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Abstract—In the beginning, Internet and TCP/IP protocols
were based on the idea of connecting computers, so the address-
able entities were networking adapters. Due to the evolution of
networking and Internet services, physical computers no longer
have a central role. Addressing networking adapters as if they
were the true ends of communication has become obsolete. Within
Internet of Threads, processes can be autonomous nodes of the
Internet, i.e., can have their own IP addresses, routing and QoS
policies, etc. In other words, the Internet of Threads definition
enables networked software appliances to be implemented. These
appliances are processes able to autonomously interoperate on the
network, i.e., the software counterpart of the Internet of Things’
objects. This paper will examine some usage cases of Internet of
Threads, discussing the specific improvements provided by the
new networking support. The implementation of the Internet of
Threads used in the experiments is based on Virtual Distributed
Ethernet (VDE), Contiki and View-OS. All the software presented
in this paper has been released under free software licenses and
is available for independent testing and evaluation.
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I. INTRODUCTION

The design of the Internet is dated back to the beginning
of the 1960s. The main goal and role of the Internet was to
interconnect computers. It was natural, though, to consider the
network controller of computers as the addressable entities.
The endpoints of any communication, those having an Internet
Protocol (IP) address were the hardware controllers [2]. This
ancient definition is still used in the modern Internet. Processes
and threads are identified by their ports, a sub-structure of the
addressing scheme, as they are considered dependent on the
hardware (or virtual) computer they are running on.

In the common scenario when a client application wants
to connect to a remote internet service, it first gets the IP
address of the server providing the service, and then the client
application opens a connection to a specific well-known (or
pre-defined) port at that address.

Thus, the DNS maps a logical name (e.g.,
www.whitehouse.gov or ftp.ai.mit.edu) to the IP address
of a network controller of a computer that provides the
service. This emphasis on the hardware infrastructure
providing the service is obsolete: the main focus of the
Internet nowadays is on services and applications. The whole
addressing scheme of the Internet should change to address
this change of perspective.

By Internet of Threads (IoTh) we mean the ability of
processes to be addressable as nodes of the Internet, i.e., in
IoTh processes play the same role as computers, being IP
endpoints. They can have their own IP addresses, routing and
QoS policies, etc.

On IPv4, IoTh usage can be limited by the small number
of available IP addresses overall, but IoTh can reveal all its
potential in IPv6, whose 128-bit long addresses are enough to
give each process running on a computer its own address.

This change of perspective reflects the current common
perception of the Internet itself. Originally, Internet was de-
signed to connect remote computers using services like remote
shells or file transfers. Today users are mainly interested in
specific networking services, no matter which computer is
providing them. So, in the early days of the Internet, assigning
IP addresses to the networking controllers of computers was
the norm, while today the addressable entity of the Internet
should be the process which provides the requested service.

For a better explanation, let us compare the Internet to a
telephone system. The original design of the Internet in this
metaphor corresponds to a fixed line service. When portable
phones were not available, the only way to reach a friend
was to guess where he/she could be and try to call the
nearest line. Telephone numbers were assigned to places,
not to people. Today, using portable phones, it is simpler to
contact somebody, as the phone number has been assigned to
a portable device, which generally corresponds to a specific
person.

In the architecture of modern Internet services, there are
already exceptions to the rule of assigning IP addresses to
physical network controllers.

• Virtual Machines (VM) have virtual network controllers,
and each virtual controller has its own IP address (or
addresses). This extension is, from some perspectives,
similar to IoTh. In fact, it is possible to run a specific VM
for each networking service. This approach, although pos-
sible, would clearly be ineffective. It is highly resource
demanding in terms of: main memory to emulate the
RAM of the VM; disk space for the virtual secondary
memory of the VM; time since the VM has to run
an entire Operating System Kernel providing processor
scheduling, memory managing, etc.

