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Abstract — It is not new that on-line analytical processing 
systems arose to companies to stay. They have the ability to 
change the most common application scenarios that decision-
makers use on their everyday tasks. The large flexibility in 
data exploration and high performance response levels to 
queries these systems have make them very useful tools for 
exploring multidimensional data accordingly to the most 
diverse analysis perspectives of decision-makers. However, 
despite all the computational resources and techniques we have 
today, sometimes, it is very hard to maintain such levels of 
performance for all application scenarios, analytical systems, 
or user demands. When context conditions and application 
requirements change, performance losses may occur. There 
are a lot of strategies, techniques and mechanism that were 
designed and developed to avoid (or at least to attenuate) such 
undesirable low performance situations with the purpose to 
reduce especially data servers load.  On-line analytical 
processing systems caching is one of them, designed for 
maintaining previous queries and serving them upon 
subsequent requests without having to ask the server 
repeatedly. In this paper, we present an on-line analytical 
processing systems caching technique with the ability to 
identify the exploration patterns of its users, i.e., what queries 
a user will submit during a working session, their frequency 
and resources involved, and to predict what data they will 
request in a near future, as well as the sequence of those 
requests. To do that in an efficient manner, we need to 
maintain a positive ratio between the time spent to predict and 
materialize the most relevant views to users, and the time that 
would be spent if no prediction had been done. Using 
association rules and Markov chains techniques, we designed a 
flexible manner to provide an effective caching system for on-
line analytical processing systems.  

Keywords – on-line analytical processing; analytical servers; 
caching; association rules mining; Markov chains; cache 
content prediction. 

I.  INTRODUCTION 
Due to the amazing increase of companies’ data 

repositories in the last decade, attentions turned to the 
implementation of more powerful ways of analyzing data. 
As a consequence, Decision Support Systems, and more 
specifically, On-line Analytical Processing (OLAP) systems 

[1][2][3][4] are being implemented in a large scale, when 
compared to what was being done a few years ago. A little 
everywhere, OLAP and data mining systems have captured 
the attention of many research teams and creators of large 
software systems. OLAP systems provide sophisticated 
mechanisms for the analysis of large volumes of data in a 
very expeditious way, accordingly to the several exploration 
perspectives of decision makers. Based on this type of 
systems, decision-making processes are much more oriented 
and more effective, being supported by well-structured 
analytical information and not, as so may times happen, by 
the simple intuition of a decision-maker supported by a 
package of statistical data. OLAP mechanisms for data 
exploration and analysis allow for data to be related in a 
non-trivial manner, making possible to change the current 
perspectives of analysis whenever necessary. Thus, they are 
quite flexible. This is only possible due to the fact that data 
is stored in very specific structures that were especially 
designed for this type of analytical processes, faithfully 
following the multidimensional nature of the data as well as 
its most regular exploration processes. 

The high efficiency of OLAP systems for exploring 
multidimensional data is based primarily on the pre-
materialisation of the data that we believe to be necessary to 
meet the needs (and sometimes the expectations) of a 
decision-maker. This pre-materialization process is done 
recurring to the use of materialized views that potentially 
allow for satisfying "immediately" any question (query) that 
is launched to the system by its users. As this ideal case of 
querying satisfaction is practically impossible to achieve, 
due in part to the limitations of memory and processing 
capacity of the systems, several techniques have been 
developed to improve how these views can be materialized 
a priori. Caching techniques are one of them. For a long 
time, they were applied in Web systems with very positive 
results. Since the beginning of its implementation, caching 
techniques were seen as a way to accelerate the process for 
responding requests (queries) posted by users. The 
implementation of a caching system in a Web platform aims 
mainly to maintain the information that has static properties, 
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in order to provide it through a cache (and not through the 
primary data source) to users that request it repeatedly. This 
gives us two important advantages. First of all, it allows for 
a great reduction in responses time-to-user – a caching 
server usually is “closer” to the user than the main 
information source. On the other hand, this avoids repetitive 
accesses to the main server, freeing it to answer requests 
that only it can compute. 

In OLAP systems, the information to keep data in cache 
is very dynamic, but it is not updated very often (perhaps 
only once in each refreshing cycle of their data structures) 
and when it happens that is usually done in an incremental 
manner. The challenges posed by all these constraints are 
not easy to solve, and this is where caching can help. It is 
already considered as one of the key factors that contributes 
to a significant part of the improvement in performance of 
any OLAP system. As an OLAP system evolves, so must 
the caching system associated to it – Figure 1 illustrates a 
simple view of a basic caching system for a 
multidimensional database.  

As in Web systems, caching systems were firstly centred 
on the individual perspective of the user that was the only 
one to benefit from its own caching architecture (client-side 
caching). Businesses were quick to realize that this 
somewhat less-sharing way of caching was not the best 
approach. Later, the development of caching systems 
followed the strand of sharing caches between users, 
whether they were available on the server side or on the 
customer side. 

 

Multidimensional 
Database 

Application 

Cache 

Procedure usingDBCache; 
 
begin 
     receive_query_from_app(Application, Query) 
     search_on_cache_required_data(Query, Results) 
     if empty(Results) is true then 

 search_on_database_required_data(Query, Results) 
     endif 
     return_data_to_app(Application, Query, Results) 
endProcedure 
  

OLAP System 
 

Figure 1.  Illustration of a basic caching system for an OLAP system. 

As we know, one of the great advantages of OLAP 
systems is the fact that they can cope with large volumes of 
data, and execute ad-hoc queries within various analysis 
perspectives giving to decision makers an exceptional way 
to get more structured insights about company’s data. OLAP 
systems were so well accepted by decision makers that they 
soon started loading more and more data into them and 
issuing more complex queries, which quickly surfaced some 
critical performance issues. As fast as an OLAP Server 
could be, there is always some space to apply new 
optimization strategies, trying to improve OLAP servers’ 
performance and OLAP users’ satisfaction. Thus, the usage 
of caching mechanisms in OLAP platforms is a natural (and 

viable) technological choice when one is concerned to 
improve the quality of service of an OLAP platform.  

