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Abstract - The demographic change in the industrial 

countries is a great social challenge. To ensure constant or 

better (health) care in the next decades, new care concepts for 

older people are needed. An approach is the use of Information 

and Communication Technology based solutions. Especially 

the preservation of personal mobility should be in focus 

because it is a key role to sustain autonomy and social 

interaction of senior citizens. In addition to the age-based 

declining mobility, there are secondary events, which reduce 

the mobility of senior citizens, e.g. diseases or fall events. 

Prevention of fall events is a goal for the Housing Enabling 

Assessments by adaption of room, e.g., by detecting and 

removing tripping hazards. Former work proves that an 

automated Housing Enabling Assessment executed by an 

autonomous service robot could achieve better quality and 

higher acceptance than a manually controlled Housing 

Enabling Assessment. In this article, two different methods for 

detecting relevant unevenness of floor in home environments 

and resulting challenges are presented. An adapted 

autonomous service robot is used as well as a Microsoft® 

Kinect for gait analysis and, regarding the detection of the 

floor’s unevenness, a Prime Sense ® Carmine 1.08 depth 

sensor and a self- designed triangulation laser scanner were 

compared. First results indicate that floor characteristics have 

a relevant influence on gait parameters, such as gait speed, step 

/ stride length and their variation. Also, results show that floor 

characteristics should become a mandatory factor for in-home 

gait analysis.  

Keywords-mobile robot; gait analysis; floor level; RGB-D 

camera; triangulation laser scanner. 

I. INTRODUCTION 

This article is based on the AMBIENT 2014 conference 
paper [1] and provides an extended approach to detect floor 
level obstacles and further results to their influence on gait.  

Industrial countries face different challenges caused by 
the demographic change [2]. A possible way to cope with 
these upcoming problems is the use of Information and 
Communication Technology (ICT) in the area of Ambient 
Assisted Living (AAL). There are two main approaches to 
bring technology to the homes of senior citizens. The first 
approach is Smart Homes [3], which means that the entire 
technology is integrated into the apartment. The second 
solution would be autonomous service robots. In this case, 
sensors, actuators and computational units are attached to a 

mobile base. An example for “simple” household robots are 
autonomous vacuum cleaners. Because of a great sales 
volume of autonomous vacuum cleaners in the last years, 
they have a big impact on society. They have raised the 
acceptance for robots among users and show how the design 
influences it [4][5][6]. Advanced systems like service robots 
could support caregivers to help elderly maintain an 
independent lifestyle and preserve their indoor mobility up to 
a high age [7][8]. A potential advantage of service robots 
compared to Smart Homes is their low costs since they need 
fewer sensors to generate a good coverage based on their 
mobility. In order to cover areas, they can bring them in the 
area of interest [9]. In this approach, the mobility of these 
platforms is used to realize an automated Housing Enabling 
(HE) assessment [10]. A first step is the evaluation of the 
apartment, especially the examination of the floor in order to 
detect stumbling risks. This article is organized as follows; 
Section II motivates the topic and is followed by the State of 
the Art and current limitations (Section III). In Section IV, 
two approaches are presented to measure the unevenness of 
floors and the measurement of different gait parameters 
followed by the results in Section V. The conclusions and 
further steps complete the article (Section VI). 

II. MEDICAL MOTIVATION 

Prevention of fall events is an important research area. A 
fall event could have great impact on mobility, especially for 
senior citizens. An obvious fact is the reduction of mobility 
in case of a fracture of the neck of femur. But also the fear 
of, e.g., a second fall limits the mobility of older people [11] 
and a reduced mobility increases the risk of falling, which is 
the starting point of a vicious circle. Also, fall-related costs 
are a major factor for our health care system [12]. 

An important factor is that mobility problems reduce the 
personal radius of movement. Renteln-Kruse et al. show that 
this influences social participation; above the age of 55 
years, the radius of movement is reduced to approximately 3 
km around the home [13]. Also, 55% of fall injuries occurred 
inside the house [14], which raises the importance of in-
home assessments. From a clinical perspective, long-term 
monitoring of changes in mobility has a high potential for 
early diagnosis of various diseases and for the assessment of 
fall risk [8]. As important as the age and potential diseases / 
disabilities of the patient [15][16] is the condition of the floor 
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for the self-selected gait velocity and, in general, the risk of 
stumbling or slipping [17]. Especially in an unsupervised 
environment, the additional information about the quality of 
the floor could increase the precision of the gait analysis 
[18][19], which could be very helpful for the HE Assessment 
in order to estimate the personal factor. This approach, tries 
to realize both, i.e., a good data base for the HE Assessment 
and also gain additional information for a gait analysis to 
increase their precision. 

III. STATE OF THE ART 

This section gives an overview of the four most 
interrelated research areas of HE Assessment. First, the trend 
analysis of mobility in domestic environments is outlined, 
followed by mobility assessments using mobile robots. 
Afterwards, possible environmental hazards and housing 
modification are shown. Fourth point is the influence of the 
unevenness of the floor on gait parameters. Finally, the 
section is closed by the current limitations of the State of the 
Art. 