• Each interface can be assigned several IP service ori-
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Fig. 1. Different perspectives on the networking support: the standard OS support is on the left side, IoTh is on the right side

ented addresses. Thus, it is possible to define different
addresses, each one corresponding to a specific service.
For example, if a DNS maps www.mynet.org to 1.2.3.4,
and ftp.mynet.org to 1.2.3.5, it is possible to assign
both addresses to the same controller. Addresses can be
assigned to a specific process using the bind system call.
This approach is commonly used in High Availability
(HA) servers, where there is the need to migrate services
from one host to another in case of faulty hardware or
software [3]. This approach:

– requires a complex daemon configuration (each
socket must be bound to the right address) and
network filtering (e.g., using iptables [4]) to prevent
services from being reached using the wrong logical
address (e.g., http://ftp.mynet.org);

– provides the way to migrate service daemons in a
transparent manner for clients, but it does require a
non trivial procedure to delete addresses and network
filtering rules on one server and then define the same
addresses and filtering rules on the other, prior to
starting the new daemon process.

• Linux Containers (LXC), as well as Solaris Zones [5],
[6], allow system administrators to create different op-
erating environments for processes running on the same
operating system kernel. Among the other configurable
entities for containers, it is possible to define a specific
network support, and to create virtual interfaces of each
container (flag CLONE NEWNET of clone(2)). The def-
inition and configuration of network containers, or zones,
are privileged operations for system administrators only.
This feature appears very close to the intents of IoTh.
However, in LXC the creation of a networking virtual
interface, thus the setting of a new IP address, is a
system administration operation. In fact, it requires the
process to own the CAP NET ADMIN capability, the
same required to modify the configuration of the physical
controller of the hosting computer. In IoTh, the creation
of a networking environment for a process is as simple
as a library function call. In this way, a process defines
its IP address(es) as an ordinary user operation. IoTh
provides Network Access Control to prevent abuses of

networking services at the virtual Data-Link layer (in
general a Virtual Ethernet). A process can define its
interfaces and its IP addresses as the owner of a Personal
Computer (PC) can assign any IP address to the interfaces
of their PC connected to a Local Area Network (LAN). If
the IP address is wrong, or inconsistent with the addresses
running on the LAN, that PC cannot communicate. And
even if the address is correct, it is possible to set up
firewalls to define what that PC can do and what cannot
be done. In IoTh each process can play the role of the
PC in the example. In the same way, virtual firewalls can
be set up to define which are the permitted networking
services.

The paper will develop as follows: Section II introduces the
design and implementation of Ioth, followed by a discussion in
Section III. Related work is described in Section IV. Section
V is about usage cases. Section VI introduces an innovative
way to assign IP addresses and Section VII is about practical
examples. Section VIII discusses the security issues related to
IoTh and Section IX provides some performance figures of a
proof-of-concept implementation. The paper ends with some
final considerations about future work.

II. DESIGN AND IMPLEMENTATION OF IOTH

The role and the operating system support of the Data-
Link networking layer must be redesigned for IoTh. Processes
cannot be plugged to physical networking hubs or switches
as they do not have hardware controllers (in the following
the term switch will be used to reference either a switch or
a hub, as the difference is not relevant to the discussion).
On the other hand, it is possible to provide processes with
virtual networking controllers and to connect these controllers
to virtual switches. Figure 1 depicts the different perspectives
on the networking support. The focus of Fig. 1 is to show
how IoTh changes the Operating System (OS) support for
networking: what is provided by the hardware vs. what is
implemented in software, what is shared throughout the system
vs what is process specific and what is implemented as kernel
code vs. what runs in user-mode.

The typical networking support is represented on the left
side of Fig. 1. Each process uses a networking Application
Program Interface (API), usually the Berkeley sockets API [7],
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Fig. 2. A more complex scenario of IoTh usage

to access the services provided by a single shared stack, or by
one of the available stacks for zones or LXC (see Section I).
The TCP-IP stack is implemented in the kernel and directly
communicates with the data-link layer to exchange packets
using the physical LAN controllers.

In IoTh, represented on the right side of the figure, un-
privileged processes can send data-link packets using virtual
switches, able to dispatch data-link packets from process to
process and between processes and virtual interfaces (e.g.,
tuntap interfaces) of the hosting OS. Virtual switches can
also be interfaced to physical networking controllers, but this
latter operation is privileged and requires specific capabilities
(CAP NET ADMIN).