Despite being widely implemented and tested, 
conventional caching mechanisms were not prepared to 
handle OLAP data. One of the reasons why this type of 
information was not ideal for caching was due to its 
dynamic nature (i.e., versus the static nature of HTML 
information where caching techniques have a particularly 
good fit). Other aspect to be considered when dealing with 
OLAP data is the dimension of the data to be kept in cache, 
both in terms of volume of data as well as in terms of data 
structure complexity. Comparing again with HTML data, 
which represents a little effort in terms of space needed to 
keep it in cache, OLAP data requires a great amount of 
space, simply due to the fact that any response to a typical 
MDX (Multidimensional Expression) query involves a lot of 
data, usually materialized in a multidimensional data view 
(a data cube). Even with the diversity of the data to be 
maintained, several techniques were developed to apply 
caching mechanisms to OLAP data [5][6][7], revealing 
benefits good enough to keep the focus on improving 
caching techniques in order to integrate them effectively on 
OLAP server systems.  

The work we developed was based on an analysis of 
today’s caching mechanisms and their application in the 
OLAP field, and based on selected information about user’s 
querying patterns [1]. In order to obtain these patterns, 
OLAP server logs were fetched, analysed and mined in 
order to obtain a set of association rules that represent the 
actions (and consequences) of user’s queries (usage 
profiles), providing us the means to predict future user’s 
querying tendencies. Such predictions unlock the possibility 
of issuing a query even before a user post it, putting it in 
cache and finally providing it faster than if no cache was 
available in the OLAP platform.  

Basically, having the ability to establish the exploration 
patterns of a community of OLAP users give us the 
possibility to define a priori the contents of a cache with a 
satisfactory confidence label. With this, it will be possible to 
have, in advance, a predefined set of materialize views that 
correspond to the most frequent multidimensional queries 
that were done previously during a certain period. Of course 
that the success of this strategy depends a lot from the 
tendencies (and routines) of data exploration that users may 
have. However, in general terms, an OLAP user uses to 
apply systematically for a particular set of queries as the 
starting point of his OLAP session. Knowing that, and 
having also an exploration profile, we can establish the 
initial state of a cache, adjusting it dynamically during the 
execution of an OLAP session accordingly the prediction 
we have made based on past OLAP sessions - more 
adequate caches’ contents in a shorter time. In short, this 
was the goal of our work. 

In the next sections, a more in-depth analysis to this 
process will be conducted, explaining the various stages 
reached along the evolution of the work, as well as 
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discussing some of most relevant considerations needed to 
understand the complexity of predicting the 
multidimensional content of a cache for a specific OLAP 
platform. This paper is organized as follows: Section II 
presents a brief relation about some caching techniques and 
caching maintenance algorithms; Section III shows a 
detailed overview about OLAP caching, its advantages and 
disadvantages; Section IV presents and discusses the major 
characteristics of problems we could face when using high 
specialized caches as OLAP caches; Section V reveals our 
technique for a new model of OLAP caching; Section VI 
reveals and discusses the results of the tests we have done 
for validating the proposed OLAP caching model; and 
finally, Section VII presents final remarks and conclusions, 
as well as point out some lines for future research. 

II. RELATED WORK 
The introduction of caching mechanisms in OLAP 

systems brings some great advantages. Firstly, because 
queries are answered directly from the cache system, 
decreasing accesses to the OLAP server. Secondly, since 
caches are usually closer to the users, the network traffic 
between the nodes closer to the OLAP server decreases - 
providing better network latency and quality of service. As a 
result, OLAP server availability and performance increase.  

As we know, the concern of improving services of a 
server, and in particular of an OLAP server, is not new. 
Many researchers have developed effective work in this 
area, with particular emphasis in areas such as cache 
management algorithms and caching systems architectures. 
Usually, algorithms for managing caches are used to decide 
whether a given piece of data should be placed (or not) in a 
cache. This allocation decision affects the contents of the 
cache and consequently its own performance. Thus, by 
analyzing the consequences of these decisions positively or 
negatively it is possible to make an evaluation about the 
quality of the cache management algorithm that was used, 
applying a set of metrics especially defined for this purpose, 
namely the Hit Ratio or the Byte Hit Ratio metrics. 

Over the years many proposals presented a large 
diversity of algorithms for managing caches. On this domain 
we should reveal the work that led to the emergence of 
algorithms such as the First In First Out (FIFO), the Least 
Frequently Used (LFU) [8], or the Least Recently Use 
(LRU) [9] algorithms. The operating way of these 
algorithms is very similar. They are regulated through the 
definition of static criteria that defines the way as data is 
removed from a cache when the cache gets full. 
Independently from the different implementations of data 
structures that exist to support queues (FIFO), determining 
the frequency of access of each of the elements maintaining 
in a cache (LFU) or to sustain a specific time label relative 
to the time at which data was accessed (LRU), data elements 
are removed from a cache without concerning their utility 
for the users of the system.  