A. Trend Analysis of Mobility in Domestic Environments 

Various approaches for gait analysis in domestic 
environments are presented. Scanaill et al. present the 
possibility of upgrading a home with various sensors, 
especially from the home automation or security domain to a 
(health) Smart Home [20]. Most systems are used for trend 
analyses [21][22][23] and only some approaches use ambient 
sensors for detailed gait analyses [24]. Various groups use 
Home Automation Technologies like motion sensors, light 
barriers or reed contacts placed in door frames or on the 
ceiling. Cameron et al. use optical and ultrasonic sensors 
[21], which were placed on both sides above the door frames 
to determine the walking speed and direction of a person 
passing. Kaye et al. presented an intelligent system for 
assessing aging changes [22]. For the study, they installed 
several sensors in 265 homes for an average of 33 months 
and used, among others, wireless passive infrared motion 
sensors, which were covering different rooms of an 
apartment. A line of these sensors was modified and attached 
to the celling of some rooms within the apartment to estimate 
the resident’s walking speed. Also, laser range scanners are 
used for different assessments. Frenken et al. presented an 
automated Time Up and Go (TUG) Assessment. Therefore, 
the laser range scanner is mounted underneath a chair and is 
used to recognize the legs of the test person [24]. Pallejà et 
al. have a similar approach but conducted a detailed gait 
analysis with a laser range scanner, which was mounted at 
100 mm above the floor [25]. This low position of the laser 
has the disadvantage that it is possible that a foot could hide 
the corresponding leg. In this case, a laser scanner would 
only detect the tip of the foot and not the leg, which is 
important for a correct assessment. Poland et al. used a 
camera attached to the ceiling, recording a marked floor 
evenly divided into rectangles to estimate the gait speed [23]. 
Each of these rectangles is defined as a virtual sensor. For 
persons within these, the approach ‘activates’ the virtual 
sensor in, which they are currently located in. Stone and 
Skubic used the Kinect to analyze the gait in a home 

environment [26]. Especially the variation of gait parameters 
like step length and self-selected speed over time were 
measured and identified as independent factors for the 
personal stumbling risk. Also, Gabel et al. used the MS 
Kinect for a full body gait analysis, which is capable of a 
precise in home gait analysis [27]. A similar approach for a 
long-term in-house gait analysis by using the Kinect was 
published by Stone and Skubic [28]. But in addition, a 
monthly fall risk assessment protocol was conducted for 
each resident by a clinician, which included traditional tools 
such as the Timed Up and Go and habitual gait speed tests. 
Afterwards they compared the results of the clinician with 
their approach. 

B. Mobility Assessments Using Service Robotics 

Service robots combine ideas of different fields of 
robotic research into one system in order to target a specific 
application. Most available platforms are still in (advanced) 
research states. There are different fields of interest, e.g., 
acting autonomously in home environments. For most 
mobile robot platforms it is difficult to interact with the 
human friendly environment. A closed door could be a 
problem for a robot. Petrovskaya and Ng present a 
probabilistic approach on how a mobile robot could detect 
and open doors [29]. Also, the interaction with humans is 
very important; Breazeal published a first approach on how 
to design a sociable robot and how it can learn from 
environmental factors and user behavior [30], this approach 
is similar to Ray et al. [31], who asked “What do people 
expect from robots?”. To be able to interact with humans, it 
is very important for the robot to be able to recognize 
humans. Udsatid et al. present an approach of a mobile robot 
platform, which tracks humans and is able to drive side-by-
side with a human by using a down facing Microsoft Kinect 
sensor to track the feet, to find out the heading and direction 
of the human [32]. Brell et al. presented a first approach of a 
mobility assessment with a mobile robot platform [33]. For 
this, a laser range scanner to detect the residents ‘legs and to 
estimate the walking speed within different areas of the 
apartment was used. Within our own work, a new approach 
on how to enhance mobile robot navigation in domestic 
environments by use of mobility assessment data was 
recently presented [34]. The advantage of a mobile robot is 
that it can bring the needed sensor technology to the Optimal 
Observation sLots (OOL) for monitoring as introduced in 
[33]. In the observation phase, the robot stands at a safe 
place in the initial room of the apartment and observes the 
human behavior and environment. These data are used to 
compute new OOL, which fulfill different safety and quality 
criteria. After that phase, the robot will travel to the 
respective OOL and measure different gait parameters by 
using the laser range scanner and the Kinect, which can be 
used in HE Assessment.  

C. Environmental Hazards and Housing Modification 

T. M. Gill et al. presented a study, which sought to 
estimate the population-based prevalence of environmental 
hazards in the home of older persons [35]. Therefore, one 
thousand homes of senior citizens above 72 years were 
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assessed. The most potential hazards are slip and trip hazards 
by rugs, carpets, etc. In second place are blocked pathways 
by e.g., small objects or cords and in third position 
insufficient lightning conditions (shadows or glare), curled 
carpet edges or other tripping hazards. T. M. Gill et al. 
pointed out that safety awareness at home may relate to one’s 
personal capabilities. On the other side, M. E. Northridge 
presented a study on home hazards and the role of health and 
functional status of senior citizens [36]. It was pointed out 
that the presence of home hazards influence vigorous elderly 
persons twice in aspect of falling but it was not associated 
with the increased likelihood of falls among frail older 
persons. A quite popular assessment in the Scandinavian 
countries is the HE Assessment. It reduces the risk of fall in 
home environments and the near surrounding. The 
apartments are assessed depending on the personal health 
status of the residents and the structure of the apartment itself 
[37]. This rating gives advice on how to change the 
apartment with its furniture etc. so that it is suitable for the 
resident. The HE Assessment is split into three parts. The 
first part is the descriptive part for collecting general 
information on the apartment and the resident’s condition. 
The second part is the evaluation of functional limitations 
and dependence on mobility aids. Also, detailed information 
about the medical condition of the user is collected, e.g., 
severe loss of sight or limitation of physical fitness. The last 
part is based on different questionnaires, which relate to the 
apartment and the vicinity. After completion of all questions, 
a score of the apartment in relation to the actual health status 
of the resident [38] is computed [39]. A customization of the 
apartment to reduce the risk of falling is also possible. This 
adaption is related to the rating [40] but is not an explicit part 
of an HE Assessment. Another survey to investigate the 
prevalence of environmental hazards in the homes of older 
people was presented by S. E. Carter [41]. This survey shows 
that 80% of the 425 inspected homes had at least one, and 
nearly 39% had more than 5 tripping hazards, while 62% 
showed “flooring” hazards. R. Cham and M. S. Redfern 
measured the change in gait when people anticipated 
slippery floors [42]. Therefore, three different floorings were 
used with the participants having to walk over each surface 
three times. In the first trial, the test person knew the floor 
was dry, next the test person was uncertain about the floor’s 
condition (dry, wet, oily, soapy) and in the last try the 
condition was also known as dry. They found significant 
changes in the normal stride length and stance duration. It 
was also pointed out that the floor type had some influence 
on most gait variables. 

