
A Model-Driven Development Process and
Runtime Platform for Adaptive Composite Web Applications

Stefan Pietschmann

Technische Universität Dresden
Faculty of Computer Science, Chair of Multimedia Technology

01062 Dresden, Germany
Stefan.Pietschmann@tu-dresden.de

Abstract—So far, little research has addressed composition
and integration at the presentation layer of web applications.
Service-oriented architectures provide uniform models for
encapsulation and reuse of data and application logic in
the form of web services, but this paradigm has not yet
been applied to the presentation layer, impeding a universal
composition of web applications. Thus, UIs are usually hand-
crafted, lack flexibility and reusability, resulting in an expensive
and onerous development process. We address these issues
with a model-driven development process and a corresponding
runtime architecture facilitating the universal, dynamic
composition of web applications. Therein, user interface
parts are as well provided “as a service” and can thus be
selected, customized and exchanged with respect to the current
context. We validated our approach using a prototypical
implementation and a number of sample applications.

Keywords-web engineering, model-driven development, com-
posite applications, mashups, user interfaces, adaptive hyper-
media

I. INTRODUCTION AND MOTIVATION

The WWW has evolved into a rather stable, universal
software platform. Numerous applications are provided as
“Software as a Service” (SaaS) over the Internet, leveraging
the location- and time-independent access as well as new
business models like pay-per-use.

An enabling paradigm for this trend is the so-called
Programmable Web [1]. Therein, data and application logic
are provided in a decoupled and technology-independent
fashion via generic service interfaces or APIs. Web-based
applications can and will increasingly be composed from
such distributed and reusable parts or services. A seminal1

type of such composite applications are mashups, which
create added value by combining web resources, e. g., data
and logic from local or remote services. They allow for
a shorter development cycle and thereby more situational
applications that foster the Long Tail [4] of software needs.
In this context, component-based concepts from academia
for a more structured design process based on a “universal

1According to Gartner, by 2010 mashups will be the predominant model
(80%) for the development of composite enterprise applications [2]. Other
institutes, e. g., Forrester, also underline their growing importance [3].

composition” have been proposed [5]. We build on this idea
of composite applications and use the term synonymously
to “user interface (UI) mashup” throughout this paper.

The underlying, service-oriented approach has simplified
the integration at the data and application layers through
standardization efforts and frameworks. Web services allow
for the technology-independent encapsulation and deploy-
ment of functionality, which facilitates flexibility of the
business logic by their exchange and custom configura-
tion. However, presentation integration has not yet been
addressed by research adequately [6], so there is a lack
of comparable efforts for the presentation layer. Current
concepts and technologies lack proper reuse mechanisms and
interoperability.

Due to mobile and decentralized access to web appli-
cations, mashup developers face the problem of the het-
erogeneity of users and devices. To fully exploit the ad-
vantage of time-, location- and device-independent access,
web applications need to adapt to the current situation, i. e.,
context (location, screen resolution, etc.), while preserving
usability standards. This has dramatically complicated UI
development. However, research in this field is still largely
restricted to basic hypermedia systems and suffers from
the “open corpus problem” [7]: Those approaches only
work well for closed systems with predefined structures
and preindexed or annotated documents, but fail when it
comes to context-aware Rich Internet Applications (RIA)
and unforeseeable, dynamic content. Thus, users are yet
again facing “one-size-fits-all” UI solutions, which seems
like a step backwards from the achievements of the “Adap-
tive Hypermedia” community over the last decade.

Additionally, UI developers are confronted with a myr-
iad of (not necessarily new) programming languages, web
frameworks and technologies to choose from. These offer
a high level of UI individualization as opposed to classical
desktop applications relying on uniform window-based UI
libraries. This degree of freedom is an advantage, but it often
results in inconsistent interaction metaphors between differ-
ent applications, in low usability and thus confused users.
Overall, development and maintenance of user interfaces still

277

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



add up to about 70% of the overall software development
[8] – a problem which is further intensified by challenge of
context-awareness described above.

To address the above-mentioned problems, we strive for
a model-driven, platform-independent development of com-
posite web applications, and their context-aware execution
by a service-oriented UI integration and composition system
[9], [10]. By extending the service-oriented approach from
the business layer to the presentation layer, we facilitate
reusability and flexibility therein and thus simplify the
development of context-aware rich web applications.

This article is structured as follows. In Section II we
discuss relevant work related to web-based UI composition
models and systems. Section III describes our model-driven
approach to develop mashup applications, providing details
on the underlying component and composition models. The
concept of the related composition infrastructure, includ-
ing the deployment process and run time integration of
UI components, is presented in Section IV. After a brief
discussion of implementation details, Section V illustrates
the practicability of our approach by means of two sample
applications. Section VI concludes this article and outlines
future research directions.

II. RELATED WORK

As described in the last section, the Web lacks uniform
models for web-based components as well as open models
and systems for their composition. We therefore present and
discuss related composition and integration efforts.

Research in the field of composite web applications with
focus on presentation integration, faces five fundamental
challenges [11]. These comprise the development of a
component model, a composition model, adequate inter-
component communication styles, as well as mechanisms
for discovery and binding and visualization of the UI com-
ponents. In this article we focus on the first three issues,
since run time discovery of user interface components is
still ongoing work and visualization is usually carried out
by the browser.

There already exist numerous component and composition
models for the Web. The problem with both client-side
(JavaScript frameworks, Applets, ActiveX Controls, Flash,
etc.) as well as server-side (Portlets, ASP.NET Web Parts,
etc.) solutions is that they all imply their very own inter-
faces, communication models, and, moreover, technologi-
cal platforms. We aim for a uniform approach wrapping
technology-specifics behind a generic component interface,
comparable to web services. Also, with regards to popular
UI frameworks such as the YUI library, we provide more
complex, high-level components with integrated presentation
and application logic.