FIFO, LRU and LFU still are today some of the most 
popular and theoretically important algorithms for caching 
management as well as the algorithms Least Recently Used 
Second-to-Last Request (LRU-2) [10], an evolution of the 
LRU algorithm that was developed to be used in database 
disk buffering. Finally, a brief reference to a last caching 
management algorithm: ARC (Adaptive Replacement 
Cache) [11], which has the ability to balance in adaptive 
manner the workload of a cache in a self-tuning fashion.  
All algorithms for managing caches mentioned earlier aim 
to manage the information that should be added or removed 
from a cache system. Similarly, with another level of 
abstraction, we can refer other works in this domain that 
address many relevant aspects in the implementation of a 
caching system, namely the problem of the location of the 
cache. Alternatively to the implementation of a caching 
system on the client side, we can do it on the server side, as 
already referred, creating mechanisms that benefit all users 
of a given community. From the simple to more complex 
caching systems, this last approach involves, among others, 
peer-to-peer, active caching, or chunks based caching 
architectures. Chunks were defined in Deshpande et al. [12] 
and are a new indivisible unit. This data unit, with a low 
granularity level, is mapped in the cache in order to be 
aggregated to satisfy user requests. The mapping occurs in 
the server and denotes the relationship between a chunk and 
the basic units stored in the OLAP Server, allowing for the 
complementary fetching of data from a main data source. 

Let us now look at other approaches, starting by the 
peer-to-peer architecture. In [5] it was said that, a little bit 
like as all other proposals in the area of distributed caching, 
if all participants in a network share their personal caches, 
everyone would benefit, and proposed a network 
architecture that enables such features – the PeerOLAP. 
Additionally, they also presented some other policies for 
renovating and maintaining data in distributed caching 
system. In [13] and [14] it was approached an active caching 
system technique. This technique was presented as an 
effective solution to the problem of creating a caching 
system for dynamic information manipulated by Web 
proxies. As we know, performing caching of static HTML 
pages is a common practice. But the implementation of a 
caching system for OLAP queries (and correspondent 
results) in Web proxies is not very usual. This is due to the 
fact that proxies usually are not prepared to maintain 
dynamic information, and especially because they do not 
have the necessary mechanisms to deal with the necessary 
post-calculations. On the other hand, in [15] there is a 
proposal to by-pass problems at the level of caching queries, 
allowing for the use of data in cache to respond partially to a 
query. The rest of the answer will be obtained directly from 
the server. This was accomplished by dividing data into 
chunks stored directly in the cache. When the level of 
aggregation of a chunk is lower than of the query, chunks 
could be used to partially calculate the results of the queries 
presented. Through the use of mapping mechanisms, 
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between the data of the query and corresponding chunk 
number, it was possible to determine all the chunks needed 
for the calculation of the solution of a given query.   

Later, in [16] were proposed other algorithms to group 
proxies dynamically in "neighbourhoods", regrouping them 
whenever necessary according some predefined requisites. 
This approach can be regarded as second level caching, at 
which information refers to maintain the best neighbours of 
a certain proxy. The process is relatively simple. When a 
proxy discovers that there is another one that is not his 
neighbour but it can bring greater benefits, it adds it to its 
list of neighbours, eliminating any other proxy in that list 
that is less beneficial, if necessary – the complexity 
associated to this process relies mostly in maintaining 
accurate statistics about the other proxies behaviour and 
performance. 

In OLAP, selecting views to materialize is an NP-
complete problem [17]. Some of well known approaches - 
e.g., [18], [19] or [20] - propose this selection to be 
performed statically before each set of queries, being results 
used to respond to subsequent queries. To avoid the problem 
that arises with the fact that the usage patterns are dynamic, 
in [21], [22] and [7] it was developed some other techniques 
to exploit this kind of situations. An evolution of the 
proposal of the system Dynamat [21] was the 
implementation of a mechanism regarding the usage 
patterns of users as well as its dynamic structure [23]. In the 
same line of research we find the system PROMISE [22], 
which has the ability to predict in a more accurate manner 
what was the structure of a query based on some previous 
usage patterns, as well as the current query issued.  

Any proposal that intends to respond to the fundamental 
problems of a dynamic selection of views – e.g., what is the 
amount of information that is required to draw a good user 
profile, and what is the right time to bring such views to 
memory (only when requested or trying to predict what is 
the next view to be required), can be found in [23]. As we 
can see a lot of proposals to design and implement caching 
systems were done during the last decade. Here, we just 
enumerated some of them, trying to enhance some important 
issues about some techniques to put and manage data in a 
cache. All these issues can be exploited and adjusted for the 
implementation of specific caches for OLAP systems. 

III. TO CACHE OR NOT TO CACHE 
To cache or not to cache is not a simple decision. The 

implementation of a caching system in an inappropriate time 
entails additional costs and does not bring any benefits to 
the entire system. There are many aspects that must be 
considered before deciding on the implementation of a 
caching system. Many of these aspects are related, directly 
or not, with the existence of a performance problem. To 
detect or prove it, we can use, for example, profiling or 
logging techniques that reveal us how the system is being 
exploited and respond to the information requests. With this, 
we can find what the information that is most often used is 

and make sure the system presents it expeditiously. If the 
system is unable, for performance reasons, to quickly 
deliver this information, we can improve the system’s 
performance by placing this information in a caching 
system, which will reduce the number of disk accesses, 
decrease querying processing time and, consequently, 
decrease the overall time to get querying results. 
Additionally, through caching, one achieves the basis to 
have a more scalable and flexible system, with high service 
availability and better performance. 

Usually, a database system can make three types of 
caching, namely results, execution plans and data objects. 
Although they are all important, in our case, we only 
approached the caching of results, by studying the 
application of some profiling techniques to querying 
processing of a given OLAP system. However, whatever the 
specific area of implementation could be, when 
implementing caching mechanisms one has to remember 
that the space available for storing the cache is not 
unlimited. As a direct consequence we need to choose (and 
evaluate) what data should be kept (or not) in a cache and 
what data should be removed giving space for new (and 
hopefully more relevant) data to the users’ needs. Keeping 
this in mind, researchers started to test quite well known 
algorithms – frequently referred as cache management 
algorithms – that up to that time had only been used in other 
types of environments such as for caching HTML pages 
with great success. As results became known, there was a 
clear notion that there should be promoted some additional 
efforts to develop new breads of algorithms that focused 
OLAP scenarios in particular.  

