’s logs that contain information
about what multidimensional queries users had submitted
and when they happened. It is also possible to know, for a
given user, the sequence of queries he launched between his
login and his logout in a specific OLAP session. From the
analysis of this kind of information, given a certain period
of an OLAP system exploration, another problem arose:
how far back in the logs should we go to make sure that the
retrieved rules are truly representative of the user’s
exploration patterns? On one hand, if we analyse the OLAP
exploration habits (and tendencies) for a short period of
time, we may get rules that represent the most recent
patterns and not what the user usually does in the “long
run”. However, on the other hand, if we analyse a larger
period, we may extract rules that represent older OLAP
exploration patterns that do not represent what users are
doing currently (users may change their exploration habits
due to a large variety of reasons, demanding that the
algorithm should be able to adapt to such changes).

Taking these constraints into consideration, we began
our approach by retrieving the OLAP server’s log files,
preparing them to be analysed latter by a specific data
mining algorithm with the ability to generate a set of
association rules that represent the most relevant exploration
user patterns – we designate a set of usage patterns by an
OLAP profile. From the OLAP server’s log files we extract
all the MDX queries that were launched during a certain
period by a community of users that we want to establish the
correspondent data exploration profiles. Each MDX query is
fragmented accordingly several dimensions of analysis, such
as OLAP session, cube, query, data and time, dimensions,
measures, and users. Then, this information is stored in a
specific relational data mart that will provide on the next
phase the data to data mining association algorithms.

To establish the association rules we used the well-
known Apriori algorithm [27]. This is one of the most used
algorithm for mining frequent item sets, having prove its
effectiveness so many times analysing a set of transactions
and surfaces the relationships between them, given a
minimum value for support and confidence. As it is well
known, association rules are usually represented in the
format: A→B (sup=α; conf=β), where sup and conf
represent, respectively, the support and the confidence
values of a rule. From an association rule (and from its
support and confidence values) we can retrieve two
important things, namely the:

− support (sup), that represents the ratio between the
number of times that a sequence of queries A
followed by a sequence of queries B was found in
the dataset and the total number of queries in that
dataset:

!"# ! → ! = !#(!!!"##"$%&!!"!!!!"!!ℎ!!!"#"$%#)#(!"#$%#&!in!the!dataset)

− confidence (conf), that represents the number of

times a sequence of queries A is followed by a
sequence of queries B in the dataset, divided by the
number of times a query A (independently of what
query followed it) was found in the same dataset:

conf ! → ! = !#(!!!"##"$%&!!"!!!!"!!ℎ!!!"#"$%#)#(!!!"!!ℎ!!!"#"$%#)

If we take the association rule A→B (sup=0.3;

conf=0.8), as a working example, we can say that for every
time a user issues the query A he will, in 80% of the cases,
issue the query B right after that. On the other hand, we can
say that for the analysed dataset, a sequence of queries A
followed by a sequence of queries B occurred in 30% of all
cases. However, the antecedent (A) of such rules does not
correspond necessarily to a single event, which means that
A can also represent a set of queries. In our scenario, the
prediction process will be supported not only by a single
query, but also by a sequence of queries that a user triggered
from the beginning of its working session. If the association
rule is something like A1, A2, A3 → B, it means that the
consequent of the rule (B) can be predicted as a
consequence of the occurrence of the events A1, A2 and A3,
with a given confidence and support. These rules allow for
more than a simple prediction, "step by step", which may
happen when we want to predict what the next query to be
executed is. Thus, it is possible to predict a priori, with
greater anticipation, which queries will be launched by users
until the end of their working sessions, as well as to know
the sequence those queries.