As an example, Portlets are one of the oldest and most
mature models for UI integration on the web. By composing
them within a Web Portal, users are presented a consistent

interface of several integrated UI parts forming a “Single
Point of Access” for different back end services [12]. Thus,
a Web Portal constitutes both a composition framework and
common presentation layer of Service-Oriented Architec-
tures [13], [14]. However, the use of portals comes with
a number of disadvantages [15]. In contrast to more modern
approaches they are limited to the server-side aggregation
and communication of portlets. Despite the standardization
of portlets, other portal characteristics, e. g., the layout,
remain vendor-specific. Furthermore, with respect to our
requirements, sophisticated concepts for a model-driven,
platform-independent development and for the adaptation of
portal applications are missing.

As already mentioned in the last section, mashups are an
emerging, lightweight trend for the development of compos-
ite applications. However, the majority of current tools and
platforms are still in their infancy [16] and concentrate on the
integration of data and application logic, thus overlapping
with composition systems like portals [17]. Integration is
usually based on the Piping style [18] and supported by (of-
ten visual) composition languages and tools (Yahoo Pipes2,
JOpera [19]). User interface development is not [19] or
insufficiently supported, as in Microsoft Popfly3. Enterprise-
oriented platforms equally require authors to program the
UI traditionally with the help of JavaScript libraries (JackBe
Presto4) or WYSIWYG editors (Serena Business Mashups5).

Lately, an alternative SOA composition principle to por-
tals has been proposed for the presentation layer [14].
Therein, so-called widgets or mashlets [15] are combined,
each representing a self-contained application with its own
user interface. Standardization of such “web parts” is cur-
rently pushed, e. g., by the W3C [20] and Google [21].

Few scientific approaches have addressed the challenges
of presentation integration [11], one of the first being the
“Presentation Integration Framework” Mixup [22]. Using a
Composition Middleware, heterogeneous presentation com-
ponents are assembled based on a declarative composi-
tion description and platform-specific adapters. Rather than
adapters, our approach uses a generic wrapper that provides
platform-specific UI components as a service. Thereby,
components can be distributed and exchanged at run time,
while in [22], [23] only design time composition of locally
available components is supported. Such components are
loosely coupled by dividing the component and composition
models, and by using publish-subscribe mechanism for com-
munication. As the Mashup Component Model presented
in [24], Mixup only composes portlet-like components that
constitute full applications. Thus, the approach lacks a
separation of the traditional application layers and impedes
UI flexibility, i. e., adaptivity, at run time.

2http://pipes.yahoo.com/
3http://www.popfly.ms/
4http:/www.jackbe.com/
5http://www.serena.com/geo/de/products/business-mashups/

278

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



Service Developer

User Interface 
Service Developer

                     

The Web

Tools and roles may overlap

 including services 
from the intranet

User

State of the art

Services
(WS, REST, ATOM,

RSS,Servlet,WebPage)

Composite Services 
(Mashups, BPEL Processes, 

Application Services, etc.)

User Interface Services
(JavaScript, Flash, Java, 

Portlets, Silverlight, etc.)

Composite 
Application

 (User Interface Mashup)

Service/Mashup Composer Application Composer

Figure 1. Role model of the UI mashup development

Within the follow-up project mashArt [5] the component
model was extended to be “universal” for UI, application
and data building blocks. A fixed client-server infrastructure
is provided, combining the client-side Mixup platform with
a server-side part, whose necessity can be seen as an
disadvantage [25]. Means for specifying control flow and
adaptivity of an application as well as their support by
the runtime environment are missing. Most importantly, in
contrast to our approach, both Mixup and mashArt do not
offer a platform-independent, model-driven development.

An alternative approach for service composition at the
presentation layer is proposed by ServFace [26]. Herein, the
user interface is generated from UI annotations of the or-
chestrated services beneath at design time. Dynamic context-
awareness is not considered in this generation process,
though. Moreover, such a transformation usually results in
simplistic, form-based UIs, while we aim for the integration
of rich, potentially multi-modal UI components that can
undergo functional and usability tests prior to deployment.

As can be seen, there exist promising concepts for the
integration and composition of web-based services and re-
sources. However, due to the lack of (de-facto) standards
for the description of components and compositions, those
approaches suffer from interoperability problems. Compo-
sitions are usually based on proprietary models and lack
support of desirable and increasingly necessary aspects like
dynamic configuration and composition [16], control flow,
and adaptivity of such applications. Traditional, model-
driven concepts for the development of web applications,
such as WebML [27] and OO-H [28] can not be directly
applied to the mashup domain since they are too complex
[5] and document-centric. As a result, the development of
adaptive, context-aware mashup applications remains highly
time- and money-consuming.

III. MODEL-DRIVEN DEVELOPMENT OF
CONTEXT-AWARE, COMPOSITE WEB APPLICATIONS

To overcome the restrictions discussed above, we present
a novel concept for the model-driven development and
deployment of composite applications. Its central idea is
the application of the service-oriented paradigm to the
mashup presentation layer to support a universal composi-
tion on all application layers (data, application logic, and
UI) and to simplify the overall development of context-
aware, composite web applications. By using services to
compose a web-based user interface, we facilitate reuse,
customizability and technology-independence. We do this by
(1) the encapsulation of generic, reusable web UI compo-
nents (UIC), (2) their distributed deployment as so-called
User Interface Services (UIS) and (3) their context-aware,
dynamic invocation, configuration and integration with other
mashup components, resulting in a fully service-oriented,
composite web application.

Figure 1 gives an overview of the roles participating
in the development of such a universal composite appli-
cation. Traditional service developers (on the left) provide
application- or domain-specific data as well as application
logic via services, which are combined with the help of ex-
isting composition tools and frameworks, e. g., data mashup
platforms and BPEL engines. Our concept of User Interface
Services introduces reusable, service-based UI components
that can be composed together with traditional services to a
composite application, i. e., user interface mashup.

In this section we provide details on the underlying,
generic component model for the encapsulation of reusable
parts of a mashup, on their description and service-oriented
provision, and on the composition model that defines an
application as an arrangement of such components.

279

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



A. Component Model

To allow for a universal composition of an application,
its constituent parts need to adhere to a generic component
model. It defines the basic structure and interface of ap-
plication building blocks, being either user interface parts,
application logic or data providers. The model discussed in
the following is a successor of our previous results presented
in [9]. Following the principles introduced with web ser-
vices, it does not dictate any internal component structure
or format. However, it specifies fundamental characteristics
of component interfaces, which are relied upon for their
integration and the communication among themselves.

