
Free-Libre Open Source Software as a public policy choice

Mark Perry*
Faculty of Law - Faculty of Science

University of Western Ontario
London, Ontario
mperry@uwo.ca

Thomas Margoni*
Faculty of Law - Faculty of Science

University of Western Ontario
London, Ontario

tmargoni@uwo.ca

Abstract—Free Libre Open Source Software (FLOSS) is
characterised by a specific programming and development
paradigm. The availability and freedom of use of source code
are at the core of this paradigm, and are the prerequisites for
FLOSS features. Unfortunately, the fundamental role of code is
often ignored among those who decide the software purchases
for Canadian public agencies. Source code availability and the
connected freedoms are often seen as unrelated and accidental
aspects, and the only real advantage acknowledged, which is
the absence of royalty fees, becomes paramount. In this paper
we discuss some relevant legal issues and explain why public
administrations should choose FLOSS for their technological
infrastructure. We also present the results of a survey re-
garding the penetration and awareness of FLOSS usage into
the Government of Canada. The data demonstrates that the
Government of Canada shows no enforced policy regarding the
implementation of a specific technological framework (which
has legal, economic, business, and ethical repercussions) in their
departments and agencies.

Keywords-Public policy, data analysis, derivative works, li-
cences, public sector, policy recommendations.

I. INTRODUCTION

Free-Libre and Open Source Software (FLOSS) is about
freedom, access, transparency, and accountability [1]. How-
ever, at many levels FLOSS is considered for use by provi-
sioning departments only on the basis of the asserted cost
reductions that it may bring. This is reflected in the fact that
the acronym is sometimes replaced by other non-standard
terminology. For example, the Canadian Government re-
cently made a ’No Charge Licensed Software’ Request for
Information, thereby avoiding the FLOSS terminology [2].
Although terminology may seem like a minor issue, many
advantages of FLOSS are found in software that fits strictly
within its definition, and not within acronyms and labels
that could look similar to a non-discerning reader. Examples
of this include ’free-ware’, ’share-ware’ and ’no charge
software’.

In this paper, we look at the attributes of FLOSS that
are linked with the specific legal requirements under which
it is distributed, as well as the specific framework under
which the software is developed. We focus on the public
sector, i.e., government, public administrations, federal or
provincial agencies. FLOSS is also successfully employed
in the private sector, however, we have not analysed the

idiosyncrasies of the corporate and business initiatives [3].
The following sections are included: basic terminology;
licence compatibility; benefits for governments and public
agencies to adopt FLOSS, and whether such beneficial
aspects are caught by the Government of Canada (GoC).
Finally, we present the data of a recent survey that suggest
that the GoC is not taking advantage of the benefits this
innovative phenomenon would include.

II. TERMINOLOGY

When dealing with FLOSS, two main concepts of the tax-
onomy should be separated: ”Free-Libre” and ”Open”. There
have been disputes between these two approaches, which lie
behind similar code development methods: ”[T]he obvious
meaning for the expression ’open source software’ is ”You
can look at the source code”, and most people seem to think
that’s what it means. That is a much weaker criterion than
free software, and much weaker than the official definition
of open source. It includes many programs that are neither
free nor open source. Since the obvious meaning for ’open
source’ is not the meaning that its advocates intend, the
result is that most people misunderstand the term” [4].

Opposing the Free Software Foundation (FSF) position is
the Open Source Initiative (OSI) position: ”it was decided
at a conference that it was time to drop the moralising
and confrontational attitude that had been associated with
free software in the past, and sell the idea strictly on the
same pragmatic, business-case grounds that had motivated
Netscape. They brainstormed about tactics and a new label
Open source, contributed by Chris Peterson was the best
they came up with” [5].

Despite advocates of different points of view towards
these positions, and the different weight that each position
gives to ethical and business concerns, the difference lies
more in a philosophical level of abstraction rather than at
a substantial level. Further, if it is true that Open Source
is appealing for the private sector, then in the public sector
(whose primary goal is not to make profit) a definition that
includes ’Freedom’ seems to fit perfectly.

However, more important than definitions, when a pro-
visioning department is deciding the type of software that

212

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



should be used it must look at the legal requirements that
establish the terms of use of the software, i.e., the licences.

A. Licences

The first and most famous of these agreements is the GNU
General Public License, (GNU GPL or simply GPL). The
first version of the license was established in February 1989
and was quickly followed by a second version in June 1991.
The wording ”version 1 (or 2, or 3) or any later version”
is often used. The current version 3 dates back to June
2007. Between 50% and 70% of all FLOSS projects are
released compliant with one of the versions of the GPL [6].
Although the GPL covers more than a half of all major
FLOSS projects, there is a plethora of other licences that are
commonly used. The Open Source Initiative (OSI) reports 55
OSI approved licences. The Free Software Foundation (FSF)
reports 43 Free Software approved licences compatible with
the GPL and 39 licences that are deemed Free Software
compliant but not GPL compatible.

In many cases, to be GPL compatible is a matter of
version and different versions of the same licence can be
either GPL compatible or not. It is interesting to note how,
technically speaking, version 2 (v2) and version 3 (v3) of
the GPL are not compatible with each other. The issue of
compatibility is of paramount importance when a public
agency decides to develop its own software tools, either
because it must be aware of the licensing already set up
for existing code, or if they want to create new code, or
open-sourcing an existing one, they need to be aware of the
differences, opportunities and limits connected with different
licences.