It can also happen that the antecedents of the rules are
not necessarily sets of queries that were issued, but other
types of querying conditions environments, like periods of a
day, periods of a week, or even business data like sales or
stock information. If we explore all these possibilities,
associating them to a specific OLAP environment, it is
possible to define some specific rules that indicate the
frequency of a particular user performing a query, which
predictably will be executed at the same time on a given day
or week. For example, we can think in an application
scenario where a decision agent every Friday afternoon,
before leaving its workplace, check systematically the most
relevant management indicators in order to get a last view of
the business status of the company. On such scenario and
time frame, the indicators he analysed were always the
same. Nevertheless, the consequences of the analysis will be
clarified by a particular set of query that he will launch to
verify a particular business case brought to his attention.

Using this type of prediction system reveals some
interesting capabilities that can be very useful improving the
performance of an OLAP system. However, it also raises

746

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

some pertinent questions that should be answered according
to the application context of each specific case, namely:

− What is the number of searches of a user that should
be taken into account during a prediction process
within the same session?

− All rules should be accepted as valid or we need to
define some minimum values for support and
confidence, from which the materialization of the
corresponding views will be rewarded?

− Shall we materialize immediately all queries that we
predict will become necessary or only a part of
them?

This technique allows us to establish probabilities for the
sequence of queries that a user will issue between the
beginning and the end of an OLAP session. With this
information some actions may be taken to improve the
OLAP server’s response time to queries. Our approach was
to simulate the user’s interaction and place in cache the
views our algorithm predicted would be used. The main
problem with this is the high value of rules that are going to
be generated. This could easily produce untreatable results.

Keeping this problem in mind, our work focused on
reducing the number of queries that should be included in
the prediction phase, without affecting results significantly.
To do this, we chose to map all the sequences of queries
predicted by the mining algorithm, representing them in a
Markov chain [28] as a way to provide a better visual
insight of the entire set of generated rules. Next, we defined
the minimum value for the confidence associated with the
rules that should be used in the prediction phase (minconf).
Shortly, we discovered that this action would not be enough
if we wanted to effectively reduce the number of predicted
queries. We needed to optimize the process.

Figure 2. A query sequence prediction for the first dataset.

When removing the rules with a confidence value
smaller than minconf, we realized that some rules remained
without the possibility to be predicted as a sequence of any
other query. If we think of the sequence of queries as a
graph, and we start removing some of the nodes, there are
some of them that lose their entrance arches. Those “nodes”
represent the queries that were removed in this second
optimization step. This way we also risk an increased

number of cache misses, but provide us an alternative way
of reducing the number of views to be pre-materialized in
the cache. The process followed to establish the set of
association rules for a particular minconf is depicted in
Figure 2.

VI. VALIDATING THE PROPOSED TECHNIQUE
In order to test the technique proposed here, we decided

to promote two different test cases, considering the number
of query hits achieved before and after the proposed
optimization scenarios, for a given set of artificial queries
(generated by artificial processing algorithms, not
representing the actual usage of an OLAP Server). In Figure
3, we can see the sequence of queries in a Markov chain,
which were predicted by the mining algorithm that was used
– S0 and S8 represent, respectively, the beginning of the
session provoked by the user’s login and the end of that
session. The edges’ values represent the transition
probabilities between two different states (or queries).
Based on the Markov chain presented in Figure 3, we can
see that, for example, the query S1 is the first query being
made in 40% of the treated cases (this value is the label of
the transition S0 → S1) and queries S3 and S2 will be
executed then, respectively, in 90% and 10% of all queries
executed. The rule that support S1 → S3 could be something
like: S1 → S3 (sup= …; conf=0.9).

Figure 3. A query sequence prediction for the first dataset.

One way to reduce the number of queries to be
materialized prior to the consultation (and cached) of a
given user is by observing the probability of occurrence of
all queries. Thus, from the start of a new working session, it
is possible to identify which set of queries allows for
reaching the final state (S8) with a greater probability of
success. However, to do this, we have to look in each state
of the Markov chain, which is the state most likely to be the
next state to be reached until the final state is reached. All
the tests conducted over this dataset basically used various
values for minconf simplifying the rules accordingly. The
chosen values for minconf were, respectively, 0.3, 0.4, and
0.5 (Table I). One other simplification was introduced, and
named as “main route”, simplistically put in cache the
sequence of queries that a user will most likely follow in a
future data exploration process, from login to logout.