D. Evenness of the Floor and its Influence 

Also, the unevenness of the floor influences on gait 
parameters. S. B. Thies et al. reported on the effects of 
surface irregularity and lighting on step variability during 
gait [18]. Different gait parameters from 12 healthy young 
women and 12 healthy older women were measured. Each 
person had to walk over a 10m walkway in a personal 
comfortable speed with four different settings being tested: 
plain surface with regular lighting; plain surface with low 
lighting; irregular surface with regular lighting; and irregular  

TABLE I.  LIMITS FOR FLATNESS TOLERANCES 

Description 

Limit of unevenness in mm among 

measurement distance in m 

0.1 1 4 10 14 

Screeds to receive 
e.g., floor coverings, 

flooring, tiling 

2 4 10 12 15 

Finished grounds 
with increased 

requirements 

1 3 9 12 15 

a. Excerpt from the DIN 18202:2013-4 

surface with low lighting. As a final result, the lighting did 
not have a significant effect on any of the gait parameters, 
while the surface type had significant effects on the step time 
variability, step width variability, which was observed 
especially with the older women. Marigold and Patla also 
presented results on age-related changes in gait on multi-
surface terrain [19] using a more outdoor-based scenario so 
that the multi-surface terrain consisted of solid, flexible, 
rocky, irregular, slippery, and uneven surfaces. Ten younger 
and ten older adults were tested and it was found that the step 
length, trunk pitch and roll, and head acceleration variability 
were increased on the multi-surface terrain compared to solid 
ground trails for both young and older adults. Older adults 
obtain a larger medial-lateral trunk center of mass 
acceleration Root-Mean-Square (RMS) and trunk roll RMS 
when walking on the multi-surface terrain. But they found no 
age-related differences in the step variability. The influence 
of an irregular surface and low light on the step variability of 
patients with peripheral neuropathy was researched by Thies 
et al. [43]. Also, the change in gait parameters by stepping 
over an obstacle was presented by different research groups 
using obstacles with a height between 0 mm and 152 mm 
[44][45]. McFadyen and Prince used an 11.75 cm height 
obstacle [46]. All studies measured differences in the gait 
patterns in general but they do not have a common result. 
The influence of surface slope on human gait characteristics 
was presented by Sun et al. [47]; for this study an outdoor 
set-up was used, so that the results are not exactly 
comparable to indoor set-ups. Nevertheless, all studies have 
shown that the surface does have an influence on gait. In 
order to estimate a maximum permissible value of the 
unevenness in homes, several building regulations are 
inquired [48][49][50][51]. They identified different levels of 
unevenness, which should not be exceeded. In general, all 
building regulations pointed out that office floors do not 
have uneven areas, no slots, stumbling areas or dangerous 
slopes. The maximum height difference between two even 
rooms are defined as 4 mm within the “Professional 
association rules for safety and health at work” [48] and the 
“Technical Regulations for Workplaces” [50]. The 
unevenness of the floor is only named as an environmental 
risk but has not exactly been defined. Also, the “Slip, Trip, 
and Fall Prevention” Guide from the University of Stanford 
[49] named some trip and fall hazards, e.g., uneven walking 
surfaces, holes, changes in level, broken or loose floor tiles, 
defective or wrinkled carpet or uneven steps/thresholds but it 
also has no exact dimensions for the different points. The 
DIN 18202 gives precise dimensions for evenness of the 
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floor (see Table I) [51]. If you measured a distance of 1m, a 
level difference of about 4 mm is tolerable for normal screed. 
These values are used as a reference point for the accuracy of 
our approaches. As shown before, it is important to have 
detailed information on the surface (floor) to raise the 
validity of domestic gait analysis. Udsatid et al. used a 
mobile robot and a Kinect sensor to measure the ground and 
calculate a virtual ground plane [32]. But, only for a 
background subtraction for a foot tracking algorithm, which 
was used for a side-by-side navigation algorithm. Currently, 
there are no mobile service robots to determine the 
unevenness of the floor. 

E. Limitation of the State of the Art 

As shown in Section III-A, most of the systems used 
ambient sensors and did not observe the user continuously 
but only measured the test person’s presence at specific 
points. The problem herein is that it can only be used for 
trend analysis rather than for a detailed assessment to 
determine various mobility parameters of a person. For 
precise assessments of mobility, laboratory equipment and 
well-known vicinities are needed. On the one hand, the 
installation efforts and costs are too high to install such in 
domestic homes, on the other hand homes are dynamic, this 
means that, e.g., furnishing changes over time. All of the 
automated gait analyses do not respect the influence of the 
floor cover. Within the domain of health care and 
rehabilitation service robotics, there are quite few systems 
commercially available. Moreover, there is no robotic 
system, which is capable of performing HE Assessments and 
giving advice on how to reduce the risk of falling. The 
current HE tests suffer from some drawbacks, e.g., the 
estimation of personal disorders, the investigation and also 
the following customization of the apartment, which highly 
depends on the skill of the person executing the test. Little 
knowledge could lead to different or insufficient results. 
Furthermore, these assessments are mostly not done as a 
continuous assessment but rather as an event-triggered 
assessment after accident. In summary, there is currently no 
system or approach available, which is capable of conducting 
precise and continuous HE Assessments in domestic 
environments and using this additional information to raise 
the precision of gait assessment results. 

IV. APPROACH 

We are going to present two different approaches to 
detect relevant unevenness of the floor with a mobile robot 
platform. This is followed by a short description of how to 
estimate balance parameter under different environment 
conditions. 