B. Updating the GPL

While GPLv3 aims to maintain and further the principles
of GPLv2, technological pace and new threats to FLOSS
obliged GPLv3 drafters to insert specific provisions to
address these new issues. The drafting of v3 was a socially
distributed effort and many criticisms that emerged on early
drafts regarding new requirements have found their place
in the current version. In particular, besides a general im-
provement in terminology, especially for internationalisation
[8], and a more detailed section on definitions, v3 contains
the following new sections: Digital rights (or restrictions)
management/TiVoization (sec. 3); Licensing patents (sec.
11); Short term compliance (30 or 60 days) before automatic
termination of the licence (sec. 8); Clarification regarding
peer-to-peer distribution of object and source code (sec. 9);
And a less monolithic general framework (sec. 7).

Unfortunately, since both v2 and v3 are strong copyleft
licences (see infra), this excludes their mutual compatibility.
If a work is released under GPLv2 and somebody wants
to distribute a modified version of this work, this modified
version shall be under GPLv2. The same happens with
GPLv3. The problem arises when a modified version is

based on more than one program, where at least one is under
v2 and the other under v3; in a case like this, there is no
legal way to make them compliant.

However, it must be kept in mind that the copyleft
requirement applies only to modified versions. That is to say,
it is possible to distribute a software package (e.g., an oper-
ating system) containing programs under different licences,
even those not compatible with each other. This is what
happens with the most common GNU-Linux distributions,
where the Linux kernel distributed under GPLv2 happily
coexists with other tools or applications released under
GPLv3 (or many other non-compatible licences). Cases like
proprietary Loadable Kernel Modules (LKMs) or binary
blobs, i.e., those object files loaded into the kernel without
a publicly available source code, are considered borderline
cases, meaning that in some limited circumstances their use
is accepted because it is recognised that they do not form a
derivative work of the kernel.

GPLv3 may be combined with important licences that are
not compatible with the former version, namely the XFree86
(v. 1.1), the Apache (v. 2.0) and the GNU Affero GPL (v.3)
licences. In particular, the latter is a GPLv3 licence specially
aimed for network-interactive software, thus allowing users
of web-applications to be able to receive the source code
(technically speaking, to run a server is not an act of
distribution).

C. BSD: licence and versions

A criticism of FLOSS licence regimes is as to the naming
system. Law requires certainty in many aspects, including
terminology. If versioning in regards to the GPL licence
sounds confusing, then the Berkeley Software Distribution
(BSD) licence offers a much more challenging example.

BSD is a FLOSS licence (FSF recognises it as Free
Software) but it is a permissive licence, meaning neither
strong nor weak copyleft (see infra). The BSD licence
should, more correctly, be referred to as an entire family
of licences, rather than only one. The main reason for this
classification is the multiple modifications that the original
licence has suffered, thus when software is distributed with
a BSD licence, it is of pivotal importance to know the exact
version.

The new, or revised, or again 3-clause BSD licence is
clearly Free Software and GPL-compatible. However, this
compatibility does not exist when referring to the original,
or old, or 4-clause BSD licence. In the latter, an extra clause
imposes a requirement that makes it incompatible with GPL.
This clause, also called the ’advertising clause’, requires
authors of derivative works to include an acknowledgement
of the original source, which, could lead, and sometimes has,
to many pages of acknowledgements. Each of these sets is
basically composed of the same licence with slight variations
in the wording.

213

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In addition to these two main categories, the BSD
family has grown. Among the more widespread, there is
the NetBSD, the 2-clause BSD (similar to the MIT), the
FreeBSD, and the Clear BSD. All of these variations of BSD
are usually GPL compatible, though this does not mean that
their actual wording should be ignored. On the contrary, it
is important to know, for instance, if the licensor reserves
the right to sue you for patent infringement or not (see the
Clear BSD).

III. COPYLEFT’S REACH

In certain production circumstances the use of some
types of FLOSS licences are perceived to be problematic.
Some creators and distributors of ’packaged’ software have
detracted from GPL due to its so-called viral nature. The
word ’viral’ is unfortunate, as it projects a negative con-
notation upon a clause in a legal document. To see such
a characteristic with favour or not is a matter of personal
choice, but as a matter of legal definitions, it should be
referred to with a more neutral epithet: here we will refer
to this characteristic as ’persistence’.

A. Strong copyleft

One of the characteristics of the GPL is its strong copyleft
status. Strong copyleft licences are those licences that re-
quire any subsequent distribution of the work, or a modified
version of the work, to be under the same licence. A new
program based on a GPL licensed code must be distributed
under the GPL. This persistence has represented a major
issue in the field of FLOSS. Some supporters of FLOSS
models that are based on non-persistent, but permissive
licences (i.e. similar to the BSD), have accused the GPL
of cannibalising BSD software: while the permissiveness
of BSD-like licences permits protected code to fall under
the GPL, however, the converse is not possible due to the
copyleft requirement of the GPL. GPL supporters argue that
it is not the GPL cannibalising code, but rather the BSD that
permits every type of licence and even propertisation of BSD
software. Copyleft, proponents say, is necessary to protect
and foster the development of a ”contributory commons”.

B. Weak copyleft

There are some FLOSS licences that are copyleft but their
requirements are not as strong as the GPL. Consequently,
they are labelled ’weak copyleft’ licences. Examples of this
category are the LGPL (where ’L’ stands for ’Lesser’), the
Common Public Licence, and the Mozilla Public Licence.
These licences allow combining the software with other
types of licensed software without the necessity of distri-
bution under the same licence, but this does not mean that
they don’t need to be compatible: the CPL and the MPL,
unlike the LGPL, are not GPL-compatible [17][18]!

The difference between weak copyleft and permissive
regimes is the possibility to combine, for example, LGPL

and closed-source software without turning the output into
LGPL. However, such a feature applies only to linking
activities. If a piece of software released under the LGPL is
going to be modified in order to produce a new version or
a fork (or every other activity but linking) the new software
will have to be released under the same licence (or eventually
the standard GPL), thereby fulfilling the copyleft part of
the label. Since persistence only works for some types of
activities and not others (linking in LGPL case), such a
copyleft regime is not strong, but weak.