A caching management system is a crucial element in 
the overall performance of a caching system. Basically, its 
main function is to decide on which information must be 
maintained (or removed) from a cache in order to allow the 
addition of new data when necessary. With the aim of 
measuring the performance of such a system, there are two 
basic metrics, the Hit Ratio and the Byte Hit Ratio. The Hit 
Ratio is one of the most common ways of evaluating the 
value of any caching algorithm. This metric is the ratio 
between the number of requests that were in cache and the 
total number of requests that were made, and can be 
calculated using the following expression: 

 
Hit Ratio ← RequestsSatisfiedByCache / TotalRequests 
 
However, Hit Ratio is not a perfect metric. For instance, 

even with a higher Hit Ratio, the number of bytes served 
directly by the cache could be smaller than a cache with a 
lower Hit Ratio, which led to the creation of another metric: 
the Byte Hit Ratio. This last metric has been vastly used to 
evaluate how a cache can satisfy its clients’ requests. 
Contrary to the previous metric, this one is intended to take 
account not only how many requests were satisfied from the 
cache, but also how much information was served this way. 
If the scenario is caching small pieces of data, it is natural 
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that the percentage of requests answered directly from it is 
high, but it is also possible that the number of bytes of 
information satisfied in this way can be low. Conversely, it 
is possible that a small portion of large pieces of data results 
in a reverse scenario. The Byte Hit Ratio metric is defined 
according to the following expression: 

Byte Hit Ratio ← BytesSatisfiedByCache / TotalBytes 

As a user of any OLAP (or other) system launches his 
queries, the cache management algorithm has to check if the 
necessary information is stored in the cache or. If not, it 
needs to decide whether it should or should not be added to 
the cache. If the request cannot be satisfied directly from the 
cache, there are two possible outcomes: 

1) the cache still has space to accommodate the new 
data, and so it is added without further due, or  

2) the cache does not have enough space to store the 
new data.  

In the former case, the content is added, and after that time, 
when it is requested, it will be served from cache instead of 
being satisfied directly by the OLAP Server. If there is no 
space available in the cache management system, the 
algorithm can either discard this information or free some 
space in cache in order to add this new data. This is the 
main decision that cache algorithms have to make. As we 
know, this decision will affect the way a cache behaves in 
the presence of new information to be added. One of the 
most basic ways to do this selection is to use a FIFO 
approach, which means that the oldest record to have been 
added to cache will be removed in order to create space for 
a new entry. If this is not enough, the second (the third, and 
so on) oldest records will be removed as necessary, record 
by record. The main problem with this technique is the fact 
that it does not consider the nature of the data. Despite of its 
size or actuality, data has an intrinsic value that cannot be 
measured as simplistically as these approaches propose. 
Other (more sophisticated) decision metrics were developed 
using a timestamp of the last access to a specific piece of 
data [9], the frequency of access to the data [8], or other 
more complex metadata such as the ones used by the 
Greedy Dual algorithm [24], for instance. All these metrics, 
in one way or another, take into account the intrinsic value 
of data and the relevance each piece of data has to the users 
and, therefore, they are much more suited to do the 
(caching) job correctly than others that simply look at the 
characteristics of the data neglecting its nature and its 
relevance to users. 

IV. OLAP CACHING 
Some of the most common operations performed when 

querying an OLAP server are the well-known drill-down 
and roll-up operations. The first of these two operations 
consists of lowering the grain at which the data is being 
analysed. For instance, we can go down in a hierarchy, 
detailing systematically, level by level, the grain of the data, 

from a country-level view to a district-level one, for 
instance. The roll-up operation is its direct counterpart, 
allowing viewing data at a higher level following as well a 
determined hierarchy.  

In an OLAP server, the data is stored at the lowest level 
of granularity and then aggregated to a level required by a 
specific multidimensional request. In [5] a solution was 
proposed where this characteristic is explored, mainly by 
sharing the cache over several cache servers, specifically 
OLAP Cache Servers (OCS). In this approach, each OCS 
has the capability to apply transformations (aggregations 
and other operations) to multidimensional structures, and 
thus combine them to satisfy at least part of a request that 
has been launched by a user. This way, whenever a user 
issues a query, the various OCS are asked if they have the 
needed information and, even if they do not, they are asked 
again if they can compute it from the data they have at a 
lower grain than the user requested. This means that an OCS 
can satisfy not only requests that have been issued before 
(and cached) but also other issues that involve computations 
over the data that exists in the OCS. 

When configuring an OCS is important to indicate what 
is the granularity of the data that you want to maintain in a 
cache, as this will define the type of applications that can 
satisfy a specific peer. Physically, the data is stored in 
secondary memory and only brought into primary memory 
when required or, more accurately, when the fetching 
algorithms decide the most appropriated time to do that. 
This operation does not have to necessarily be on-demand 
and can follow, for instance, some kind of predictive 
approach [22] or any another technique for fetching data. 
Another alternative was proposed in [6], where individual 
caches of users are shared through a peer-to-peer network 
created between users of a same OLAP System – 
PeerOLAP. Essentially, this approach was based on the 
Piazza System [25], and intended to allow a very high level 
of autonomy in the cache network due to the dynamic nature 
of Peer-to-Peer networks, where users can connect and 
disconnect without significantly affecting the overall 
usability and performance of the system. 

As in other proposals following a decentralized 
architecture, a challenge that this system often faces is the 
need to establish a mechanism to avoid the uncontrolled 
spread of messages, which can, as we know, create 
congestion in the network, deteriorating the overall system 
performance. A possible solution to overcome this is the 
definition of a maximum number of "jumps" that a message 
could give before lose their validity. This is quite intuitive. 
A message after a given number of “jumps”, even if it can 
find a peer that has an adequate response, will be hardly 
provided in the best possible time. Another problem that 
arises here is when a message is being resent to other users, 
even before reaching the maximum number of jumps, and 
the only place where this can be resubmitted it is the data 
warehouse itself. In this case, the message is not relayed to 
the central peer such as this could lead to the repetition of 
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messages sent to the data warehouse, which breaks any kind 
of goal of a caching system. 