A. Detection of Unevenness with RGB-D Camera 

Our first approach provided an automated and continuous 
detection of relevant unevenness of the floor assembly, 
which will be used to rate the apartment during the HE 
Assessment and to increase the quality of the gait analysis. In 
order to implement a stable algorithm in an unsupervised 
environment, an initial self-calibration was included. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Schematic drawing of the mobile service robot with the 

Primesense Sensor and the calculation of the vertical aperture angle 
between two points (          ). 

Therefore, the ground level and the sensor orientation for a 
better error correction were calculated in the beginning. This 
step was necessary to prevent the sensor from “losing” 
orientation between runs or the sensor underlying a drift over 
time. In this case, a pre-calculated ground plane would lead 
to a wrong detection of relevant unevenness of the floor.  

In a first step, the quality of the current depth image of 
the sensor is estimated by calculating the RMS deviation of 
each pixel. For calculating the virtual ground, two points of 
the middle row and two of the middle column of the depth 
frame are selected, which satisfy three criteria. The first is 
that both points have the lowest possible RMS (minimum 
below the quality factor otherwise use other column or row), 
the second is a maximized distance between these points and 
the third criterion is that they do not belong to a known 
obstacle like walls. This information is taken from the 
navigation map of the mobile robot platform. In the 
following section, only the estimation of a vertical ground 
line is considered because the calculation of the horizontal 
ground line and also the ground plane is done equally. After 
the selection of two vertical points, it is possible to calculate 
the first ground line and the vertical orientation of the sensor. 
Only five parameters are known: the two distance values of 
the two selected points, the pixel distance between both 
points, the vertical aperture angle of the Prime Sense Sensor 
[52] and the resolution of the current depth frame. Figure 1 
shows the aperture angle calculation of each pixel. Together 
with the pixel distance between the selected points, it is 
possible to calculate the angle between them. For all 
examples, a resolution of 640 x 480 pixel is used, which is 
the highest possible depth resolution of the Prime Sense 
Carmine Sensor. Using the law of cosines, it is possible to 
estimate the missing parameters, e.g. the height of the sensor 
or the vertical angle. After the complete calculation, all 
relevant values are known in order to be able to estimate the 
vertical ground line. The next step is similar to the 
background subtraction. The ground line is a kind of 
background used for calculating the difference to the current 
depth image. Figure 2 shows the normal depth image and a 
binary picture, which is generated by a root-mean-square 
deviation approach. If the difference is higher than the RMS, 
the pixel is set to 1, otherwise to 0. Now, it is easier to cluster 
this picture and find relevant tripping hazards. For clustering,  
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Figure 2.  Left side: Depth values from the Sensor in grayscale (White 

near, dark grey far away) with a 10 mm tread in a distance of 80 cm, right 

side: Visualization after ground subtraction and converted to a binary 

image of depth values with the RMS as threshold. 

various approaches are published, e.g., edge detection and 
many more. After found interesting blobs (e.g., size or 
shape), the height of these obstacles is calculated from the 
depth picture. This information is saved to the navigation 
map of the robot. After that, it can be used for scoring the 
apartment and for increasing precision of gait and balance 
analysis in the different areas. 

Our second approach is similar in respect to the idea that 
a virtual ground is calculated to use it for a background 
subtraction and for estimating relevant obstacles on the 
ground. But instead of calculating the RMS for each pixel, 
finding the best two pixels near the middle row and column 
to calculate the virtual ground plane and so on, we used 
another approach; in respect to the limited calculation power 
of the mobile robot platform and the gained knowledge of 
the Prime Sense sensor, only a cut out from the depth image 
is used. For this approach, the depth picture was taken with 
the same resolution of 640 x 480 pixel, but only an area of 
approx. 30 cm vertical and 80 cm horizontal is used, which is 
located in front of the mobile robot platform. The advantages 
of this step are: 

 four times less pixels in respect to the 
computational power 

 less problems with distant objects, related to a 
higher sensor noise at greater distances 

 higher linearity of the depth image in the area of 
interest 

All these points influence the precision of the ground 
plane calculation. The disadvantage of a smaller field of 
view is negligible because of the mobility of the robot 
platform. 

As mentioned in the previous section, only the estimation 
of a vertical ground line is presented here since the 
calculation of the horizontal ground line and the ground 
plane is straight forward. In a first step, a mean depth image 
of the current location is calculated from over 20 frames, 
followed by the estimation of median depth values from five 
columns for each row. The five columns are the middle 
column and their two left and right neighbors. This new 
calculated middle median column is used to estimate the 
horizontal virtual ground line. The first two steps represent a 
simple filter to reduce the noise of the Prime Sense Sensor 
due to the limitation of processor capacity. The third step is 

to calculate a regression line for the middle median column 
(see (1)). Then the regression line is used as virtual ground 
line for vertical direction. The following steps are similar to 
our first approach; the virtual ground is subtracted from the 
current depth image. 

 
 

  (1) 
 
 

If the difference is higher than the median value of the 
subtraction from the regression line and the middle median 
column, the pixel is set to 1, otherwise to 0. After finding 
interesting areas (e.g., size or shape), the height of these 
areas is calculated from the depth picture. This information is 
added to the navigation map of the robot. As mentioned in 
the first approach, these data are used to increase the quality 
of automated home gait analysis and also for the home score 
calculation of the HE Assessment. 