C. Derivative works

This brief overview of the compatibility issues regarding
weak copyleft licences necessarily brings us to the concept
of the derivative work. The aim of this paper is not to provide
an exhaustive analysis of what this concept could legally
mean, as, due to the ubiquitous nature of the Internet, such
a survey would have to be completed for all jurisdictions.
What we analyse is the meaning of derivative works in the
case of a program being linked by another one, usually a
library, and observing the unique consequences derived from
the wording of the GPL in cases of dynamic linking and
static linking, and ultimately whether this distinction does,
or should, matter.

A program statically linked with a library, creates a new,
modified work. If either piece of software is released under
the GPL, the derived work (the program statically linked
with the library) shall be under the GPL. Since part (a
’substantial part’) of the library is copied into the executable
of the program at compile time, the output is the program
plus the library (substantial part thereof), and thus a new
work based on the two precedents. If one of the two works
is released under the GPL, the new derivative work will have
to be under the same licence as per the GPL requirement.

A more complicated case is that of a program that is dy-
namically linked with a library. In such a case, no substantial
part of the library is present into the executable, so besides
being connected, the latter is not a derivative work. However,
while the FSF and GNU agree with this general framework,
they further affirm that when a dynamically linked library
and program share a more ’intimate’ existence, they should
be considered once again a derivative work. More precisely
”[i]f the program dynamically links plug-ins, and they make
function calls to each other and share data structures, we
believe they form a single program, which must be treated
as an extension of both the main program and the plug-ins,
while if the program uses fork and exec to invoke plug-ins,
then the plug-ins are separate programs, so the license for
the main program makes no requirements for them” [12].

A complex, borderline case, where in presence of a
dynamic linking structure the FSF and GNU support the
thesis of a derivative work (extension of the two codes),
due to the relation between the two pieces of software,
which is so strict (reciprocal function calls, sharing of data

214

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



structures) that, even in the absence of a substantial portion
of the source code of one of the programs into the other,
the functional result is not far from it. Nonetheless, FSF
and GNU recognise the presence of undefined areas: ”If the
program dynamically links plug-ins, but the communication
between them is limited to invoking the main function of
the plug-in with some options and waiting for it to return,
that is a borderline case” [12].

The Canadian Copyright Act, for example, gives little
guidance for such situations (as is common in almost all
jurisdictions), only generally reserving the right to ”produce
or reproduce the work or any substantial part thereof in any
material form whatever... and to authorise any such acts”
to the rights holder, and adds specific cases of adaptation,
that are inapplicable to software (sec. 3, especially d. and
e.). The Act is in much company with the United States
and many European countries, as the legislation does not
deliver a granularity that is fine enough to deal with a library
dynamically linked to a program with which it shares system
calls and data structures. This is probably the better situation
as the legislation is meant to provide general and abstract
rules, leaving it for the interpreter to adapt them to a specific
case. Here, it might be relevant to recall that in Canada,
while rewriting a computer program from one language into
another could be interpreted as a translation under certain
circumstances [13], compiling the source code into object
code is an act of reproduction [14]. The main consequence
of this distinction is that to compile a program (being either
an application or library) requires the right to reproduce [15].

Determining exactly what a derivative work is within
linked computer programs is a contentious issue. It ob-
viously depends on the legal system where one claims
protection. However, there are claims that the issue of static
and dynamic linking is a red herring and what really matters
is not the name of a specific program or call (mkisofs,
ld, exec, or the like), which undoubtedly has functional
consequences, but the specific grade of dependence or
independence between the two programs. This relationship
establishes whether the output is a derivative work or a
mere aggregation [16]. The latter approach introduces some
uncertainty because it suggests a case-by-case analysis,
rather than a ”static = derivative” equation. The door is still
open to deeper analysis on this issue, as is evidenced by the
comments of one of the fathers of the Linux kernal, Linus
Torvalds, when he said that ’there was not much need for
the LGPL’ [16].

IV. NOT JUST MONEY

Usually, obtaining FLOSS requires nothing more than
an internet connection. Inherent in both the FSF and OSI
models is the ability for anyone to access the code. There
are no royalties to be paid, no required tie-in to service
contracts, and no up-front acquisition costs. In addition to
the economic aspects, there are many advantages to adopting

FLOSS: although price is not the primary advantage, it is
often viewed as such, which results in FLOSS being incor-
rectly assimilated with other non-immediate-fee software.
Such naivety should be avoided, especially when the inter-
ested entity is a public body whose main objective is to offer
public services and not to make a profit. An important aspect
of FLOSS is the availability of the source code. This means
that the ability to modify and redistribute improvements is
a contractual obligation. This specific feature is common
to all licences fitting in the category and therefore entails
legal, economic, technical and social consequences. We will
explore nine examples of these consequences, which are
particularly pertinent to governments’ use of code.

A. Accountability and transparency

Source code availability permits users to know what the
program does at a depth that would otherwise be impos-
sible. Without the source code one can only deduce what
the program does through expensive and time consuming
reverse-engineering without ever having the opportunity to
know all of the original code. Source code availability is
critically important for software applications in the core
areas of government (such as national defence and home-
land security, financial and economic administration, health
databases, and wherever privacy and reliability are deemed
substantial), as well as the fundamental infrastructure of
public administration [7]. The possibility for the general
public to understand and to rely on the activities of public
bodies is directly connected to the use of a software model
that is transparent and accountable (e-Democracy). This is
a cornerstone in providing citizens with the guarantees of
a fair, efficient and impartial administration of the public
good. A good example of this can be seen in electronic
voting systems [9].