Figure 2. Universal Mashup Component Model

As illustrated by Figure 2, our model characterizes
mashup components by three abstractions, namely config-
uration, event, and operation.

The configuration of a component resembles its visible
state, which differs somehow from the service-oriented
paradigm mentioned: While (web) services are loosely cou-
pled and stateless by design, there is a special need for
modeling a state of mashup components, as they form
“a natural bridge between application services and data-
oriented services” [5]. In our model, the state is represented
by arbitrary key-value pairs, which are defined by the
component developer and may contain any data that seems
relevant to the component’s surrounding. Examples include
a graph’s type (line, bar, pie) and a map’s projection or type
(normal, satellite, hybrid). In contrast to prevalent solutions,
e. g., mashArt [5], our model supports complex value lists
and trees by allowing XML-schema complex types to be able
to map complex component-internal data structures more
naturally to external properties.

To publish state changes to other components or the
composition environment, a component can issue events.
They may be triggered by user interaction (UI), time (logic)
or notifications from external services (model). Besides a
name, events can contain data in the form of a number

of typed parameters, i. e., key-value pairs. Picking up the
example from above, a map could issue an event Location-
Selected(String countryCode) upon user interaction.

Operations are methods of a component which are trig-
gered by events. They can include any functionality foreseen
by the developer, such as state changes, calculations, or
service requests. As an input, they consume parameters
provided by the trigger events. As an example, an operation
getCountryInfo(String countryCode) could be triggered by
the aforementioned map event, which would result in a
SOAP request by the component to a web information
service providing information about the country. Its response
would again be published as an event to be consumable
by other components. As event and operation parameters
don’t always fit as nicely as in our example, we facilitate
the definition of a mapping, so that parameter names and
order become irrelevant to the wiring.

The component model presented here is specifically de-
signed to support the loose coupling of application com-
ponents based on a publish-subscribe mechanism (cf. Sec-
tion III-B). Thus, events and operations form the basis of all
application-internal communication.

Within a user interface mashup, we can distinguish dif-
ferent component types. Although they all comply with
the component model presented above, they differ in the
semantics, i. e., in the application layers they apply to.
In the composition model discussed later, we differentiate
between four types: At the topmost layer, User Interface
Components (UIC) encapsulate parts of an application UI
with corresponding presentation logic. A popular example
would be an interactive map, as provided by Google or
Yahoo. To support an efficient communication between
components, we can employ Logic Components (LC). They
provide means for data manipulations, e. g., transformation,
filtering, or aggregation, so that parameters of events and
operations fit, even in combinations unforeseen by their
developers. Especially the use of complex data types, such
as Person, necessitates data transformations to make parts
of it (surname, age, gender) processable by operations of
other components. Finally, at the lowest application level,
Service Components wrap access to services providing data
or complex application logics, e. g., via SOAP or REST.

Since we aim for flexible, context-aware user interfaces,
deployment and description of UI components differ slightly
from other component types. As already mentioned, User
Interface Services (UIS) form an integral part of our con-
cept. They facilitate the distributed deployment, technology-
independent provision, and integration of above-mentioned
UI components via a public service interface – something
already common to back end services. A trend towards such
services for the presentation layer can already be witnessed,
prominent examples being Google’s Maps or Visualization
APIs, that offer the integration of configurable, interactive

280

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



Figure 3. Main parts of the Composition Metamodel

maps and charts from a remote server. We generalize such
techniques and propose a concept, in which the whole web
application UI results from the integration and composition
of UIS, or, more precisely, the UI components provided by
them. UIS imply that back end development and UI design
can be completely decoupled by using services, whose
combination eventually results in a composite application.

Following this approach, we can equally bind web and UI
services at runtime. We can even link the UIS selection and
integration process with contextual information, such as user
preferences, device capabilities, and the integration platform.
This allows for context-aware, composite application UIs,
but also implies that we need some kind of UIS description.

To dynamically select a UI service, an open interface
description is needed to specify the characteristics of the
corresponding UIC, including its semantics (purpose) and
signature (operations and events). Moreover, since – opposed
to traditional services – UI services provide components
to be integrated (not executed remotely), those need to be
wrapped with respect to the integration platform, i e., the
technology and framework used. Consequently, a UI descrip-
tion needs to provide information on the compatibility and
language bindings of a component.

Thus, similarly to service components described by
WSDL or WADL, the interface of UIS is specified with
the help of a User Interface Service Description Language
(UISDL). It is an XML-based description of all information
needed to select, integrate and use a UI component pro-
vided by the corresponding UIS. Therefore, it consists of
two parts: the UISDL class description defines the generic
interface of a component, i. e., its name, semantic concepts,
license, and signature (properties, operations, events); the
UISDL binding describes the mapping of a platform-specific
component implementation to a class, including constructor
information, references to required libraries, etc. UISDL
metadata is stored in a Component Registry (cf. Figure 4)
and used to dynamically match application requirements
and context data with available UIS – a process which is
discussed later in Section IV-B. Details on the UISDL are
out of focus of this article and will be published separately.

In summary, the lightweight component model presented
here describes reusable building blocks for the composition
of mashup applications and supports synchronization on

all its layers. Service components allow for the integration
of arbitrary external services, their data being transformed
by logic components and visualized by UI components.
The latter are distributed and provided in a service-oriented
fashion, the uniform component interface and the declarative
interface description language UISDL hiding specific APIs
and technologies. This approach enables interoperability and
run time exchangeability of user interface parts and thus
forms a basis for context-aware mashup user interfaces.

B. Composition Model

To compose web applications from components as dis-
cussed in the last section, a platform-independent model
is needed to define all relevant aspects of an application,
including the components used, the communication among
them, the overall control flow as well as the layout of the
user interface. Therefore, we have developed an extensible
metamodel to describe all of the above aspects. Figure 3
provides a simplified overview of the CRUISeComposi-
tionModel and its submodels, each describing a specific
application aspect. As can be seen, any composition model
also represents a component itself (CompositeComponent)
and can thus be included in higher level compositions, either
by reference or direct inclusion. The interface IUIMashup-
Model facilitates extensibility to model additional aspects,
as exemplified with the Adaptivity Model. In the following,
we give a brief overview of the main parts, i. e., submodels
of our composition model. Further details are beyond the
scope of this article and will be published separately.