747

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. A candidate sequence of queries that an user most likely follow
in a future data exploration process.

In Figure 4, we can clearly identify such candidate
sequence of queries. It will be the sequence represented by
the path:

S0 → S2 → S3 → S5 → S6 → S7 → S8.

It can be easily found by following the higher transition
probabilities between the S0 and S8 nodes. In the specific
case of the Markov chain presented in Figure 4, the
identification of the “main route” will be a result of the
materialization of the nodes S2, S3, S5, S6, and S7, since
nodes S0 and S8 correspond respectively to the begin and
end session actions. The results of the tests, for the different
values of minconf and for the “main route” simplification
models, can be found in Figure 5. All the results of the tests
were compared with each other - for a fairer comparison, we
present the percentages for the values attained in each test.

TABLE I. TEST RESULTS FOR THE FIRST DATASET

Minconf 0.3 0.4 0.5 “main route”
Pre-materialized views (%) 100 86 28 71

Cache Hits (%) 100 89.8 38.3 79.78

As a comparison value, if we add 50% of all queries to
the cache, intuitively we think we would achieve almost
50% cache hits for any given user (Figure 5). However, this
value is merely meant to provide us with a reference value,
and should not be considered in terms of absolute values.
Figure 6 leads us to note two key values of minconf values if
0.3 and 0.5, which show the most relevant (best and worst)
test results. As for the value 0.5, it means that only 28% of
all possible views were pre-materialized and, even in that
case, the cache hits came around 38.3%, which represents a
10% increase in system performance when compared to our
reference values. The usage of 0.3 for minconf resulted in no
view being simplified and, consequently, the values of
cache hits were measured at 100%. In Figure 7 and Figure 8
we can see the simplified Markov chains that resulted,
respectively, from the application of a minconf = 0.3, and a
minconf = 0.5.

Figure 5. Test results graph for the first dataset.

Test%1% Test%2% Test%3% Test%4% Test%5%

main%route%

Figure 6. Comparison of the results of the tests.

With the application of a confidence restriction of 0.3 it
is possible to remove arcs that possess a lower probability
than the value of confidence defined (Figure 7). Thus, it is
possible to see that, for example, the arc corresponding to
the transition between nodes S2 and S8 was not accepted.
On the other hand, if the strategy is to materialize all views
remaining in the Markov chain, then, with this confidence
value, it is not possible to remove any of the views present
in the chain. Due to this fact, it can be considered that
although the definition of a more restrictive value of the
minimum confidence (minconf = 0.3) the benefit in this case
would be non-existent, since the set of views to materialize
would be precisely the same.

Figure 7. A simplified Markov chain for minconf = 0.3.

In the case presented in Figure 8 it is shown another
simplification of the prediction model generated before, but
now applying a minconf = 0.5. Following the logic

748

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

previously exposed for this case were removed from the
model nodes S1, S4 and S5 since they did not have, after the
first step of simplification, any incoming arc.
.

Figure 8. A simplified Markov chain for minconf = 0.5.

In a second stage of analysis, we observed that the node
S6, after the removal of node S5, lost the only link it owned
that could support the prediction of its occurrence. Because
of this, it was necessary to remove as well the node S6.
Then, with the same rationale, we removed the node S7.