As mentioned before, OLAP data is quite dynamic by 
nature, which means that it is very difficult to predict when 
the cached data will become out-dated. To deal with this 
problem, an active caching technique was created [25]. It 
consists of keeping in the cache server a Java applet that is 
invoked every time a cache hit occurs. This applet has the 
role to check with the OLAP Server if the cache information 
stills valid or if it has changed since the last time it was 
requested by one or more users. If data stills valid, it will be 
returned to the user who requested it. If not, the full request 
will be redirected to the OLAP Server.  

One other question that was frequently placed by 
researchers, was focused on what would be the optimal level 
of granularity to store data in a cache, in order to not only be 
able to aggregate it as needed, but also to be able to do that in 
a timely fashion manner. On such units is the previously 
presented chunk, defined by Deshpande et al. [12]. When a 
cache server receives a request from a user, it calculates the 
parts of that request that it can be satisfied accessing directly 
the cache, and the information that it need to be requested to 
the OLAP Server (at a low level of granularity). When all the 
required data is located in the cache server, it combines it 
and sends the results to the user, without him ever knowing if 
the information came from the central server or the cache 
server. As a last reference we selected the work presented by 
Sapia [22], which is an approach particularly interesting to 
us. In that work, the author proposed a predictive system for 
user behaviour in multidimensional information system 
environments that explore characteristic patterns users use to 
show when explore multidimensional data structures. It is an 
OLAP caching approach that complements other techniques, 
such as the ones presented in [26] or [15].   

Finally, we should say that the maintenance of caches is 
something that must be included in the routine of any OLAP 
system administrator. One cannot optimize performance of 
such a system simply deciding, from one day to another, the 
implementation of some kind of caching mechanisms as a 
solution for a current optimization problem. Generally 
speaking, implementing a caching system by itself cannot 
solve any optimization problem. Frequently such problems 
are treated as early as possible, just starting in the querying 
design phase and evolving their treatment throughout the 
design chain of a query. In some sense, caches help to solve 
(or mitigate) such situations. In our case, we were concerned 
researching some of the most relevant aspects in the 
maintenance of a caching system for analytical servers, 
seeing how we could establish a way to "guess" the various 
forms of data querying that a specific user community 
practiced. Basically, the idea was only to find a way to 
characterize their querying patterns, establishing the most 
used sequences of queries used, and based on that knowledge 
materialize their results (when possible) in a caching system. 
And that is what we will explore in the next section. 

V. A NEW OLAP CACHING APPROACH 
By their nature, OLAP systems allow for identifying, for 

each user or group of users, how they access and explore 
data cubes. If we take the example of a high-level decision-
maker, most likely he will access only information 
regarding to the sales of a specific store or a particular 
region, avoiding specific and detailed information relating 
to the sales of all company’s products, for example. 
Exploring features like this, we can define not only which 
areas of impact in terms of data analysis a user usually does, 
but also which specific sequence of searches usually he uses 
to follow. Thus, it is possible to make predictions about 
what will be the next query sent to the OLAP server by a 
given user, simply knowing which of the queries he released 
in the past when doing some data exploration over a set of 
data cubes. One way to acquire knowledge about the 
behaviour of a user passes is, for instance, analyzing the log 
files of previous sessions of data querying. Through the data 
stored in these files and with the application of specific 
domain-oriented data mining techniques, it is possible to 
extract some useful and accurate knowledge about the user 
usage profile. 

One of the issues related to the use of this type of 
knowledge is his assertiveness and the advantage that comes 
from its use. Unlike other caching techniques, this approach 
does not aim to reduce the workload of a data server but to 
improve the response time satisfying user requests. This 
type of technique uses the last query launched by a user, and 
based on it (and other historical data) tries to infer which 
will be requested next by the user. If it is possible to carry 
out this prediction, with a sufficiently high degree of 
certainty, the query and the answer will be immediately 
placed in the cache so that when the user presents the query 
its answer will be already stored in memory and the system 
only needs to provide the results to the user, almost 
immediately. Another approach involves not only the last 
query performed, but also a certain number of queries 
before that. Thus, keeping information about the sequence 
of requests (queries) made by users it is possible to make 
predictions with greater certainty. However, you must also 
have a larger amount of information related to the past 
behaviour of a user in order to enable the accomplishment 
of such predictions. 

This work was based on the assumption that OLAP 
system’s users have predictable patterns of data that they 
use to consult on their regular OLAP sessions. The nature of 
most OLAP users in a company – decision makers – usually 
means they are focused in a relatively small subset of the 
data stored in a data warehouse. The day-to-day activity of a 
decision maker may begin with an analysis of a pre-defined 
dashboard or an interactive report, and based on the 
information gathered from the analysis of the data, he will 
continue his exploration in a lower level view of the same 
data – probably appealing to a typical drill-down operation. 
This shows us that for any given user his behaviour will be 
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repeated during a certain period of time, revealing then a 
regular usage pattern.  

One possible way of extracting these patterns is by 
analyzing OLAP Server’s logs that contain information 
about what multidimensional queries users had submitted 
and when they happened. It is also possible to know, for a 
given user, the sequence of queries he launched between his 
login and his logout in a specific OLAP session. From the 
analysis of this kind of information, given a certain period 
of an OLAP system exploration, another problem arose: 
how far back in the logs should we go to make sure that the 
retrieved rules are truly representative of the user’s 
exploration patterns? On one hand, if we analyse the OLAP 
exploration habits (and tendencies) for a short period of 
time, we may get rules that represent the most recent 
patterns and not what the user usually does in the “long 
run”. However, on the other hand, if we analyse a larger 
period, we may extract rules that represent older OLAP 
exploration patterns that do not represent what users are 
doing currently (users may change their exploration habits 
due to a large variety of reasons, demanding that the 
algorithm should be able to adapt to such changes).  