The Conceptual Model contains all application-wide con-
cepts. Most importantly, these comprise the components
of an application – the different types presented above
including specific configurations. Since their events and
operations contain typed parameters, data type definitions
(XML Schema) of all complex types used are included or
referenced there. Additionally, reusable style classes can
be modeled and applied to different UI components –
comparable to CSS – to achieve a homogeneous look and
feel of an application. Finally, two more special components
round off the Conceptual Model: one allows for accessing
context variables which are provided by a dedicated service
at run time. Those context parameters can be connected
with other application components, e. g., to constantly feed

281

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



a map with the current location of a user. The other special
component defines the external interface and execution of a
composition. It includes application-wide variables, events
to be issued at application initialization, and references to
those events and operations of the composition that shall be
accessible externally by a higher-level composition.

The layout of the composite application is described by
the Layout Model. A developer can use multiple predefined
layouts, following layout managers as common in several
UI libraries. As an example, a Grid Layout with multiple
rows and columns can be defined, each cell containing a
certain mashup component (or another layout). Layouts can
be hierarchically nested to achieve any desired arrangement
of UI components.

Layouts are utilized within the Screenflow Model to
describe several views (pages) of an application. Each view
is represented by a specific layout, i. e., a visual state of
the mashup with certain UI components visible. One view
is the marked as initial, but plenty others can be defined.
Transitions between views are triggered by events issued
from components or the environment (the runtime system).
This allows for very flexible and multi-step user interfaces.

The Communication Model supports arbitrary communi-
cation paradigms. We currently model communication based
a publish-subscribe-mechanism, wherein channels connect
publishers (events) with subscribers of information (opera-
tions). Developers can create manual mappings of channel
and operation parameters. This is useful, when semantically
different parameters differ in their names, or when event and
operation parameters simply occur in a different order.

Finally, the Adaptation Model illustrates the extensibility
of our metamodel. It was added to facilitate the definition of
adaptation aspects crosscutting all of the above-mentioned
models. Each aspect is triggered by an arbitrary event within
the application, which leads to the validation of a condition
defined by the composer. An aspect specifies both the part
of the model to adapt, and an action which defines exactly
what to do. As an example, it could change a layout,
insert an additional component’s configuration parameter,
or exchange one component with another. With the help
of this model, we can specify adaptations of a composite
application at very different levels of granularity.

A complete composition model is transformed into an
executable web application in a multi-step process, including
a number of model-to-model and model-to-code transforma-
tions. They can be triggered dynamically by a client request,
or statically during design. Alternatively, the model can be
directly interpreted by dedicated runtime systems.

In conclusion, the composition metamodel presented pro-
vides the means to model all necessary aspects describing
a service-oriented, composite application in a platform-
independent fashion. Therefore, generic components (cf.
Section III-A) at different application layers are integrated
and linked by communication channels. The composition

paradigm supports a seamless integration of service-oriented
UI components, similarly to the integration of service-
oriented back end logic and data. With the help of an
adaptation model, any aspect of an application can be altered
with respect to a particular context, resulting in highly
flexible, self-adaptive compositions.

IV. CRUISE: A SYSTEM ARCHITECTURE FOR
ADAPTIVE USER INTERFACE MASHUPS

While the modeling approach presented in the previous
section specifically focuses on design time of adaptive
composite applications, this section presents an open and
flexible system architecture for their dynamic composition
and execution, called CRUISe. After a brief architectural
overview, we present our concept in detail. First, we explain
how an application is initialized including the dynamic
integration and composition of remote UI components to
an application UI. Then, we highlight details on its runtime
adaptation.

A. Architectural Overview

Figure 4 gives an overview of the overall conceptual
infrastructure of CRUISe. Its central concept is the use of
distributed services for the dynamic composition of web
applications to exploit the advantages of service-oriented ar-
chitectures, like reusability, customizability and technology-
independence at all application tiers, including the presen-
tation layer. As mentioned in Section III-A, we do this by
dynamically selecting, configuring, and integrating generic,
reusable UIS into an application UI, and binding them to
application-specific logic and service components.

Integration 
Service

Component
Registry

Context 
Service

Component and Context Management

find

registerbind

M
o

d
el

in
g

Web ServicesWeb ServicesWeb Services UI ServicesUI ServicesUI Services

CRUISe Runtime

Composite Application

M2C

C
o

m
p

o
si

ti
o

n
Se

rv
ic

es

Authoring Tool

           Composition Model

Figure 4. Architectural overview of the CRUISe infrastructure

On the left, Figure 4 illustrates the model-driven nature
of our approach: Initially, a composite application is defined
with the help of dedicated visual authoring tools and by
means of the platform-independent Composition Model,
presented in the last section. The latter is transformed to
a platform-specific, executable application, either statically
at design time, or triggered by a client request at run

282

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



Application Server

Integration Task

Context 
Service

UIS 
Registry

Contextualization   Discovery

 Modeling and Generation

Ranking

 UIS Binding Composition and Integration

Integration Service

Present. Logic 
and Resources

User Interface 
Service

Ranking
Strategy

Application 
Skeleton

Integration 
Code

Integration 
Request

UI Service
Request

UI 
Component

CRUISe Runtime

Application 
Request

Composite Application

Mode-to-Code

Composition Model

?

?

?
 ?

Composite Application (UI Mashup)

Figure 5. UI composition process

time. Alternatively, the model can be directly interpreted by
dedicated run time environments.

The resulting Composite Application is executed by a
runtime platform which provides all necessary means for
controlling the application aspects specified in the composi-
tion model (event, data and control flow, service access, etc.)
– the CRUISe Runtime. During application initialization, it is
specifically responsible for invoking the Integration Service,
which provides UI components “as a service”, matching
given application requirements and context information with
available UIS listed in the Component Registry. Once the
integration of UI components into an application is finished,
the Runtime controls its execution. Additionally, it monitors
context data and sends it to a context management service.
There, it is processed, refined, and later provided to be used
in the discovery and ranking process of UIS, as well as for
the dynamic adaptation applications.