TABLE II. TEST RESULTS FOR THE SECOND DATASET

Minconf 0.02 0.3 0.4 0.6
Pre-materialized views (%) 54 52 50 46

Cache Hits (%) 89 88 87 86

As can be seen from Figure 8 the restriction of a minconf

= 0.5 has resulted in a quite considerable simplification of
the prediction model previously generated. Thus, for this
case, we will materialize only the views S0 (the initial
state), S2, S3 and S8 (the final state). Later, other tests were
conducted with another data set retrieved from several
OLAP sessions we made on a specific OLAP server. This
second dataset contains a total of 59 queries being issued to
the server, and the values of minconf used to simplify the
generated rules were 0.02, 0.03, 0.4, and 0.6. The results of
this second experience can be found in Table II and Figure
9. The results obtained in this second round of tests shows
us that, even though the differences between the different
values of minconf, they do not yield great differences in the
percentage of cache hits – nor in the percentage of
materialized views. The gains relative to the reference
values were quite relevant, staying approximately between
35% and 40% (for values of minconf equal to 0.02 and 0.6,
respectively). Despite the lack of real caching data, all data
sets prepared for testing and using in the several application
scenarios we conceptualized provided the necessary means
to prove the utility of our approach.

However, the results were not a surprise. In fact, based
on the experience we have from other studies using
association rules, we expected that the most frequent
queries, as well as their more frequent sequences, were
revealed naturally. This would allow for solid knowledge
about analytical usage trends of a user community, and
hence determine which query should be materialized in the
cache at any given time. However, materialize only the

queries indicated by association rules did not establish
effectively a querying materialization plan for caching in the
medium term. To support this in a more effective way we
represented association rules in Markov chains. This
allowed us to get a larger "horizon" for query
materialization. Thus, this combination of techniques that
provided us a very practical, not complex, way to establish a
priori very practical querying materialization plans for an
OLAP engine caching system, reducing consequently the
workload of an OLAP server and improving its querying
response time.

Figure 9. Test results graph for the second dataset.

Until the time we finished this work, we did not find any
other caching solution for analytical systems such as the one
we developed and exposed here. As such, we were unable to
evaluate our proposal based on other alternative solutions
that adopt or follow the same kind of strategy and
categorization of patterns of analytic exploration we did.
Even taking into consideration the works [14], [22], and [7],
which revealed very curious and interesting aspects of
predictive caching, we cannot make such comparative
assessment.

VII. CONCLUSIONS AND FUTURE WORK
In recent years, the large increase using

multidimensional database systems led to a greater interest
in research of new techniques for the improvement of OLAP
systems’ functionalities and services. As widely used in
other areas, these techniques can highlight the
implementation and operation of caching mechanisms in
OLAP systems, decreasing analytical server working load.
As for Web systems, initially on OLAP systems the
implementation of such mechanisms was only on the client
side. This meant that only a certain user benefit of previous
orders. Consequently, and as a manner to increase the
advantage achieved by using caches, such mechanisms has
focused on sharing benefits for all users of a given OLAP
server. Thus, through the distribution of caches or by means
of shared caches among individual users, either through the
creation of systems specifically designed to serve as cache

749

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

servers, significant improvements were achieved in terms of
performance [16][13][5][6][14].

The main goal of this study was to investigate in what
conditions a predictive caching system could be used in a
typical OLAP environment. In order to reach such goal, we
studied several known cache techniques, e.g., [15][29][5][6]
[25][12][14][7][4], trying to establish the basis to propose a
different manner to know a priori the contents of an OLAP
cache in a near future. All those techniques were crucial to
the development of our work, for both the ideas of exploring
the log files present in the OLAP Server and the
simplification of the rules generated after the application of
mining algorithms to that information. All the tests
performed showed satisfactory improvements in the ratio
between materialized views and cache hits. In our
perspective, they also showed that this approach has the
necessary pre-requisites to be applied to a more real
scenario with advantages for the overall system’s global
performance.

The results of all tests demonstrated that the
simplification of a certain percentage of rules to be pre-
materialized does not mean that the same percentage of
requests cannot be served from the cache. The doubt that
remains is that if this number of cache hits is small in terms
of a percentage higher or lower than the simplification of
rules. Analyzing the data generated by tests, both using
dummy data (the first data set), as the data retrieved from a
specific data repository (the second data set), the technique
for simplifying cache maintenance used proved to be very
beneficial in all the tested scenarios. Even though some
important questions remain, both for the period of logs that
should be analysed and for the values of minconf to be used.
This last, is an issue that should be addressed on a case-by-
case approach, and should be included in a typical tuning-
phase after finishing system implementation.