Taking these constraints into consideration, we began 
our approach by retrieving the OLAP server’s log files, 
preparing them to be analysed latter by a specific data 
mining algorithm with the ability to generate a set of 
association rules that represent the most relevant exploration 
user patterns – we designate a set of usage patterns by an 
OLAP profile. From the OLAP server’s log files we extract 
all the MDX queries that were launched during a certain 
period by a community of users that we want to establish the 
correspondent data exploration profiles. Each MDX query is 
fragmented accordingly several dimensions of analysis, such 
as OLAP session, cube, query, data and time, dimensions, 
measures, and users. Then, this information is stored in a 
specific relational data mart that will provide on the next 
phase the data to data mining association algorithms.  

To establish the association rules we used the well-
known Apriori algorithm [27]. This is one of the most used 
algorithm for mining frequent item sets, having prove its 
effectiveness so many times analysing a set of transactions 
and surfaces the relationships between them, given a 
minimum value for support and confidence. As it is well 
known, association rules are usually represented in the 
format: A→B (sup=α; conf=β), where sup and conf 
represent, respectively, the support and the confidence 
values of a rule. From an association rule (and from its 
support and confidence values) we can retrieve two 
important things, namely the: 

− support (sup), that represents the ratio between the 
number of times that a sequence of queries A 
followed by a sequence of queries B was found in 
the dataset and the total number of queries in that 
dataset: 
 

!"# ! → ! = !#(!!!"##"$%&!!"!!!!"!!ℎ!!!"#"$%#)#(!"#$%#&!in!the!dataset)  

 
− confidence (conf), that represents the number of 

times a sequence of queries A is followed by a 
sequence of queries B in the dataset, divided by the 
number of times a query A (independently of what 
query followed it) was found in the same dataset: 
 
conf ! → ! = !#(!!!"##"$%&!!"!!!!"!!ℎ!!!"#"$%#)#(!!!"!!ℎ!!!"#"$%#)  

 
If we take the association rule A→B (sup=0.3; 

conf=0.8), as a working example, we can say that for every 
time a user issues the query A he will, in 80% of the cases, 
issue the query B right after that. On the other hand, we can 
say that for the analysed dataset, a sequence of queries A 
followed by a sequence of queries B occurred in 30% of all 
cases. However, the antecedent (A) of such rules does not 
correspond necessarily to a single event, which means that 
A can also represent a set of queries. In our scenario, the 
prediction process will be supported not only by a single 
query, but also by a sequence of queries that a user triggered 
from the beginning of its working session. If the association 
rule is something like A1, A2, A3 → B, it means that the 
consequent of the rule (B) can be predicted as a 
consequence of the occurrence of the events A1, A2 and A3, 
with a given confidence and support. These rules allow for 
more than a simple prediction, "step by step", which may 
happen when we want to predict what the next query to be 
executed is. Thus, it is possible to predict a priori, with 
greater anticipation, which queries will be launched by users 
until the end of their working sessions, as well as to know 
the sequence those queries.  

It can also happen that the antecedents of the rules are 
not necessarily sets of queries that were issued, but other 
types of querying conditions environments, like periods of a 
day, periods of a week, or even business data like sales or 
stock information. If we explore all these possibilities, 
associating them to a specific OLAP environment, it is 
possible to define some specific rules that indicate the 
frequency of a particular user performing a query, which 
predictably will be executed at the same time on a given day 
or week. For example, we can think in an application 
scenario where a decision agent every Friday afternoon, 
before leaving its workplace, check systematically the most 
relevant management indicators in order to get a last view of 
the business status of the company. On such scenario and 
time frame, the indicators he analysed were always the 
same. Nevertheless, the consequences of the analysis will be 
clarified by a particular set of query that he will launch to 
verify a particular business case brought to his attention. 

Using this type of prediction system reveals some 
interesting capabilities that can be very useful improving the 
performance of an OLAP system. However, it also raises 
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some pertinent questions that should be answered according 
to the application context of each specific case, namely: 

− What is the number of searches of a user that should 
be taken into account during a prediction process 
within the same session? 

− All rules should be accepted as valid or we need to 
define some minimum values for support and 
confidence, from which the materialization of the 
corresponding views will be rewarded? 

− Shall we materialize immediately all queries that we 
predict will become necessary or only a part of 
them? 

This technique allows us to establish probabilities for the 
sequence of queries that a user will issue between the 
beginning and the end of an OLAP session. With this 
information some actions may be taken to improve the 
OLAP server’s response time to queries. Our approach was 
to simulate the user’s interaction and place in cache the 
views our algorithm predicted would be used. The main 
problem with this is the high value of rules that are going to 
be generated. This could easily produce untreatable results. 

Keeping this problem in mind, our work focused on 
reducing the number of queries that should be included in 
the prediction phase, without affecting results significantly. 
To do this, we chose to map all the sequences of queries 
predicted by the mining algorithm, representing them in a 
Markov chain [28] as a way to provide a better visual 
insight of the entire set of generated rules. Next, we defined 
the minimum value for the confidence associated with the 
rules that should be used in the prediction phase (minconf). 
Shortly, we discovered that this action would not be enough 
if we wanted to effectively reduce the number of predicted 
queries. We needed to optimize the process.  

 

 
Figure 2.  A query sequence prediction for the first dataset. 