With our first prototype [9] we gained some useful knowl-
edge on web-based UI integration and – as an outcome
– decided to keep the place of integration conceptually
flexible. Thus, the Runtime can reside both on the server
or on the client-side, depending on the application require-
ments. For instance, service authentication in an enterprise
setting necessitates a server-side part. Alternatively, the
Thin-Server Runtime [29] allows for a completely browser-
based composition and execution of consumer-oriented UI
mashups, conforming to the SOFEA architectural style [25].

The next sections provide some more insight into the
composition and integration process, as well as into dynamic
adaptation mechanisms included with the Runtime.

B. Dynamic, Context-Aware Composition

The composition process outlined in the last section is
illustrated by Figure 5. As can be seen, the provision of a
service-oriented user interface for a mashup application is
based on an integration work flow, which consists of three
subsequent steps, namely (1) application generation, (2) UIS
integration and (3) UIS binding. In this section we focus on
steps 2 and 3.

The generation process results in a so-called skeleton,
containing placeholders instead of actual component in-
stances so that UI components can be “bound” at runtime
just like back end services. Thus, at application startup, the
Runtime is responsible for integrating UI components and
for initializing them together with the other components in-
cluded within the composition. Therefore, it sends a request
containing application- and context-dependent requirements
for each component to be integrated to the Integration
Service. Subsequently, the latter starts an Integration Task,
illustrated by Figure 6, which consists of different modules
each responsible for a certain integration aspect. Its purpose
is to find those UIS in the Component Registry that match
given application requirements and context, to rank them
by their accuracy of fit, and to return the platform-specific
binding (cf. Section III-A) for the best match to the Runtime.

Since the Integration Service has an open service interface
for requesting platform-specific components bindings, it can
be used by different kinds of integration platforms – both
client- and server-side. This even allows for the integration
into independent solutions, e. g., into the JSP compilation
process [9], into human tasks included in a business process
[10], but also directly within the browser [29].

283

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



In
te

gr
at

io
n

 T
as

k
In

te
gr

at
io

n
 T

as
k

Integration Plug-InIntegration Plug-In

Integration Service

Integration Manager

In
te

gr
at

io
n

 T
as

k

Context Module

Discovery Module

Invocation Module

Integration Plug-In

Integration Plug-InIntegration Plug-InRanking Strategy

UIS

Context 
Service

Component 
Registry

CRUISe Runtime

component 
request

component 
binding

Composite Application component 
instance

Figure 6. Internal structure of the Integration Service

The following modules are involved in the matching and
integration process:

Integration Manager: This module handles all incom-
ing component requests. Thus, it marks the remote entry
point to the integration system and manages its internal data
flow with the help of so-called Integration Tasks. For every
request, a new task is started, which comprises a chain
of actions (represented by individual modules) eventually
returning a platform-specific component binding that best
meets the given application requirements and context.

Context Module: Since the selection and configuration
of UIS are based on contextual data, this module resolves
references to context information being part of the trans-
ferred requirements into actual data, and evaluates context
conditions. The quality and amount of this data heavily
depends on the underlying context monitoring and modeling
system. Therefore, we suggest the use of a sophisticated,
service-oriented solution as described below.

Context Service: Modeling context places high de-
mands on adaptive systems, including consistency checks,
validation, and reasoning of information. In [30] we have
presented a suitable, service-based solution called CROCO,
which allows for the cross-application, ontology-based
context management and reasoning, covering the above-
mentioned requirements. Arbitrary context providers, such
as the Runtime itself, other applications on the user’s device,
or hardware sensors, can send information to CROCO.
Likewise, the Context Module and the Runtime request

context data from the service, either synchronously or asyn-
chronously by using a callback interface. More details on
CROCO are discussed in [30].

Discovery Module: This module requests suitable
component descriptions from the Component Registry –
comparable to UDDI. Currently, we focus our work on
the discovery and integration of UI components. Discovery
within the registry is based on component class, e. g., “Map”.
In response, a result set of UISDL bindings is returned,
which has to be ranked afterwards to determine the most
adequate UIS. Therefore, the Discovery Module passes the
set to a Ranking Strategy.

Ranking Strategy: In this step, the list of UIS in ques-
tion is sorted with regard to predefined, possibly context-
dependent criteria. Different ranking algorithms, or “strate-
gies”, may exist. They can be exchanged dynamically to sup-
port domain- or application-specific weightings of ranking
criteria. Hence, the discovery process is divided into a class-
based, functional matching carried out by the registry, and
an application-specific, context-aware ranking performed by
the strategy within the Integration Service.

Invocation Module: The necessity of a server-side
invocation of UIS depends on whether there exists a suitable
UISDL binding for the particular integration platform. As
mentioned in Section III-A, it describes, how a component
is integrated into a specific technology, i. e., how it can be
initialized and how the interface signature maps to internal
parameters and methods of the component. If, for example,
a UI component should be integrated on the client-side into
a JavaScript environment, a corresponding JavaScript-based
component can be integrated directly on the client by loading
the remote script in the browser. However, if technologies
differ, UI components need to be wrapped in platform-
specific code by the Integration Plug-In and are thus loaded
from the UIS beforehand.

Integration Plug-In: In the ideal case, this module
only extracts the necessary integration code from the UISDL
binding. This includes initialization code, e. g., the con-
structor, as well as dependencies to other libraries. If no
suitable binding exists, the component is wrapped with
code, specific to the integration platform. Thus, for every
runtime platform, there exists a corresponding Integration
Plug-In. As an example, we have developed a plug-in, which
integrates JavaScript-based components into Eclipse RAP6

applications by automatically creating the corresponding
server-side life cycle classes and by dynamically integrating
them with the help of the RAP Runtime.

Once the Integration Task is finished, the Integration
Service returns a platform-specific binding or wrapped com-
ponent to the Runtime. It is interpreted or embedded into the
composite application and executed, eventually. This can be
referred to as UIS binding as shown in Figure 5. Of course,

6http://eclipse.org/rap/

284

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



this process involves a number of additional tasks, such
as error handling and the provision of distinct namespaces
to assure unique identifiers for each component included.
However, those actions are not discussed in detail here.