B. Detection of Unevenness with Triangulation Laser 

Scanner 

As mentioned in Section III.D, it is mandatory to detect 
an unevenness down to 4 mm, which is near the limit of the 
most consumer RGB-D Cameras with a detection range from 
up to 2.5 meters. In order to detect small tripping hazards 
from 2mm to 20 mm, a triangulation line laser scanner was 
developed, which consists of two IR line laser modules and a 
Raspberry Pi B single board computer with associated 
“NoIR” Camera module, which is able to record visible and 
infrared light. Both line laser modules are attached to the 
opposite edges (a distance of 24.5 cm) of the first level of the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Schematic draw of the set-up of the new triangulation ground 

laser scanners.  
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mobile robot platform (at a height of 11.8 cm). The 
Raspberry Pi with the camera module was mounted upside 
down to the highest level, approx. 35 cm above the floor (see 
Figure 3). The camera module can be tilted between 0° to 
approx. 180°. An angle of approx. 30° was used for the 
measurements, which provided a horizontal field of view of 
approx. 36 cm at the beginning and approx. 54 cm at the end 
and approx. 100 cm in vertical in front of the mobile robot 
platform. Because of the intensity of the IR laser modules, 
the entire 100 cm of the vertical field of view were used, 
which guarantees a good contrast between the IR line and the 
environment. Both line laser modules were aligned with each 
other so that they projected a common line onto an even 
floor in the vertical middle of the camera image, which 
means that both laser modules have an angle of approx. 46°. 
The “NoIR” Camera has a single picture resolution of up to 
2592 x 1944 pixel [53]. The latest stable OpenCV version 
2.4.10 is used for capturing the “NoIR” Camera pictures and 
the whole computation on each picture.  

In a first step, the picture is trimmed to the needed 
dimensions. As mentioned before, the entire 100 cm of the 
vertical field of view of the camera were used and have 
sufficient contrast for the most indoor environments in 
respect to lighting conditions and floorings. The first step of 
the image processing is the conversion to a binary image. To 
find the best possible threshold for this step, two factors are 
taken into account. The first factor is the current illumination 
of the room and the second aspect is the current back scatter 
of the IR line laser on this surface. For the current 
illumination of a room, the TSL2561 sensor is used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Upper left: part of the raw image from the NoIR Cam with an 

obstacle (2 mm height), upper right: binary image with calculated 
threshold, middle left: image after canny edge algorithm, middle right: 

image after probabilistic Hough line algorithm, lower left: Contours of the 

Hough lines, lower right: Centroids of the corresponding contours. 

A great advantage of this sensor is that it detects both, IR and 
visible light. So it is possible to estimate the average 
brightness of the current image without time consuming 
computation. To improve the estimation, the current 
reflection of the surface is also taken into account. Therefore, 
the previous knowledge about the approximate position of 
the IR laser line within the image is used. In this area, the 
algorithm searches for the brightest pixel. These two values 
are used to estimate a threshold value to generate a binary 
image, in which only the laser line is still visible as a white 
line. This approach has a high reliability in finding a good 
threshold to detect only the laser line without having to cut 
away too much of the edge region of the line. Especially in 
the upper region of the image, which had - in most cases - 
the lowest contrast. In the case of the threshold being too 
high, too much of the edge region has been cut off. This 
would lead to an inaccurate result during the height 
estimation of an obstacle. In the case of the threshold being 
too low, it is possible that there are a lot of artefacts in the 
binary picture, which make the following computations 
much more complicated or time consuming.  

Afterwards, the OpenCV 2 implementation of the Canny 
edge detection algorithm with a 5 x 5 kernel is used to find 
the edges of the laser line. Followed by a probabilistic 
Hough-Line algorithm, which estimates lines on the base of 
the canny edge picture (see Figure 4). The result of the 
probabilistic Hough Line algorithm are different lines, which 
represent the edges of the canny algorithm. After that, the 
contours of these lines and their centroids are estimated. 
Finally, these centroids are used for the calculation of 
distance and, therefore, for the approximation of the height 
or depth of obstacles or the unevenness of the floor. To get 
this final information, some additional steps are needed: 

 Finding corresponding centroids 

 Calculating distance of corresponding centroids 

 Estimate orientation of obstacle 

 Calculate level of obstacle 
The next step is to find lines that belong to the same 

segment of a laser line. Therefore, the centroids are sorted 
depending on the x and y coordinates of each centroid. 
Together with the pre - knowledge of, e.g., width of a laser 
line, it is possible to estimate relationships between two 
centroids. If two pairs of corresponding centroids are found, 
which are near the same horizontal segment and out of the 
vertical center, the pixel distance between the both inner 
centroids of these pairs are calculated. This distance is 
proportional to the height or depth of an obstacle. To find out 
if it is a positive or negative elevation of the floor, the left 
line laser module is switched off and a new image is taken 
and it is calculated, which lines or centroids are missing. 
With the knowledge that the even floor is the sectional plane 
of both line lasers, a left missing line means the obstacle has 
a positive elevation, a right missing line means the obstacle 
has a negative elevation. Now there is enough information to 
calculate the height (positive or negative) and also the length 
of the obstacle at this point. This information will be added 
to the corresponding point in the 2D map of the mobile 
platform. In future developments, it is planned to generate a 
complete 3D model of this obstacle. Therefore, the fact that 
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the triangulation line laser scanner is mounted to a mobile 
robot platform is utilized, and we are able to move the robot 
along or around an obstacle to estimate the missing 
parameters, e.g., shape and length. With the additional 
motion information of the mobile robot platform, it will be 
possible to generate a complete 3D model of the obstacle.  

C. Calculate Balance Parameter 

In our first approach, the Microsoft Kinect is used to 
track the person because of the low price and the existing 
openNI skeleton tracking algorithm from ROS [54]. The 
mobile platform does not move during the measurements 
because of the specification from the openNI algorithm. 
During the observation phase the timestamp and the x-, y- 
and z- coordinates of the following skeleton joint point from 
the openNI tracker node will be saved: 

 Foot and hip (each: left, right) 

 Torso and Neck 

In respect to the low processor capacity of the Turtlebot 2 
netbook, an offline approach is used. After the observation 
phase, different balance and gait analysis parameters are 
calculated. In a first validation, the distances of the joint 
points are checked, whether they are between ranges of 0.80 
– 3.00m, which is the effective distance of the Kinect sensor. 
After that, the gait speed, step and stride length and, related 
to those values, the stance and swing phase of each foot are 
calculated. First, the different phases for each foot during a 
measurement are estimated by using (2).  