When removing the rules with a confidence value 
smaller than minconf, we realized that some rules remained 
without the possibility to be predicted as a sequence of any 
other query. If we think of the sequence of queries as a 
graph, and we start removing some of the nodes, there are 
some of them that lose their entrance arches. Those “nodes” 
represent the queries that were removed in this second 
optimization step. This way we also risk an increased 

number of cache misses, but provide us an alternative way 
of reducing the number of views to be pre-materialized in 
the cache. The process followed to establish the set of 
association rules for a particular minconf is depicted in 
Figure 2.   

VI. VALIDATING THE PROPOSED TECHNIQUE 
In order to test the technique proposed here, we decided 

to promote two different test cases, considering the number 
of query hits achieved before and after the proposed 
optimization scenarios, for a given set of artificial queries 
(generated by artificial processing algorithms, not 
representing the actual usage of an OLAP Server). In Figure 
3, we can see the sequence of queries in a Markov chain, 
which were predicted by the mining algorithm that was used 
– S0 and S8 represent, respectively, the beginning of the 
session provoked by the user’s login and the end of that 
session. The edges’ values represent the transition 
probabilities between two different states (or queries). 
Based on the Markov chain presented in Figure 3, we can 
see that, for example, the query S1 is the first query being 
made in 40% of the treated cases (this value is the label of 
the transition S0 → S1) and queries S3 and S2 will be 
executed then, respectively, in 90% and 10% of all queries 
executed. The rule that support S1 → S3 could be something 
like: S1 → S3 (sup= …; conf=0.9).  
 

 
Figure 3.  A query sequence prediction for the first dataset.  

One way to reduce the number of queries to be 
materialized prior to the consultation (and cached) of a 
given user is by observing the probability of occurrence of 
all queries. Thus, from the start of a new working session, it 
is possible to identify which set of queries allows for 
reaching the final state (S8) with a greater probability of 
success. However, to do this, we have to look in each state 
of the Markov chain, which is the state most likely to be the 
next state to be reached until the final state is reached. All 
the tests conducted over this dataset basically used various 
values for minconf simplifying the rules accordingly. The 
chosen values for minconf were, respectively, 0.3, 0.4, and 
0.5 (Table I). One other simplification was introduced, and 
named as “main route”, simplistically put in cache the 
sequence of queries that a user will most likely follow in a 
future data exploration process, from login to logout.  
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Figure 4.  A candidate sequence of queries that an user most likely follow 
in a future data exploration process. 

In Figure 4, we can clearly identify such candidate 
sequence of queries. It will be the sequence represented by 
the path: 

S0 → S2 → S3 → S5 → S6 → S7 → S8.  

It can be easily found by following the higher transition 
probabilities between the S0 and S8 nodes. In the specific 
case of the Markov chain presented in Figure 4, the 
identification of the “main route” will be a result of the 
materialization of the nodes S2, S3, S5, S6, and S7, since 
nodes S0 and S8 correspond respectively to the begin and 
end session actions. The results of the tests, for the different 
values of minconf and for the “main route” simplification 
models, can be found in Figure 5. All the results of the tests 
were compared with each other - for a fairer comparison, we 
present the percentages for the values attained in each test. 

TABLE I.  TEST RESULTS FOR THE FIRST DATASET 

Minconf 0.3 0.4 0.5 “main route” 
Pre-materialized views (%) 100 86 28 71 

Cache Hits (%) 100 89.8 38.3 79.78 
 

As a comparison value, if we add 50% of all queries to 
the cache, intuitively we think we would achieve almost 
50% cache hits for any given user (Figure 5). However, this 
value is merely meant to provide us with a reference value, 
and should not be considered in terms of absolute values. 
Figure 6 leads us to note two key values of minconf values if 
0.3 and 0.5, which show the most relevant (best and worst) 
test results. As for the value 0.5, it means that only 28% of 
all possible views were pre-materialized and, even in that 
case, the cache hits came around 38.3%, which represents a 
10% increase in system performance when compared to our 
reference values. The usage of 0.3 for minconf resulted in no 
view being simplified and, consequently, the values of 
cache hits were measured at 100%. In Figure 7 and Figure 8 
we can see the simplified Markov chains that resulted, 
respectively, from the application of a minconf  = 0.3, and a 
minconf  = 0.5. 

 

 
Figure 5.  Test results graph for the first dataset. 

 

Test%1% Test%2% Test%3% Test%4% Test%5%

main%route%

 
Figure 6.  Comparison of the results of the tests. 

With the application of a confidence restriction of 0.3 it 
is possible to remove arcs that possess a lower probability 
than the value of confidence defined (Figure 7). Thus, it is 
possible to see that, for example, the arc corresponding to 
the transition between nodes S2 and S8 was not accepted. 
On the other hand, if the strategy is to materialize all views 
remaining in the Markov chain, then, with this confidence 
value, it is not possible to remove any of the views present 
in the chain. Due to this fact, it can be considered that 
although the definition of a more restrictive value of the 
minimum confidence (minconf = 0.3) the benefit in this case 
would be non-existent, since the set of views to materialize 
would be precisely the same. 

 

 
Figure 7.  A simplified Markov chain for minconf = 0.3. 

In the case presented in Figure 8 it is shown another 
simplification of the prediction model generated before, but 
now applying a minconf = 0.5. Following the logic 
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previously exposed for this case were removed from the 
model nodes S1, S4 and S5 since they did not have, after the 
first step of simplification, any incoming arc.  
.

 

Figure 8.  A simplified Markov chain for minconf = 0.5. 

In a second stage of analysis, we observed that the node 
S6, after the removal of node S5, lost the only link it owned 
that could support the prediction of its occurrence. Because 
of this, it was necessary to remove as well the node S6. 
Then, with the same rationale, we removed the node S7.  