After an application has been successfully initialized,
the Runtime controls the event and data flow between its
components as specified in the composition model. It also
serves as a homogeneous access layer for various back end
services. Furthermore, it monitors context data on the client,
like user interactions and device capabilities, and sends them
to the Context Service. In the end, it also carries out dynamic
adaptations of the composite application, which is discussed
in the following section.

C. Dynamic Adaptation of the Composite Application

As motivated in the beginning, situational awareness
becomes increasingly important for web applications and
poses additional challenges for web developers. Web appli-
cations need to adapt to different end users (characteristics,
preferences, roles), devices (screen size, resolution, plug-
ins) and situations (time, location, etc.). In CRUISe, context-
awareness can be attained in different ways.

First and foremost, since UI components are selected and
configured dynamically at run time, this process can be
influenced by arbitrary context data, as discussed in the last
section. For instance, the availability of necessary plug-ins
on the client (e. g., Flash) can be taken into account when
deciding which UI component to integrate.

Second, context parameters may directly influence the
configuration and state of a mashup component. This can
be achieved by wiring contextual events from the context
component (cf. Section III-B) with other components of
an application. As an example, a location-aware map can
be configured in such a way, that events from the context
component providing the current geolocation trigger the map
operation that updates its marker accordingly. Similarly,
context parameters can be referenced within initialization
events of an application, which results in a context-aware
component configuration.

Finally, the Runtime contains an adaptation infrastructure,
which dynamically evaluates context conditions specified
in the Adaptivity Model, and carries out adaptations ac-
cordingly. They include component reconfiguration and ex-
change, adaptive layout and communication, as well as mi-
gration of components between client and server. Adaptation
within the Runtime is defined with the help of rules, which
define comporise context events, corresponding conditions,
component references, and adaptation actions. Context data
is requested or actively pushed from an external context ser-
vice, e. g., CROCO. Details on adaptation rules, techniques,
and context management are beyond the scope of this paper
and will be published separately.

V. IMPLEMENTATION

To verify the concepts presented in the previous sections
we implemented the composition model and the CRUISe
infrastructure, and tested them with the help of different,
exemplary composite applications.

The composition metamodel discussed in Section III-B
was realized based on the meta-metamodel Ecore being
part of the Eclipse Modeling Framework7 (EMF). By using
EMF, application models can be serialized in XMI and
hence become exchangeable and tool-independent. Further-
more, an API can easily be created from the metamodel,
simplifying the subsequent transformation step by using a
number of already existing languages, such as QVT [31].
We also generated a tree editor, which integrates seamlessly
with Eclipse (cf. Figure 7), and makes modeling composite
applications rather easy with integrated validation support.
Overall, Eclipse offers a powerful and flexible environment
for future extensions, including the development of a corre-
sponding visual editor.

Figure 7. Composition model tree editor

To validate the flexibility of the integration process, we
put into practice different Runtimes, both server- and client-
side. Our first prototype used a Client-Server Runtime, in

7http://eclipse.org/modeling/emf/

285

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



which UI integration takes place on the server as part of
the JSP compilation process. The integration is HTML-
based, utilizing the jMaki8 widget framework, which man-
ages component interaction on the client side. To assure
uniqueness of class and object identifiers of the integrated
components (with respect to the composite application), we
use so-called Universally Unique IDentifiers [32], which are
assigned during the integration process.

In [10] we presented the dynamic integration of
UI components into a BPEL-environment based on the
BPEL4People and WS-HumanTask (WSHT) standards.
Therein, our Runtime is a Java-based extension of the
ActiveBPEL9 Task List Client, which lists and presents all
human-involved tasks to users. Our extension includes two
components: a Parser interprets the serialized composition
model, which is embedded in the Human Task description,
and Bridge component handles all the communication with
the Integration Service and dynamically embeds UI compo-
nents into the task UI.

As part of our latest work, we developed a Thin-Server
Runtime (TSR) [29] which runs completely within the
browser, following the SOFEA architectural style [25].
Therefore, we extended the JavaScript framework Ext10. The
resulting architecture manages the components’ dynamic
integration, life cycles and communication, and provides a
homogeneous service access layer which redirects external
service access to a proxy provided by the Integration Ser-
vice. This is needed to bypass the client-side “same origin
policy” [33] which prevents access to services outside the
original application domain. All Runtimes feature adequate
error handling strategies for different faults, e. g., during
component request, integration, and initialization. Typically,
the action is repeated first, before discovery of alternative
components is started. Additional run time security mecha-
nisms are in the working.

The Integration Service is realized in Java according to the
architecture illustrated in Figure 6 with additional function-
ality like local resource management and caching. It features
both a lightweight REST and a SOAP interface. Function-
ality of the latter is largely based on Apache Axis211 and
thus benefits from steady improvements and comprehensive
standards support. The Component Registry builds on the
WSMO framework [34] and internally models components
uses the Web Service Modeling Language (WSML).

For demonstration and testing purposes, several prototypi-
cal, composite web applications were designed and built. To
this end, a number of UIS were developed, encapsulating
typical UI components, such as maps (Google Map, Yahoo
Map), charts (Google Visualization API), an image browser,
a feed viewer, a tag cloud, etc. Technologically, these com-

8https://ajax.dev.java.net/
9http://www.activebpel.org
10http://www.extjs.com/products/extcore/
11http://ws.apache.org/axis2/

ponents range from simple HTML and JavaScript (Google
Maps, Dojo) to Flash (Flex) and Google GWT.

Figure 8 shows two prototypes. The rear one is one of the
first sample applications built upon our approach (cf. [9]).
It allows for the management of contacts and provides
additional information on their current location. Users may
edit their data with the help of a form or by changing their
location directly on a map. The application in the front lets
users browse publications listed in a digital library. They can
see details on the papers and check the corresponding confer-
ences for related work. Different REST and SOAP services
are utilized by this mashup, providing information on the
authors and conferences which are visualized accordingly
(e. g., keywords in a tag cloud, conferences on a map). The
underlying composition model is partly shown in Figure 7.