Finally, we think that with larger datasets feeding the
mining algorithm, results should be even better. With a
greater number of test cases, preferably from real
application scenarios, it is possible to define with greater
precision which are the access patterns of users as well as
what benefits arise from the application of the several
techniques. For that reason we plan in a near future to
extend the current study, comparing it with other similar
approaches and including some work concerning the
exploration of multidimensional queries. We will give
particular attention to the less busy periods of an OLAP
server, in order to pre-materialize some specific
multidimensional views that can be used latter when a user
logs in – the log in periods can, as well, be subject of
prediction. Yet because of the scarcity of the available data,
and because it was decided not to integrate in this work the
process where OLAP server logs are analysed and where are
acquired all the association rules that serve as input to the
technique developed – we focused on the simplification of
the already generated rules –, we plan to, in a near future
integrate these two phases in the process described in this

paper. In the short term, we need to evaluate in a more
effective way the practical utility of the predictive caching
technique developed, extending the analysis periods along
with the process of making a comparative study with other
similar and concurrent techniques.

REFERENCES
[1] P. Marques and O. Belo, “Adaptive OLAP Caching, Towards a better

quality of service in analytical systems,” in Proceedings of The
Second International Conference on Business Intelligence and
Technology (BUSTECH’2012), pp. 42-47, Nice, France, July 22-27,
2012.

[2] A. Abelló and O. Romero, “On-Line Analytical Processing (OLAP),”
in Encyclopedia of Database Systems (editors-in-chief: Tamer Ozsu
& Ling Liu), Springer, pp. 1949-1954, 2009.

[3] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos, “Cubetree:
Organization of and Bulk Incremental Updates on the Data Cube,” in
proceedings of the 1997 ACM SIGMOD international conference on
Management of data (SIGMOD '97), J. Peckman, S. Ram, and M.
Franklin (Eds.). ACM, New York, NY, USA, pp. 89-99, 1997.

[4] W. Zhenyuan and H. Haiyan, “OLAP Technology and its Business
Application, Intelligent Systems,” in proceedings of the Second WRI
Global Congress on Intelligent Systems, pp. 92-95, 16-17 Dec,
Wuhan, 2010.

[5] P. Kalnis and D. Papadias, “Proxy-server architectures for OLAP,” in
proceedings of the 2001 ACM SIGMOD international conference on
Management of data (SIGMOD '01), Timos Sellis (Ed.). ACM, New
York, NY, USA, pp. 367-378, 2001.

[6] P. Kalnis, W.Ng, B. Ooi, D. Papadias, and K. Tan, “An adaptive peer-
to-peer network for distributed caching of OLAP results,” in
Proceedings of the 2002 ACM SIGMOD international conference on
Management of data (SIGMOD '02). ACM, New York, NY, USA,
pp. 25-36, 2002.

[7] Q. Yao and A. An, “Using user access patterns for semantic query
caching,” in proceedings of Database and Expert Systems
Applications, 14th International Conference. Prague, Czech Republic,
2003.

[8] M. Chrobak and J. Noga, “LRU is Better than FIFO,” Algorithmica,
Springer New York 23, pp. 180-185, 1999.

[9] V. Mookerjee and Y. Tan, “Analysis of a least recently used
cache management policy for Web browsers”, Operations Research,
vol. 50, 2, pp. 345-357, Mar 2002.

[10] J. Boyar, M. Ehmsen, J. Kohrt, and K. Larsen, “A Theoretical
Comparison of LRU and LRU-2,” in Proceedings of the 4th
International Workshop on Approximation and Online Algorithms,
volume 4368 of Lecture Notes in Computer Science, pp. 95–107,
Springer-Verlag, 2006.

[11] N. Megiddo and D. Modha, “Arc: a Self-Tuning, Lowoverhead
Replacement Cache,” in Proceedings of FAST ’03: 2nd USENIX
Conference on File and Storage Technologies San Francisco, CA,
USA, March 31–April 2, 2003.