B. Interoperability

The availability of the source code allows for better
interoperability with other applications. If an application
is not perfectly compatible, the availability of the source
code, combined with the contractual permission to use and
adapt it, permits modifying the code with interoperability
as the likely result. If there is FLOSS and closed source
software (proprietary), greater compatibility is possible in
contrast to the case of two closed source software provided
by different suppliers [11]. This is of particular interest
for public bodies since it grants the possibility to share
resources among many different departments and agencies.
Despite being autonomously organised, public bodies do
not suffer from the strict competition that affects corporate
entities. This is what allows for strong scale economies
with significant savings for the whole public administration
and, consequently, for taxpayers. In some jurisdictions (e.g.,
Italy) this is prescribed by law [10].

215

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Avoid lock-in

Vendor lock-in is the phenomenon that causes customer
dependency on a given vendor with regard to a specific good
or service. Switching vendors has high transaction costs
connected with technological and organisational changes
and, in some cases, penalty clauses due to early cancellation
of a supply contract. These ’switching’ costs are pernicious
to the market and can represent strong barriers to entry. With
closed source software the customer is generally bound to
a specific supplier, both contractually and technologically.
As an example, in the case of freeware, a typical business
model that is sought is lock-in. In this case, once the lock-in
has occurred the software distribution model can switch to a
traditionally priced one since the transaction costs connected
with the migration to another type of software are prohibitive
[35]. In the case of FLOSS, both the licence and the
technology allow for a supplier-independent business model
[19]. For public administrations, it is mandatory to choose
suppliers that are able to grant reliable services at good
prices and provide for long-term maintainability (public
administrations usually last longer than private companies).
However, it is also critically important that if a better offer
or player enters the market the public body should not be
impeded from transitioning to the more efficient solution.
This will immediately reflect in the cost and quality of
service enjoyed by citizens.

D. Long-term maintainability and technological ecumenism

A public administration cannot discriminate the public
based on the type of software used. A private company has
the option to use closed source software compatible with
85% of the software used by citizens and incompatible with
the remaining 15%: the market will decide if this decision
pays. However, a public administration cannot exclude 15%
because they chose a different operating system. FLOSS
is the solution that grants the highest compatibility, thus
minimising the phenomenon of technological exclusion by
both FLOSS users and closed source software users. FLOSS
also means Open Formats, which are those formats that are
publicly documented so as to permit anyone to implement
programs (both FLOSS and closed source software) that can
optimally use, store, and retrieve such data. This is another
manifestation of the absence of lock-in problems [20].

Many times the reason for staying with an old supplier
(which usually means also old technology) is that they
are the only ones owning the (closed) format technology
enabling data retrieval.

E. Security and error correction

Security is not a static concept that can be reached once
for all, nor easily maintained. FLOSS is known not only for
the transparency and accountability of its code, but also for
its stability and intrinsically greater security. It is a common
principle in computer science that the security of a system

depends on the quality of its structure, not on its obscurity
(a variation of Kerckhoffs’ principle in cryptography). Only
if the source code is available is there the possibility for
quick bug-correction and exploit-detection. In the case of
FLOSS, the pace at which the stability level of the code
grows is much faster than in other types of software, where
it is necessary to wait for the supplier security updates
[21]. A sound and accountable technological infrastructure
is a key point for all e-Government and Government-to-
citizens (G2C) initiatives, where the reliance of citizens is
fundamental for the success of the electronic offered service.

F. Democracy and pluralism

FLOSS in the public sector is more generally a matter
of democracy [22]. In case studies such as those involving
electronic voting machines, or ”technology enhanced trials”,
the people need to rely and trust not only in their repre-
sentatives and the courts, but also the process of electing
the candidates or of condemning the guilty [22]. FLOSS
seems to epitomise those basic principles commonly found
in many constitutional and fundamental charters, of fair
administration of the justice, of pluralism, of freedom of
expression, and of access to information and knowledge.
A long list of public administrations around the world
has already started, or is seriously considering migrating
from proprietary to open code. Among the most successful
initiatives is the German city of Munich with the LiMux
project. They report to already have 1,200 workstations
migrated to Gnu-Linux, 12,000 using Open Office, and
100% of the city administrations using Firefox and Thun-
derbird [33]. Another interesting case study can be seen in
Spain, where the different comunidades autonomas (Spanish
provinces) have different levels of FLOSS implementation,
all coordinated by a specific constituted public agency:
Centro Nacional de Referncia de Aplicacion de las TIC
basadas en fuentes abiertas (www.cenatic.es). The ”dollar
price” connected with the absence of royalties is only
one potential saving: ”Contrary to what is often assumed,
cutting costs was not the main reason for the migration. The
motivation is independence [...] now we’re able to decide on
our own how we want to spend our IT budget in the long
run [...]” [23]. This approach is also consistent with the
Open-Government instances which hold that the business
of government and state administration should be opened
at all levels to effective public scrutiny and oversight. To
translate the Open Government principles in programming
terms, involves the use of FLOSS.

G. Portability to other languages

The possibility, both technical and legal/contractual, to
translate software into any language is of paramount interest
if due importance is given to linguistic and cultural plu-
ralism. Although this sounds more like a European, Asian
or African based argument, also in America (both North

216

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and South) language plays a key role in the protection
of indigenous and traditional knowledge and in effectively
reducing the phenomenon of ’digital divide’. This feature of
FLOSS may be easily confirmed by checking the language
packs or language ports of some of the most widespread
projects and comparing them with similar non-FLOSS prod-
ucts. For example, Firefox v3.1 has 62 language ports and
78 different language packs, among which many minority
languages are present. On the other hand, Internet Explorer
8 has 3 language selection possibilities. Opera has 41 sup-
ported languages, Chrome 44, and Safari 18. The difference
is even greater with the office suite: OpenOffice.org has
123 supported languages, while Microsoft Office has 35.
Finally Outlook 2007 is available in 14 languages, while
Thunderbird 2, in 39.