Figure 8. Two mashup applications integrating several UIS

With the help of these prototypes we could prove the
feasibility of our model-driven development process and
architecture for different application scenarios and platforms.
They exemplify the dynamic integration of UI components
into a mashup composition process, the event-based syn-
chronization among components on all application layers,
and the technology-independence of our approach.

Our modeling tools support the easy, platform-
independent composition of applications from services
and UIS at low authoring cost. At run time, the server-side
integration and composition seems expedient especially for
enterprise scenarios, because the quality and authenticity
of back end and front end services can be ensured by the
application server. As a downside, this negatively affects
performance when the number of services, composite
applications, and users grows. Thus, for a large part of
use cases, a client-side composition and execution seems
favorable, considering ongoing standardization efforts to

286

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



resolve issues with the “same origin policy”. Obviously,
performance within a thin-server setting heavily depends
on the browser used. In our tests, Google Chrome, Mozilla
Firefox, and Opera offered a reasonable performance.

Of course, the proposed abstraction at the presentation
layer implies a certain overhead at both design and run
time. As application complexity can not be eluded, our
concept basically shifts it from the application composer
to the component developer. Reliable, elaborate component
implementations and accurate descriptions are key factors
for our concept to succeed. Given this, composition with
our tools and models simplifies and shortens overall devel-
opment while yielding platform-independence and context-
awareness. Run time overhead of the dynamic component
discovery and integration is less of a problem, since our
infrastructure proves to scale rather well using caching and
redundant services.

VI. CONCLUSION AND FUTURE WORK

The development of composite web applications with rich
user interfaces is a time- and money-consuming task, as
current approaches lack a universal composition approach
and are limited to integration at the data and application lay-
ers. Providing context-aware UIs for such applications poses
additional challenges for developers. To address these issues,
we have presented a model-driven development process
for composite applications based on a universal, platform-
independent composition metamodel, and a corresponding
execution platform and infrastructure.

Our concept proposes a generic component model defin-
ing configurable, reusable parts of an application, and a
novel, service-based deployment method for UI components.
It implies the dynamic, context-aware composition of a
mashup UI from so-called User Interface Services (UIS).
In this context, a corresponding component description
language (UISDL) has been developed. Composite applica-
tions are described with a platform-independent composition
model, which defines all components used, their configu-
ration, communication, and layout, as well as screen flow
and adaptive behavior. On a higher level of abstraction, it
specifies the coupling of UI services with back end services.

We have designed and tested the composition infras-
tructure CRUISe, which provides the necessary means for
application composition and execution. This includes the
homogeneous binding of back end services and the dynamic,
context-aware selection, configuration, and integration of
UIS. Moreover, the architecture supports dynamic adaptivity
and adaptability of the composite application by means of
component reconfiguration, exchange, adaptive layout, etc.
To validate our approach, we built several prototypes illus-
trating the dynamic composition of context-aware mashup
applications for different usage scenarios and platforms.

To our knowledge, CRUISe marks the first model-driven
and fully service-oriented approach to a universal compo-

sition: It greatly simplifies platform-independent develop-
ment, reuse and maintenance of composite web applications
with context-aware UIs by deploying UI components “as a
service” – comparable to service-oriented back end logic.
Besides, it enables novel business models in the form of
potentially commercial UIS, which may offer visualization
and interaction at a higher level than standard interfaces.

Currently, we are working on more sophisticated, context-
aware selection mechanisms being part of the Component
Registry and the Integration Service. To this end, we are
building a semantic classification of UIS to support semantic
run time matching. In parallel, we are developing a sand-
boxing concept to improve security and privacy mechanisms
within our Runtimes, so that a certain level of stability
and information quality can be guaranteed, regardless of
the services used by applications. Additionally, we are
working on a visual composition tool to further simplify
the development process.

Future work includes the extension of component descrip-
tors and the Adaptation Model with regard to adaptation:
Components’ ability to self-adaptation and adaptability must
be described to form the basis for defining higher-level
adaptation concerns [35] (“device independence”, “location-
awareness”, etc.) in the composition model. Moreover, we
plan to extend our infrastructure to manage and dynamically
include all types of components, including compositions
themselves.

ACKNOWLEDGEMENTS

The CRUISe project is funded by the German Federal
Ministry of Education and Research under promotional
reference number 01IS08034-C.

REFERENCES

[1] E. M. Maximilien, A. Ranabahu, and S. Tai, “Swashup:
Situational Web Applications Mashups,” in Companion to the
22nd Conf. on Object-Oriented Programming Systems and
Applications (OOPSLA’07). New York, NY, USA: ACM,
2007, pp. 797–798.

[2] “Gartner Identifies the Top 10 Strategic Technologies
for 2008,” Gartner Inc., Tech. Rep., October 2007,
http://www.gartner.com/it/page.jsp?id=530109.

[3] O. Young, E. Daley, M. Gualtieri, H. Lo, and M. Ashour,
“The Mashup Opportunity,” Forrester, Tech. Rep., May 2008.

[4] C. Anderson, The Long Tail: Why the Future of Business Is
Selling Less of More. New York: Hyperion, 2006.

[5] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, “Hosted
Universal Composition: Models, Languages and Infrastruc-
ture in mashArt,” in Proc. of the 28th Intl. Conf. on Concep-
tual Modeling, November 2009.

[6] B. Benatallah and H. Nezhad, “Service Oriented Architecture:
Overview and Directions,” Advances in Software Engineer-
ing: Lipari Summer School, vol. 5316, pp. 116–130, 2007.

287

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/



[7] P. Brusilovsky and N. Henze, “Open Corpus Adaptive Educa-
tional Hypermedia,” in Adaptive Web: Methods and Strategies
of Web Personalization, vol. 4321, 2007, pp. 671–696.

[8] A. Kleshchev and V. Gribovy, “From an Ontology-Oriented
Approach Conception to User Interface Development,” Infor-
mation Theories & Applications, vol. 10, no. 1, pp. 87–94,
2003.

[9] S. Pietschmann, M. Voigt, and K. Meißner, “Dynamic Com-
position of Service-Oriented Web User Interfaces,” in Proc.
of the 4th Intl. Conf. on Internet and Web Applications and
Services (ICIW 2009). Mestre/Venice, Italy: IEEE CPS, May
2009, pp. 217–222.