[12] W. Lehner, J. Albrecht, and W. Hümer, “Divide and Aggregate:
caching multidimensional objects,” in proceedings of the Second Intl.
Workshop on Design and Management of Data Warehouses (DMDW
2000), Stockholm, Sweden, 2000.

[13] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching Dynamic
Contents on the Web,” Distributed Systems Engineering, vol. 6, 1, pp.
43-50, 1999.

[14] T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, “Active
Caching of On-Line-Analytical-Processing Queries in WWW
Proxies,” in Proceedings of the International Conference on Parallel
Processing (ICPP '01). IEEE Computer Society, Washington, DC,
USA, pp. 419-426, 2001.

[15] P. Deshpande, K. Ramasamy, A. Shukla, and J. Naughton, “Caching
multidimensional queries using chunks,” ACM.SIGMOD Rec. 27, 2,
pp. 259-270, June, 1998.

750

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] S. Bakiras, T. Loukopoulos, and I. Ahmad, “Dynamic Organization
Schemes for Cooperative Proxy Caching,” in IPDPS’03 (International
Parallel and Distributed Processing Symposium), 2003.

[17] H. Gupta, “Selection of Views to Materialize in a Data Warehouse,”
in Proceedings of the 6th International Conference on Database
Theory, Springer-Verlag, London, UK, 1997.

[18] V. Harinarayan, A. Rajaraman, and J. Ullman, ”Implementing data
cubes efficiently,” ACM SIGMOD Record, vol. 25, 2, pp. 205-216,
1996.

[19] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized Views
Seleccion in a Multidimensional Database,” in Proceedings of the
23rd International conference on Very Large Databases. Morgan
Kaufmann Publishers Inc: San Francisco, CA,USA, 1997.

[20] A. Bauer and W. Lehner, “On solving the view selection problem,” in
Proceedings of the 15th International Conference on Scientific and
Statistical Database Management. IEEE Computer Socienty,
Washington DC, USA, 2003.

[21] Y. Kotidis and N. Roussopoulos, “A case for dynamic view
management,” in ACM Transactions on Database Systems. ACM:
New York, USA, 2001.

[22] C. Sapia, “PROMISE: Predicting Query Behavior to Enable
Predictive Caching Strategies for OLAP Systems,” in Proceedings of
the Second International Conference on Data warehousing and
Knowledge Discovery (DAWAK 2000), Greewich, UK, Septeber
2000, Springer LNCS, 2000.

[23] K. Ramachandran, B. Shah, and V. Raghavan, “Dynamic pre-fetching
of views based on user-access patterns in an OLAP system,” in ACM
SIGMOD, 2005.

[24] L. Cherkasova, “Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy,” HP Laboratories
Technical Report HPL, 1998.

[25] M. Lawrence, F. Dehne, and A. Rau-Chaplin, “Implementing OLAP
Query Fragment Aggregation and Recombination for the OLAP
Enabled Grid,” in proceedings of Parallel and Distributed Processing
Symposium (IPDPS 2007), IEEE International, pp. 26-30 March
2007.

[26] J. Albrecht, A. Bauer, O. Deyerling, H. Günzel, W. Hümmer, W.
Lehner, and L. Schlesinger, “Management of Multidimensional
Aggregates for Efficient Online Analytical Processing,” in
Proceedings of the 1999 International Symposium on Database
Engineering & Applications (IDEAS '99). IEEE Computer Society,
Washington, DC, USA, pp. 156-164, 1999.

[27] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in J. Bocca, M. Jarke, and C. Zaniolo,
editors, Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB, pp. 487-499, Santiago, Chile, September
1994.

[28] R. Howard, “Dynamic Programming and Markov Processes,” MIT
Press, June, 1960.

[29] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, “What can
databases do for Peer-to-Peer,” in proceedings of WebDB, 2001.