The reason for this difference in language policy clearly
resides not only in the sensibility of the project managers
but rather in the declared legal, contractual and technological
features of FLOSS.

H. Fostering competition

Another major advantage of FLOSS is that it creates and
favours a more competitive ICT environment usually popu-
lated by many local Small and Medium Enterprises. Licence
fees, from a microeconomic point of view, represent huge
barriers to entry the markets, thus favouring monopolistic
and oligopolistic situations. As it has been reported [23][24],
a public administration investing in FLOSS solutions is
usually interested in hiring or contracting with local ICT
companies for services like updating, maintenance, training,
and customisation. In this way the immediate benefit for
local economies is apparent.

I. Total Cost of Ownership

A major saving in using FLOSS is royalties. Quite simply,
there are none. During the 2005-2006 fiscal year the Cana-
dian government spent 425,602,327CAD on software licence
fees [25]. Clearly, this represents a huge amount of money.
Unfortunately, using FLOSS does not mean that there are no
costs whatsoever. For example, due to the so-called alumni
effect, many people have learned how to use computers
through non-FLOSS applications. This means that even
though FLOSS solutions nowadays are user-friendly enough,
there are still some costs connected with migration, such
that in the short term, it is not always true that there are
significant monetary savings. Nonetheless, there are savings
that become substantial in the medium/long term and that
will endure and increase with time. Some of these savings
have already been identified (no lock-in, enhanced security,
etc), while others are more concealed (such as cross-platform
availability, maintenance, updating and long-term upgrading,
compatibility with ’older’ hardware, etc) [26].

Taking into account all of these variables provides a
better portrait of the actual benefit in terms of economic

and financial costs. As demonstrated in many studies, the
huge Total Cost of Ownership savings resulting from the
use of FLOSS is undisputed. The public sector reports
from Sweden show yearly savings of billions of dollars
[27]. Another benefit is that the agency taking the FLOSS
route will need to spend money on the development of
internal staff skills, which means that the skill base for the
organisation will be improved, giving better overall support
for the department and creating a greater pool of skilled
persons in Canada.

V. THE SURVEY

During this research, we conducted a survey on the use
of FLOSS by the different Canadian ministries and other
Canadian public departments and agencies. We contacted
a total of 53 Information Technology (IT) departments.
We decided to only target the category of IT departments
in the agencies, since this allowed us to access the real
technological situation of the department. In this survey we
are not interested in what people do, whether given Canadian
civil servants use or not FLOSS. Our survey was focused,
and our data demonstrate, the use of FLOSS in Canadian
governmental and other public agencies departments. Of the
53 IT departments contacted, 20 agreed to participate in our
survey, either by live interview, phone interview, or through
email. We preferred the live interview because it allowed
keeping track of more variables than what appeared on the
answer sheet. Interviews also allowed the operator to record
the immediate reactions to the questions, which was not
possible when using an emailed questionnaire. The partici-
pation rate was 38%, which although not very high, places
itself at the top average of similar studies. For example,
samples of reference participation data are 23.8% in the UK
and 18% in Germany, without subdividing by the sector. A
slightly higher participation rate is observed if considering
only the Public Sector (37% and 29%, respectively). It must
be noted that a third surveyed country, Sweden, has much
higher participation ranges in every sector at approximately
60% [28]. Another seminal study in this field, Flosspols,
reports an average participation of 22.8%, even though the
variations from country to country are very high [29].

We had hoped that the participation rate to be higher than
what was achieved because our respondents were public
administrations, public departments, and ministries of the
Canadian government and, as such, we stressed our identity
(a renown Canadian University) and the fact that the study
was funded and promoted by an important Canadian public
agency (Social Sciences and Humanities Research Council,
SSHRC). Unfortunately, this proved to be an incorrect
assumption, as our viewpoint was not widely shared. The
questionnaire was formed by 11 multiple-choice questions.
The 12th question was left open so that the respondents

217

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



could add whatever they deemed important that was not
covered in our interview.

Figure 1: Do you use any Free-Libre Open Source Software
in your department?

The results show that FLOSS in the technological infras-
tructure of the Canadian government is used only partially.
In fact, its use is limited and not exclusive to what is
referred to as ’Desktop purpose machines’, but rather is
utilised only in a very limited amount of cases on servers.
Regarding Desktops, the fact that it is used only partially
may be easily explained by a simple consideration. While
it is uncommon to have non-FLOSS applications running
on FLOSS Operating Systems (OS), the contrary is quite
common. Such an inference is confirmed by the results of
our next question, regarding the type of FLOSS (identified
by name) used by the respondents.

Figure 2: What type of FLOSS is it in use in your depart-
ment?

Among the programs under consideration, Mozilla ap-
peared most frequently (our questionnaire includes all the
different varieties of projects that such a brand encompasses:
Firefox, Thunderbird, SeaMonkey, Camino, Fennec, etc.)
with 17% of the respondents reporting its use. Others widely
used FLOSS programs included administration and database
management or programming tools such as PHP (16%),
Pearl (13%) and MySQL (14%) and interoperability tools
such as Samba (8%). OpenOffice.org was used by only
5% of respondents, which might be explained by compat-

ibility issues and alumni effect (see above). Among the
less used programs were graphical desktop environments
such as Gnome (6%) and KDE (5%). Graphical desktop
environments are those programs used to provide users
with a Graphical User Interface (GUI) and are much more
platform dependent than other reported applications. In fact,
while it is possible to run either Gnome or KDE on some
other Unix-like distributions, it is not possible to run them on
other platforms such as Microsoft Windows (which has its
own GUI). This portrait is consistent with the data gathered,
which suggests a strong usage of Microsoft Windows as
the main Desktop operating system (see Fig. 4), on top of
which, with varying degrees, FLOSS tools are installed. The
appearance of Mozilla as the most used software is shown
in the figure below.