TABLE II.  TEST RESULTS FOR THE SECOND DATASET 

Minconf 0.02 0.3 0.4 0.6 
Pre-materialized views (%) 54 52 50 46 

Cache Hits (%) 89 88 87 86 
 
As can be seen from Figure 8 the restriction of a minconf 

= 0.5 has resulted in a quite considerable simplification of 
the prediction model previously generated. Thus, for this 
case, we will materialize only the views S0 (the initial 
state), S2, S3 and S8 (the final state). Later, other tests were 
conducted with another data set retrieved from several 
OLAP sessions we made on a specific OLAP server. This 
second dataset contains a total of 59 queries being issued to 
the server, and the values of minconf used to simplify the 
generated rules were 0.02, 0.03, 0.4, and 0.6. The results of 
this second experience can be found in Table II and Figure 
9. The results obtained in this second round of tests shows 
us that, even though the differences between the different 
values of minconf, they do not yield great differences in the 
percentage of cache hits – nor in the percentage of 
materialized views. The gains relative to the reference 
values were quite relevant, staying approximately between 
35% and 40% (for values of minconf equal to 0.02 and 0.6, 
respectively). Despite the lack of real caching data, all data 
sets prepared for testing and using in the several application 
scenarios we conceptualized provided the necessary means 
to prove the utility of our approach. 

However, the results were not a surprise. In fact, based 
on the experience we have from other studies using 
association rules, we expected that the most frequent 
queries, as well as their more frequent sequences, were 
revealed naturally. This would allow for solid knowledge 
about analytical usage trends of a user community, and 
hence determine which query should be materialized in the 
cache at any given time. However, materialize only the 

queries indicated by association rules did not establish 
effectively a querying materialization plan for caching in the 
medium term. To support this in a more effective way we 
represented association rules in Markov chains. This 
allowed us to get a larger "horizon" for query 
materialization. Thus, this combination of techniques that 
provided us a very practical, not complex, way to establish a 
priori very practical querying materialization plans for an 
OLAP engine caching system, reducing consequently the 
workload of an OLAP server and improving its querying 
response time. 

 
 

 
Figure 9.  Test results graph for the second dataset. 

Until the time we finished this work, we did not find any 
other caching solution for analytical systems such as the one 
we developed and exposed here. As such, we were unable to 
evaluate our proposal based on other alternative solutions 
that adopt or follow the same kind of strategy and 
categorization of patterns of analytic exploration we did. 
Even taking into consideration the works [14], [22], and [7], 
which revealed very curious and interesting aspects of 
predictive caching, we cannot make such comparative 
assessment. 

VII. CONCLUSIONS AND FUTURE WORK 
In recent years, the large increase using 

multidimensional database systems led to a greater interest 
in research of new techniques for the improvement of OLAP 
systems’ functionalities and services. As widely used in 
other areas, these techniques can highlight the 
implementation and operation of caching mechanisms in 
OLAP systems, decreasing analytical server working load. 
As for Web systems, initially on OLAP systems the 
implementation of such mechanisms was only on the client 
side. This meant that only a certain user benefit of previous 
orders. Consequently, and as a manner to increase the 
advantage achieved by using caches, such mechanisms has 
focused on sharing benefits for all users of a given OLAP 
server. Thus, through the distribution of caches or by means 
of shared caches among individual users, either through the 
creation of systems specifically designed to serve as cache 
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servers, significant improvements were achieved in terms of 
performance [16][13][5][6][14]. 

The main goal of this study was to investigate in what 
conditions a predictive caching system could be used in a 
typical OLAP environment. In order to reach such goal, we 
studied several known cache techniques, e.g., [15][29][5][6] 
[25][12][14][7][4], trying to establish the basis to propose a 
different manner to know a priori the contents of an OLAP 
cache in a near future. All those techniques were crucial to 
the development of our work, for both the ideas of exploring 
the log files present in the OLAP Server and the 
simplification of the rules generated after the application of 
mining algorithms to that information. All the tests 
performed showed satisfactory improvements in the ratio 
between materialized views and cache hits. In our 
perspective, they also showed that this approach has the 
necessary pre-requisites to be applied to a more real 
scenario with advantages for the overall system’s global 
performance.  

The results of all tests demonstrated that the 
simplification of a certain percentage of rules to be pre-
materialized does not mean that the same percentage of 
requests cannot be served from the cache. The doubt that 
remains is that if this number of cache hits is small in terms 
of a percentage higher or lower than the simplification of 
rules. Analyzing the data generated by tests, both using 
dummy data (the first data set), as the data retrieved from a 
specific data repository (the second data set), the technique 
for simplifying cache maintenance used proved to be very 
beneficial in all the tested scenarios. Even though some 
important questions remain, both for the period of logs that 
should be analysed and for the values of minconf to be used. 
This last, is an issue that should be addressed on a case-by-
case approach, and should be included in a typical tuning-
phase after finishing system implementation.  

Finally, we think that with larger datasets feeding the 
mining algorithm, results should be even better. With a 
greater number of test cases, preferably from real 
application scenarios, it is possible to define with greater 
precision which are the access patterns of users as well as 
what benefits arise from the application of the several 
techniques. For that reason we plan in a near future to 
extend the current study, comparing it with other similar 
approaches and including some work concerning the 
exploration of multidimensional queries. We will give 
particular attention to the less busy periods of an OLAP 
server, in order to pre-materialize some specific 
multidimensional views that can be used latter when a user 
logs in – the log in periods can, as well, be subject of 
prediction. Yet because of the scarcity of the available data, 
and because it was decided not to integrate in this work the 
process where OLAP server logs are analysed and where are 
acquired all the association rules that serve as input to the 
technique developed – we focused on the simplification of 
the already generated rules –, we plan to, in a near future 
integrate these two phases in the process described in this 

paper. In the short term, we need to evaluate in a more 
effective way the practical utility of the predictive caching 
technique developed, extending the analysis periods along 
with the process of making a comparative study with other 
similar and concurrent techniques. 
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