 
 
  (2) 
 
 
This means that a foot needs a minimum acceleration of 

approx. 0.6 m/s to be marked as moving. This value reflects 
a compromise of literature values and a kind of error 
correction of the drift from skeleton tracking. After that, the 
middle index of each phase for each foot is calculated, this is 
used to estimate stride and step length. Also, the calculation 
of the gait speed uses these indexes by choosing the first and 
the last stand phase of each measurement and then calculates 
the distance between these points. Now, the corresponding 
timestamps are used to determine the elapsed time. By 
dividing the distance by time, the gait speed for each 
measurement is calculated. Two factors are used to get a 
better reliability between measurements; the first is that the 
mobile robot stands on a defined OOL, so the global 
coordinates and the direction are nearly equal between the 
measurements; the second helpful point is that humans used 
more or less the same path between two points in the home 
environment. These points help to get a bigger and 
comparable data base from the same OOL’s 

V. RESULTS 

In this paragraph the results of our approaches are 
presented, which were tested and verified in the OFFIS 
IDEAAL Lab. It provides a complete demo apartment for 

first measurements in a realistic environment. As a mobile 
platform, a Turtlebot 2 (Kobuki) was used. 

A. Detection of Unevenness with RGB-D Camera 

To test and verify our first approach, a Primesense Carmine 
1.08 sensor was used, which is mounted upside down 
underneath the third level of the robot platform and looks 
down to the ground with an angle of approx. 35 degrees at a 
height of approx. 34 cm. The resolution of the depth sensor 
is set to 640 x 480 pixel and a frame rate of 30 Hz. The 
platform, the sensors and the mounting of both have not been 
changed during the measurements. To get comprehensive 
measuring results, the IDEAAL Lab and a normal office 
space were used to test our approach on different floor types. 
This configuration gave results from two different carpets, a 
laminate and a PVC- coating. The measurements in between 
two floors represent the change between coatings (laminate / 
carpet). To measure normalized height differences, five 
wooden tread layers were used. Each piece had a height of 5 
mm, so that it was possible to measure between (un-)even 
doorways (0 mm) up to 25 mm.  

For our first approach, we saved 30 single frames for 
each test set-up, calculated and saved the mean values and 
the standard deviation for each pixel in order to verify the 
precision of the sensor. According to different building 
regulations [48][49][50][51], the requirement is to detect 
differences of a minimum of 4 mm between two surfaces or 
an area of 1 square meter. The measured minimal standard 
deviation is approx. 3.94 mm and the median value is 6.29 
mm. This means that the precision of the Prime Sense 
Carmine 1.08 sensor is near to the required precision of 4 
mm. After this result, further tests to verify our first results 
were performed. Therefore, different measurements in the 
IDEAAL Lab and within the office with wooden treads were 
made. The proceeding for each measurement was the same; 
first, 30 frames of the even surface were taken, then 30 
frames with a 5 mm tread in a distance of 80 cm followed by 
30 frames with 10 mm tread and so on until the maximum of 
25 mm was reached. After that, the distance was reduced to 
40 cm and started over without any obstacles and then raised 
the treads in 5 mm steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Visualization of the calculated virtual ground v.1 (black), the 

first RMS deviation (dotted lines) and the measurement from the ground 
(orange) and a 5 mm tread (blue).  
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Figure 6.  Visualization of dependency of different floorings in 

comparison to the general mean ground value. 

After the measurement, the virtual ground plan was 
calculated and subtracted from different test images. The 
result was unexpected; in the first approach, only two small 
areas had good results. These areas were around the selected 
points for the calculation of the ground plane. Even for a 
floor without any unevenness. After a small modification 
(also considered in the description of the approach) of the 
algorithm, which selects the point for estimate the ground 
plane, a vertical ground line was calculated, which only 
matched the lower third of the depth picture. Figure 5 shows 
that the difference between the calculated ground and the 
real ground in the upper two thirds of the picture was too big 
to detect any relevant barriers.  

After these results, the first step was to verify the 
measurement, by subtracting the mean value of the even 
ground from the mean values of the modified ground. These 
values showed acceptable results for the detection of barriers 
from 5 mm up to 25 mm. The next step was the linearity of 
the sensor over distance. If it had a linear characteristic for 
the depth sensor, then our approach should work in general. 
The result in Figure 6 shows that the sensor does not have a 
perfect linear characteristic with objects more than 1.4 m 
away from the sensor. This means that our approach to 
calculate a virtual ground, which is represented by a plane or 
line and use it for a simple background subtraction, is not 
applicable to the complete range of the Prime Sense sensor. 
After that, our second approach was developed and tested 
with the same data set, which we generated during the test 
for our first approach. This guaranteed a high comparability 
of these two approaches. As mentioned in Section IV.A, only 
a cut out of the original depth images was used for the 
second approach. The final depth image for the second 
approach has a size of 320 x 240 pixel, which represented the 
lower half of the original picture, it belongs to an area of 
approx. 30 cm (vertical) x 80 cm (horizontal) in front of the 
mobile robot platform. Based on this extracted data set, the 
new virtual ground was calculated with (1). The virtual 
ground was subtracted from depth images of all 12 set-ups. 
The results for our second approach were much better than 
for the first approach. As you can see in Figure 7, the new 
virtual ground fits nearly perfectly to the depth image of the 