The reason why there is no score amid the exclusive use
of FLOSS on desktops, while there was a total of 5% and
6% of respondents declaring that they have FLOSS GUI
distributions on their machines (as mentioned, are usually
run on FLOSS OS, though they might be run also on some
other Unix-like non-FLOSS OS) might be explained by the
so called Dual Boot configuration. In development environ-
ments and amongst experts, quite often a single desktop
machine is configured in a way that, when the power button
is pressed, a program called Boot Loader opens and asks
what operating system (and/or kernel) should be loaded. In
this case, many operating systems can reside simultaneously
on the same machine without the possibility of running
contemporaneously (virtualisation is another issue).

Figure 3: What kind of programs or applications are in use
in your department?

That being said, such a configuration is relegated by a
large extent to experimental uses (see Fig. 2), demonstrating
that one of the two OS is not meant for productivity. In the
present case, this most likely means that FLOSS might be
installed but not used.

It is more difficult to explain the reason why only a very
limited number of respondents (10%) declared to use Apache
on their servers. Apache is a web server and is very widely
distributed (official statistics of June 2010 report a total

218

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



usage of more than 54% of the World Wide Web [32]). The
reason for this might be found on a taxonomic level. In fact,
Apache is not usually associated with FLOSS, especially
with Gnu-Linux (it is released under the Apache licence, a
FLOSS licence, but not GPL), and therefore a perception
might exist where this type of tool does not pertain to the
FLOSS family. Our questionnaire was purposely vague in
asking what kind of FLOSS tools are in use, and may have
resulted in the respondents discarded Apache if they do
not believe it to be FLOSS. If this is the explanation of
why our data do not mirror the general market situation,
it is noteworthy that specifically trained IT departments are
not aware of this misconception which is taxonomic in its
origins, but very pragmatic in its consequences. Of course,
it may simply be that the representative of the department
did not know.

Our data also suggests that the use of OS in our analysis
reflects the situation in the general market, where the dom-
inance of Microsoft Windows (client side) is clear (world
market data report 85% to 90% of MS Windows usage
on clients [30][31]). In our enquiry, 48% of respondents
declared that they use Microsoft products in one of its
variants (98, XP, NT, Vista, 7, etc,). Gnu-Linux (in any of
its variants: Debian, Red Hat/Fedora, Ubuntu, Slackware,
Mandrivia, SuSe, etc) followed at 21%, then MacOS/X at
12%. In the case of Macintosh, the data closely mirrors the
general data reported by the referenced statistics, however,
the numbers regarding Windows and Linux do not accurately
reflect the same data. In our data Windows achieves a
48% (contrasting with 85% to 90%) and Linux, a 21%
(contrasting with 3%). Our data might suggest that there
is wider use of the Gnu-Linux OS in the Canadian public
sector; however, we must temper such an inference as our
survey asked what types of OS are run on the (theoretically
thousands of) clients managed by the respondents.

Figure 4: What kind of operating systems are installed in
the department?

It is well known that FLOSS solutions, are not commonly
used, as main operating systems on desktops. Nevertheless,
an overwhelming majority of those interviewed agreed that
a higher deployment of FLOSS would be beneficial to their
department (65%). Less than one fifth of the respondents did
not agree with this sentiment, it must be noted that a higher
deployment does not equate to integral substitution. Out of
the 65% of respondents in favour of a wider usage, only 11%
would welcome a total substitution of their current software
with FLOSS. Conversely, 78% would prefer a coexistence
of proprietary and FLOSS.

It is interesting to note that that access to the source
code is not the most important parameter to users that
answered that they would welcome the use of FLOSS in
their desktop systems (only 27% believe this). A far more
important consideration was the price: 75% of respondents
agreed that pure access to the source code (which includes
the possibility to modify and redistribute it), not combined
with the elimination of costs associated with licensing would
render FLOSS unattractive to their departments.

Figure 5: Is access to the source code an important factor
for the department?

Regarding the more technical aspects, it was observed that
a vast majority (85%) of interviewees acknowledged that
FLOSS has higher customisation capabilities. Again, cus-
tomisation is a characteristic that streams directly from the
source code availability; however, the respondents (which
were carefully identified in the IT departments) did not see
such a connection. On the contrary, a majority of respondents
believed that the main advantage of FLOSS is the fact
that there are no licence fees. Another counter-intuitive
result is connected with software reliability: 64% of the
respondents believed that FLOSS is less reliable than non-
FLOSS software. As discussed above, reliability may be
considered an open issue, with strong advocates on both
sides, supported by studies and data. Interestingly, among
the surveyed category, there is a significant concentration
of supporters of one specific view of the matter. More in

219

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



keeping with the general perception were the respondents’
views in terms of the ease for normal (i.e., non-technical)
users in using FLOSS: 74% agreed that FLOSS is more
difficult or complicated at first use. However, 80% did not
see migration and training as an impediment towards a wider
usage of FLOSS. As such if an adequate migration and
training process is scheduled, the initial unease connected
with FLOSS should be overcome.

The data reported so far give us a contradictory portrait of
the perception of FLOSS in the Canadian public sector. We
have seen how some of the positions held by the majority
of the respondents are significantly diverging from general
market trends. For example, in terms of reliability, FLOSS
is believed to be much more reliable and accountable by
large numbers. The same divergence is observable in more
technical aspects, such as the availability of the source code.
In the technical arena, this aspect (not only in FLOSS cases
– think, for example, of beta-tester, premium user/developer
of specific applications, specific important institutional cus-
tomers such as homeland security departments, etc.) is
considered essential for a great majority of the benefits we
have identified above in this study. In our survey, however,
respondents did not put much importance on the availability
of the source code. Conversely, respondents believed the
monetary aspect to be much more important. This is notable,
considering that the respondents were IT departments of
public administrations whose main objective is not to make
profit but to offer a public service.