[10] ——, “Adaptive Rich User Interfaces for Human Interaction
in Business Processes,” in Proc. of the 10th Intl. Conf. on
Web Information Systems Engineering (WISE 2009), WISE.
Springer LNCS, October 2009.

[11] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and
R. Saint-Paul, “Understanding UI Integration: A Survey of
Problems, Technologies, and Opportunities,” IEEE Internet
Computing, vol. 11, no. 3, pp. 59–66, May/June 2007.

[12] O. Diaz and J. J. Rodriguez, “Portlets as Web Components:
An Introduction,” Journal of Universal Computer Science,
vol. 10, no. 4, pp. 454–472, April 2004.

[13] W. Martin and R. Nußdorfer, “Role of Portals in a Service-
Oriented Architecture (SOA),” S.A.R.L. Martin, CSA Con-
sulting GmbH, Whitepaper, March 2006.

[14] M. Steger and C. Kappert, “User-facing SOA,” Java Magazin,
pp. 65–77, March 2008.

[15] S. Abiteboul, O. Greenshpan, and T. Milo, “Modeling the
Mashup Space,” in Proc. of the 10th Intl. Workshop on Web
Information and Data Management (WIDM). Napa Valley,
CA, USA: ACM, October 2008.

[16] D. Benslimane, S. Dustdar, and A. Sheth, “Service Mashups,”
IEEE Internet Computing, vol. 12, no. 5, pp. 13–15, 2008.

[17] V. Hoyer and M. Fischer, “Market Overview of Enterprise
Mashup Tools,” in Proc. of the 6th Intl. Conf. on Service
Oriented Computing (ICSOC), vol. 5364. Springer-Verlag,
2008, pp. 708–721.

[18] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth,
“Enterprise Mashups: Design Principles towards the Long
Tail of User Needs,” in Proc. of the Intl. Conf. on Services
Computing, vol. 2. IEEE, 2008, pp. 601–602.

[19] C. Pautasso, “Composing RESTful Services with JOpera,” in
Proc. of the 8th Intl. Conf. on Software Composition, ser.
LNCS, no. 5634. Springer, 2009, pp. 142–159.

[20] M. Caceres, “Widgets 1.0: Packaging and Configuration,”
W3C Working Draft, April 2008. [Online]. Available:
http://www.w3.org/TR/widgets/

[21] Google Inc., Gadgets Specification,
http://code.google.com/apis/gadgets/docs/spec.html, Std.

[22] J. Yu, B. Benatallah, F. Casati, F. Daniel, M. Matera, and
R. Saint-Paul, “Mixup: A Development and Runtime Envi-
ronment for Integration at the Presentation Layer,” in Proc.
of the 7th Intl. Conf. on Web Engineering (ICWE’07), ser.
LNCS 4607, Como, Italy, July 2007, pp. 479–484.

[23] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel,
and M. Matera, “A Framework for Rapid Integration of
Presentation Components,” in WWW ’07: Proc. of the 16th
Intl. Conf. on World Wide Web, 2007, pp. 923–932.

[24] X. Liu, Y. Hui, W. Sun, and H. Liang, “Towards Service Com-
position Based on Mashup,” in IEEE Congress on Services,
2007, pp. 332–339.

[25] G. Prasad, R. Taneja, and V. Todankar, “Life above the
Service Tier,” October 2007.

[26] T. Nestler, M. Feldmann, A. Preußner, and A. Schill, “Service
Composition at the Presentation Layer using Web Service An-
notations,” in Proc. of the 1st Intl. Workshop on Lightweight
Integration on the Web (ComposableWeb’09), June 2009.

[27] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, and
P. Fraternali, “Web Applications Design and Development
with WebML and WebRatio 5.0,” Objects, Components, Mod-
els and Patterns, pp. 392–411, 2008.

[28] J. Gómez, C. Cachero, and O. Pastor, “On Conceptual Mod-
eling of Device-Independent Web Applications: Towards a
Web-Engineering Approach,” IEEE Multimedia, vol. 8, no. 2,
pp. 20–32, 2001.

[29] S. Pietschmann, J. Waltsgott, and K. Meißner, “A Thin-Server
Runtime Platform for Composite Web Applications,” in Proc.
of the 5th Intl. Conf. on Internet and Web Applications and
Services (ICIW 2010). Barcelona, Spain: IEEE, May 2010.

[30] S. Pietschmann, A. Mitschick, R. Winkler, and K. Meißner,
“CroCo: Ontology-Based, Cross-Application Context Man-
agement,” in Proc. of the 3rd Intl. Workshop on Semantic
Media Adaptation and Personalization, December 2008.

[31] Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Object Management Group Std., April 2008.
[Online]. Available: http://www.omg.org/spec/QVT/1.0/

[32] RFC4122: A Universally Unique IDentifier (UUID) URN
Namespace, Internet Engineering Task Force (IETF) Std., July
2005. [Online]. Available: http://tools.ietf.org/html/rfc4122/

[33] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Pro-
tecting Browser State from Web Privacy Attacks,” in Proc.
of the 15th Intl. Conf. on World Wide Web (WWW 2006).
Edinburgh, UK: ACM, 2006, pp. 737–744.

[34] R. Herzog, H. Lausen, D. Roman, M. Stollberg, and P. Zug-
mann, WSMO Registry, WSMO Working Draft, Std., Rev. 0.1,
April 2004, http://www.wsmo.org/2004/d10/v0.1/.

[35] M. Niederhausen, K. van der Sluijs, J. Hidders, E. Leonardi,
G.-J. Houben, and K. Meißner, “Harnessing the Power
of Semantics-based, Aspect-Oriented Adaptation for AMA-
CONT,” in Proc. of the 9th Intl. Conf. on Web Engineering
(ICWE’09), ser. Edition 5648, M. Gaedke, M. Grossniklaus,
and O. Dı́az, Eds., San Sebastian, Spain, Juni 2009.

288

International Journal on Advances in Internet Technology, vol 2 no 4, year 2009, http://www.iariajournals.org/internet_technology/