even floor. Also, the difference to the depth image with the  
5 mm tread seems to be good enough to be able to guarantee 
a detection of obstacles of at least 5 mm. Now, the second 
approach was tested if the main goal of being able to 
recognize obstacles in an easy way without having a 
complete 3D map of the even floor in an apartment could be 
achieved. Therefore, the measurement was repeated in 
different rooms of the IDEAAL apartment with different 
floor types and subtracted the new depth images from the 
generated virtual ground v.2. These results were surprising 
again. In some rooms, the virtual ground v.2 fits quite well to 
the depth image of the even floor and the differences are in 
the first order of the RMS deviation. But in some cases, huge 
areas were found, which were marked as potential obstacles 
on an even floor. A good example was the depth image from 
the kitchen (see Figure 8). In the lower area, both lines fit 
quite well but the in the upper area the depth image and the 
virtual ground v.2 have a great gap. The difference between 
the calculated and the real ground is bigger than the first 
RMS deviation, which means that false positive barriers 
were detected. The difference between the virtual ground v.2 
and a 5 mm tread in the kitchen is only few mm above the 
first standard deviation. Also the difference between the even 
ground and the virtual ground v.2 are quite better than the 
difference between the even ground and virtual ground v.1 
(see Figure 9). It seems to be possible to detect obstacles 
with a height of approx. 10 mm but as mentioned in Section 
III.D for the HE Assessment, obstacles needed to be detected 
with a height of 4 mm. Therefore, a sensor resolution up to 
1.5 – 2 mm is needed. 

B. Detection of Unevenness with Triangulation Laser 

Scanner 

Because of the insufficient results from our two approaches 
with the RGB-D-Camera, an own triangulation laser scanner 
was developed as described in Section IV.B. In order to 
evaluate this new scanner, it was tested under comparable 
conditions to the approaches with the Prime Sense Carmine 
sensor. In a first test, the office floor with different obstacles 
was used. These had a height of 2 mm, 5 mm, 10 mm, 15 
mm, 20 mm and 25 mm and were placed in front of the 
mobile robot platform in a distance of approx. 80 cm and 40 
cm, which is similar to the set-up of our first two approaches. 
For each set-up, 10 pictures were taken with the Raspberry 
Pi NoIR Camera for estimating the height of each obstacle 
with the approach of Section IV.B. As you can see in   
Figure 4, both laser lines are clearly separated, also for 
obstacles of a height of down to 2 mm. This depends on a 
relative low position over ground and great distance between 
both laser modules, which resulted in a shallow angle and 
guaranteed a good separation for low obstacles. Because of 
the relatively high position of the Raspberry Pi and its 
camera module, we have a great field of view and so it is 
also possible to detect obstacles up to 25 mm. The upper 
right picture in Figure 4 shows only a cut out from the whole 
image of the NoIR Camera module. The obstacle that is 
shown was placed in front of the mobile robot platform with 
a distance of approx. 80 cm and the picture still shows a 
good resolution and contrast. Therefore, it is possible to 
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estimate the height with an accuracy of approx. 1.5 mm over 
the complete range of 100 cm. 

C. Dependence of the Surface 

The dependence of the Prime Sense sensor on the 
flooring was tested by measuring four different floor types, 
two different kinds of carpet, PVC- coating and laminate. 
Also, the transition from laminate to carpet was tested. For 
each surface, 30 single measurements were made and the 
mean value over all 30 single frames on pixel base was 
computed. Then, these mean values were used to calculate 
the overall mean value of the ground. The mean value of the 
middle column was selected from each measurement and 
subtracted from the corresponding value of the overall mean 
depth picture. The results are shown in Figure 6 and lead us 
to the fact that different floorings have an influence on the 
distance values and the reliability of the sensor. As you can 
see in Figure 6, the deviations in the first 50 pixel, which are 
equivalent to a distance of approx. 20 cm in front of the 
mobile robot platform, represent a difference within the first 
RMS deviation of about 3.94 mm. The total measurement 
represents a distance between approx. 10 cm to 84 cm from 
the mobile robot platform. This result points out that it is 
advisable to calibrate the sensor daily and for each 
subsurface in order to reduce errors during the measurement, 
or use a different model of this sensor type, e.g., the Prime 
Sense Carmine 1.09 with higher depth resolution or a 
complete other type of sensor to detect the unevenness of the 
floor. We also conducted first tests on different floorings 
with our triangulation laser scanner. Right now only two 
different set-ups have been tested; on the office carpet and 
the PVC in the IDEAAL apartment kitchen. The line laser 
modules obtain an energy output of approx. 5mW, which 
should guarantee a good contrast over a wild field of 
different variables (i.e., sunlight, floor type). The first test 
was to estimate a threshold for the office carpet, which was 
relatively easy because of the good optical properties. This 
means, the back scatter of the IR light was very high and the 
picture had a good contrast. So, it was not a challenging test 
for our threshold estimation because the range for a good  
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 7.  Visualization of the calculated virtual ground v.2 (black), the 

first RMS deviation (dotted lines) and the measurement from the ground 

(orange) and the 5 mm tread (blue). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 8.  Visualization of the calculated virtual ground v.2 (black), the 

first RMS deviation (dotted lines) and the measured ground of the kitchen 

(orange). 

threshold was relatively great. As a second test flooring, a 
PVC-coating was used, which laid in the IDEAAL apartment 
kitchen. It has a shiny finish, which means that the back 
scatter is lower, which makes it challenging to our approach 
of finding the right threshold. Under some circumstances, 
e.g., sunny days, it was possible that the estimated threshold 
was too low in order to be able to separate the laser line from 
the rest. The result was that the binary picture had some 
sprinkles. Most of these artefacts were too small / short, so 
that the canny edge algorithm or the probabilistic Hough line 
algorithm ignored them. But in few cases they lead to false 
positive centroids. During the correspondence check, it was 
possible to separate these points. For final results, more tests 
have to be performed to be sure that our new triangulation 
line laser scanner works reliably under most conditions in an 
apartment and that it is not possible that sprinkles lead to 
wrong results under special circumstances.  