This does not mean that a public administration should not
conform its activity simply to principles such as economi-
sation, efficiency and rational usage of resources. On the
contrary, it is exactly for these reasons that they should
implement solutions that grant longer-term savings both
monetary and in the possibility to re-utilise and scale-
economise the (software) resources they use/produce. A
fair and balanced administration of the public good is a
science based on principles such as rationality, efficiency,
accountability, and transparency. The tools analysed here,
for the reasons explained in the relevant sections, are the
most suited to meet both economic and social requirements
of the management of public bodies.

A possible explanation for the contradictory feedbacks
in our survey – impressions supported by the oral com-
ments and further notes expressed during the interviews
– is that even in the IT manager area the situation is
strongly polarised or even ideological. On one side there
are the majority who are supporters of one model, i.e.,
closed source software, who are prejudicially against any
alternative model seen as a threat to ”their model and to
their jobs.” Affirmations such as ”we do not use any Open
Source Software, we pay our licences!” or ”we have internal
guidelines not to use any Open Source software, so I had to
remove also some amusement machines I had in my office”
help to clarify why we have used such evocative wording.

In the middle there is a small category (approximately as
large as the category supporting FLOSS) of IT departments
who are undecided in which model is better; they perceive
the pros and cons of both models, and who – most of
the time – simply do their jobs ”with the tools at their
disposal”. One ’Chief Technology Officer’ said that the GoC
is interested in FLOSS and encourages its use even though
there is some uncertainty regarding the Intellectual Property
issues and connected responsibilities.

There are also overt supporters of the FLOSS model;
a minority who are strongly motivated and use FLOSS in
their departments. These people are either working on the
technical side (server, database management, programming,
etc.) or in productivity workstations. These subjects are more
sensitive to issues such as the availability of the source
code, though do not delve deeply into the reasons why
a public administration, more than a private corporation,
should implement FLOSS solutions.

However, IT departments should be concerned mainly
with technical decisions, while the more substantive ones
should come from representatives of the decision-making
bodies whose subjects are specifically appointed and trained
to evaluate a great many differences in variables in choosing
a fundamental instrument like the technological infrastruc-
ture of a public body. Such a simplified tri-partition of
the respondents is particularly important because they (the
respondent IT departments) have identified themselves as the
decision-making subjects when purchasing new software in
a good deal of cases (43%), while the financial department
decides in only 17% of the cases.

Figure 6: Whose opinion is decisive at the moment of
purchasing new software?

VI. RECOMMENDATIONS AND CONCLUSIONS

The GoC is not taking advantage of the many different
features that an innovative model of software production and
distribution, such as FLOSS, offers.

The landscape that emerges from the data reported here is
not encouraging. FLOSS has proven to possess a long list of
advantages in comparison to other software development and

220

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



distribution models, especially in the public sector. The TCO
is not the major concern, but together with the other FLOSS
advantages exposed in this study, is an important one. Also
in the TCO, FLOSS proved to be a strongly competitive
and innovative model. However, easily discernible from our
data is that the Canadian public sector completely lacks any
coordination or guidelines in deciding which type of soft-
ware tools to adopt in their departments. Even if guidelines
existed, they are largely unattended, which paradoxically
means that the Canadian governmental bodies distend their
own rules.

Information Technology and, less frequently, financial
departments decide which model to adopt, however, nei-
ther department are equipped or trained in making these
decisions and therefore cannot take on the responsibility
alone. As mentioned above, those departments are mainly
concerned by financial or technical (customisation, stability,
interoperability) issues – and it could not be otherwise. The
problem is not so much what the Information Technology
and financial departments believe but that in the majority of
cases, they have the last word in deciding what to buy. In-
formation Technology departments carry on a fundamentally
important task and they have great experience. However,
Information Technology departments cannot be left alone
when making decisions regarding software use. Software
is not a mere product but is a choice involving specific
policy and political decisions that represent a specific set of
values, public morality and ethics. Such political decisions
need to be made by those whom have been elected who
are ultimately responsible for the financial repercussions of
software use in the public sector.

In short, there are many advantages that have strong eco-
nomic value, in both the short and long term, that can only
be eventualised by adopting FLOSS, with the technical and
legal availability of the source code, and the possibility of its
modification and redistribution. In addition to the monetary
savings connected with the absence of licence fees, there
are huge advantages that relate to the independence from
software providers, the creation of a competitive market
usually on a provincial, or regional level, transparency and
accountability, the ease of customisation, digital inclusion
and pluralism, and the further savings connected with scale
economies amongst different public administrations [34].
The GoC should take full advantage of FLOSS in its
technological infrastructure, because, as demonstrated, in
many situations and at manly levels it would be beneficial
to Canada. Currently it is not making full consideration of
FLOSS.

ACKNOWLEDGMENT

The authors would like to thank SSHRC, and the Law
Foundation of Ontario for their support; also Constance
Keunhee Yoo and David William George Morrison for their
research assistance.

REFERENCES

[*] The current article represents an extended version of the
follwoing paper: M. Perry and T. Margoni, ’FLOSS for
the Canadian Public Sector: Open Democracy’, in Digital
Society, 2010; ICDS ’10. Fourth International Conference on,
pp.294-300, 10-16 Feb. 2010

[1] R. Stallman, ’The Free Software Definition’, available at
http://www.gnu.org/philosophy/free-sw.html; All the websites
cited in this work have been last visited during January 2011.

[2] See ’Canadian Public Sector Contracts, Bids, and Tenders’
web-site at http://www.merx.com.

[3] See for example R. Goldman and R. Gabriel, ’Innovation
Happens Elsewhere - Open Source as Business Strategy’,
Morgan Kaufman - Elsevier, San Francisco, 2005.

[4] R. Stallman, ’Why ”Open Source” misses the point of Free
Software’, available at http://www.gnu.org/philosophy/open-
source-misses-the-point.html.

[5] M. Tiemann, ’History of the OSI’, available at
http://www.opensource.org/history.

[6] See ’Freshmeat GPL tagged projects’ available at
http://freshmeat.net/tags/gnu-general-public-license-gpl.

[7] B. Schneier, Open Source and Security, in Crypto-Gram
Newsletter, September 15, 1999.

[8] For a deep analysis of legal issues surrounding FLOSS see L.
Guibault and O. van Daalen, ’Unravelling the Myth around
Open Source Licences’, ITeR, The Hague, 2006.

[9] H. Kaminski; L. Kari; and M. Perry, ’Who counts your
votes? [VEV electronic voting system],’ e-Technology, e-
Commerce and e-Service, 2005. EEE ’05, Proceedings. The
2005 IEEE International Conference pp. 598-603, 29 March-1
April 2005.

[10] See arts. 68 and 69 Codice Amministrazione Digitale, Leg-
islative Decree 7 March 2006, n. 82, (as amended).

[11] See for example the ’Microsoft Open Source Interoperability
Initiative’ at http://www.microsoft.com/interop/.

[12] See the GPL/Plug-ins FAQ at
http://www.gnu.org/licenses/gpl-faq.htmlGPLAndPlugins.

[13] See Prism Hospital Software Inc. v. Hospital Medical Records
Institute [1994], 97 B.C.L.R. (2d) 201, [1994] 10 W.W.R. 305,
57 C.P.R. (3d) 129, 18 B.L.R. (2d) 1.

[14] See Apple Computer Inc. v. Mackintosh Computers Ltd.,
[1990] 2 S.C.R. 209, 110 N.R. 66, 30 C.P.R. (3d) 257, 71
D.L.R. (4th) 95, 36 F.T.R. 159.

[15] D. Vaver, ’Translation and Copyright: a Canadian focus’; in
E.I.P.R., 1994, 16(4), 159-166, at 160.

[16] See the ’GPL only modules’ thread at lkml.org, availabe at
http://lkml.org/lkml/2006/12/17/79.

221

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[17] See the Mozilla Public Licence FAQ at
http://www.mozilla.org/MPL/mpl-faq.html.

[18] See the Common (now Eclipse) Public Licence available at
http://www.eclipse.org/legal/cpl-v10.html.

[19] B. Scott, ’Lock in Software’, Open Source Law Publications,
2003.

[20] B. Perens, ’Open Standard, Principles and Practice’, avali-
able at http://perens.com/OpenStandards/Definition.html.

[21] D.A. Wheeler, ’Secure programming for Linux and Unix
HowTo’, 2003, available under the GFDL license at
http://www.dwheeler.com/secure-programs.

[22] M. Perry and B. Fitzgerald, ’FLOSS as Democratic Princi-
ple’, in International Journal of Technology, Knowledge, and
Society, vol. II, 3, 2006, pp. 156 – 164.

[23] K. Gerloff, ’Declaration of Independence: the LiMux project
in Munich’, Open Source Observatory and Repository
(OSOR), European Commission’s IDABC project.

[24] Department of Finance and Administration ’A guide to Open
Source Software for Australian government agencies’, Aus-
tralian Government Information Management Office, 2005.

[25] M. Perry and T. Margoni, ’Floss for the Canadian public
sector: Open Democracy’, in Digital Society 2010, 2010, pp.
294

[26] K. Wong, ’Free/Open Source Software – Government Policy’,
UNDP – Asia-Pacific Development Information Program,
Elsevier, New Dehli, 2004.

[27] The Swedish Agency for Public Management ’Free and Open
Source Software – a feasibility study’, Stockholm, 2003.

[28] Source: Free/Libre and Open Source Software: Survey
and Study, International Institute of Infonomics, University
of Maastricht, The Netherlands, June 2002, available at
http://www.flossproject.org.

[29] See ’FlossPols Government Survey Report’, Deliverable D3,
Maastricht, August 25, 2005 - MERIT, University of Maas-
tricht, available at http://flosspols.org.

[30] See ’Operating System Market Share’ at
http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=8.

[31] See ’Global Web Stats’ at
http://www.w3counter.com/globalstats.php.

[32] See ’January 2011 Web Server Survey’ available at
http://news.netcraft.com/archives/category/web-server-survey.

[33] See LiMux web-page project at
http://www.muenchen.de/Rathaus/dir/limux/english/147197/
index.html.

[34] Cenatic, ’Software de fuentes abiertas para el desarrollo de
la administracion Publica Espanola - Una vision global’, Ob-
servatorio Nacional de Software de fuentes abiertas, Badajoz,
2008.

[35] B. Boyle, ’Open Source Software’, Minister of State Service
of New Zealand, New Zealand, 2003.

[36] State Service Commission, ’Guide to legal issues in using
Open Source Software v2’, New Zealand Government, 2006.

[37] Y. Benkler, ’The wealth of networks – how social productions
transforms markets and freedom’, Yale University Press,
2006.

[38] J. Dickson, ’Use of open source: licenses and issues’, in e-
Commerce Law and Policy, March 2009, pp. 8.

[39] B. Fitzgerald and N. Suzor, ’Legal issues for the use of
free and open source software in government’, in Melbourne
University Law Review, 29, 2005, pp. 412.

222

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