D. Gait Parameters vs. Floorings 

Parallel to the tests for detection of unevenness of the 
ground, first measurements in a domestic environment with 
five users (two females/ three males) between 42 – 76 years 
were made. These results are used as a first validation of our 
approach for calculating gait speed, stride and step length 
and, when possible, to see differences between different 
floorings by using the Microsoft Kinect and openNI tracker. 
For all measurements, the Turtlebot 2 stands at a predefined 
position, similar to the final setup when the mobile robot 
drives to various OOL’s for measurement. Each subject had 
to walk towards the mobile robot five times under the same 
conditions. Each test person had to fulfill this test with 10 
different conditions. In general, they had to walk over two 
different coatings (carpet / parquet). On each coating, three 
treads of different height (5 mm, 10 mm and 25 mm height) 
were placed in the middle of the walking distance. The test 
person also had to manage all these set-ups under dark and 
normal lighted conditions. This lead to a data base of 250 
measurements including all conditions and subjects. The first 
results for the step-, stride length and self-selected gait speed 
(SGS) on parquet, high pile carpet and different treads are 
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presented. As depicted in Figure 10 and Figure 11, a 
difference between stride length and SGS could not be 
detected for elderly persons only but also for mid-aged 
persons, depending on the floorings. Also, it seems as if the 
variation of step- and stride length depends on the coatings. 
But further tests with more measurements, longer walking 
distances and time periods must be conducted to verify our 
first results. Nevertheless, evidence that the floorings have an 
impact on the gait analysis in the domestic environment was 
shown. Without the knowledge of the characteristics of the 
flooring, like the most classical automated approaches, it 
could lead to false decisions related to the decreasing of the 
SGS on some coatings. This gives first evidence that the 
quality of balance and gait analysis depends also on the 
floorings. Further tests must be conducted in order to get 
reliable data on what kind of obstacles have an influence and 
how big the impact is. 

VI. CONCLUSION AND FUTURE WORKS 

A new approach for the detection of fall relevant uneven-
ness of floorings and a first idea of an advanced gait analysis, 
which uses this information for enhanced results in the 
context of an automated HE Assessment was presented. For 
this, a mobile robot platform, i.e., the Turtelbot 2 was used. 
As a depth sensor, a Prime Sense Carmine 1.08 with the 
original OpenNI driver v.2.1.0 and a self-constructed 
triangulation line laser scanner was used for the detection of 
unevenness; and a Microsoft Kinect with the ROS openNI 
tracker Node was used for the balance and gait analysis. The 
Carmine sensor was mounted up-side down underneath the 
third level of the Turtelbot platform in a height of approx. 34 
cm. For the triangulation line laser scanner approach, the 
Prime Sense sensor was replaced by the Raspberry Pi with 
the NoIR camera module. The Kinect was mounted to the 
highest level (height approx. 55 cm). Our approach with the 
RGB-D camera aimed at a calculated virtual ground, which 
is the reference for barriers because in a normal scenario it is 
unrealistic to have the chance to make a clean depth picture 
from each part of the room without any carpets on the 
subsurface or other stumbling blocks. It was possible to 
determine the position and orientation of the sensor only 
from a small knowledgebase. Still, our measurements have 
shown that the combination of our approach with this sensor, 
the mounting and the needed resolution does not work in a 
proper way.  

 
This depends on three factors: 
• First: the depth resolution of the sensor. The noise 

of the sensor is near the values that we want to 
detect. 

• Second: the dependence of the sensor. As shown, 
the floorings and the gloss of it have a big influence 
on the depth values. The difference is sometimes 
even more than the third standard deviation. 

• Third: the quality of our first algorithm to select the 
points for the calculation of the virtual ground.  

 
Our second approach shows better results for the 

estimation of the virtual ground (see Figure 9) but the first  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 9.  Shows a comparison between our first (VG v.1, blue) and 

second (VG v.2, orange) approach of estimate a virtual ground. The 

difference between the calculated virtual grounds and the measured ground 

of the office is shown.  

two points are still valid. There are different possibilities to 
cope with these problems; it is possible to try better filter 
algorithms over more frames to reduce the noise and get 
better results or try to generate different virtual grounds for 
each room to handle the dependence on different floorings. 
But this step would lead us away from our original idea of 
having a general virtual ground. Finally, we could say that 
the Prime Sense Carmine 1.08 sensor has some advantages, 
like the price, the relatively good resolution and low noise in 
relation to the price and range. But the quality is not high 
enough for this application in the frame of HE Assessment or 
to determine relevant unevenness of the ground. Our 
triangulation line laser scanner shows better results in respect 
to accuracy for the estimation of the height of obstacles.  

The dependency on different types of surfaces seems to 
be lower compared to the Prime Sense Carmine 1.08 sensor. 
For general valid answers, we have to conduct more tests 
with this new sensor. In general, this sensor type has the 
disadvantage of generating 2D information only, since it can 
only analyze a height profile along a single line. In a further 
step, the mobile robot platform will be used to generate 3D 
information by moving the sensor to different points but the 
computational demands are still higher compared to a RGB-
D camera, which generates an entire 3D point cloud of the 
surrounding. 

Our approach to use additional information on the 
floorings in order to raise the quality of gait analysis in the 
domestic environments seems to be essential to generate 
reliable data. As a first result, we were able to show that an 
influence of the flooring exists but for final statements we 
have to evaluate this approach with more users and with 
more flooring and other influence factors. The first results 
allow the statement that all automated gait analyses in 
unsupervised environments should consider the texture and 
unevenness of the flooring. 
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Figure 10.  Influence of floor conditions to the step-length of different subjects (magenta/orange: mid-age, green/blue: elderly).                                                                            

Left side: two female subjects and on the right site two male subjects.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Influence of floor conditions to the gait speed of different subjects (magenta/orange: mid-age, green/blue: elderly).                                                                                 

Left side: two female subjects; Right site: two male subjects. 
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