So, the hardware-software boundary has been moved down-
wards in the IoTh design. In fact, the data-link networking
(commonly the Ethernet) includes software components in
IoTh, i.e., virtual switches, for unprivileged user processes. In
IoTh the virtual switches are shared components between user
processes, while the TCP-IP stacks (or, in general, the upper
part of the networking stacks, from the networking layer up)
are process specific. It is also possible for a group of processes
to share one TCP-IP stack, but in the IoTh design this is just
an implementation choice and no longer an OS design issue
or system administration choice.

The kernel/user-mode code boundary is flexible in IoTh:
both the virtual ethernet switches and the TCP-IP stacks can
be implemented in the kernel or not. A virtual switch can be a
standard user-mode process or a kernel service, while a TCP-
IP stack is a library that can be implemented in the kernel to
increase its performance.

Figure 2 shows a more complex scenario that is more
consistent with a real usage case of IoTh. In fact, the traditional
support for networking and the IoTh approach co-exist in
a system. Following the telephony systems example of the
introduction (see Section I), fixed line services and portable
phones interoperate.

The OS running on a computer still needs a computer
specific TCP-IP stack and IP addresses to be used when
a system administrator needs to configure some systemwide
service. In the telephone service metaphor we use fixed lines
when we want to be sure to call a specific place. Internet
services (like ftp, web, MTA, etc.) can be reached using their

own IP addresses. These services are the portable phones of
the metaphor.

IoTh can be used for networking clients, too. Several virtual
switches running on the same hosting system can be connected
to different networks and can provide different services, e.g.,
can have different bandwidths or routing. Additionally, several
virtual switches can be active on the laptop of a professor
attending a conference, one connected by an encrypted Virtual
Private Network (VPN) to his/her University’s remote pro-
tected intranet and another directly connected to the physical,
maybe wi-fi, LAN of the conference center.

Users of IoTh enabled OS, like the professor in the example,
will be able to choose between the available networking
services in their applications (browser, voip clients, etc.) just
as they currently choose the printer.

III. DISCUSSION

All the concepts currently used in Local Area Neworking
can be applied to IoTh networking.

Virtual switches define virtual Ethernets. Virtual Ethernets
can be bridged with Physical Ethernets, so that workstations,
personal computers or processes running as IoTh nodes are
indistinguishable as endnodes of Internet communication. Vir-
tual Ethernets can be interconnected by Virtual Routers. It is
possible to use DHCP [8] to assign IP addresses to processes,
to use IPv6 stateless autoconfiguration, [9], to route packets
using NAT [10], to implement packet filtering gateways,
etc. This is a non-exaustive list of protocols and services
running on a real Ethernet that work on a virtual Ethernet,
too. It is also possible to create complex virtual networking
infrastructures composed by several virtual Ethernets such as
virtual application level firewalls with De Militarized Zone
(DMZ) networks and virtual bastion hosts.

IoTh can support the idea of network structure consolidation
in the same way that the Virtual Machines provided the idea
of Server consolidation. Complex networking topologies can
be virtualized, thus reducing the costs and failure rates of a
hardware infrastructure. Today it is common for large compa-
nies to substitute their servers with virtual machines, creating,
in this way, their internal cloud, or moving their servers to an
external system-as-a-service (SaaS) cloud. This choice permits
a more flexible and economically effective management of the
servers and, at the same time, all the investments in terms of
software can be preserved, as it is possible to move each server
to a virtual counterpart, while mantaining the same software
architecture: operating system type and version, libraries, etc.
IoTh adds one more dimension to this consolidation process:
it is possible by IoTh to virtualize not only each server as
such, but also the pre-existing networking infrastructure.

Network consolidation is just an example of IoTh as a tool
for compatibility with the past. In this example each process
joining the virtual networks is just a virtual machine or a
virtual router or firewall. The granularity of an Internet node is
flexible in IoTh. A virtual machine can be an Internet node, but
each browser, bit-torrent tracker, web server or mail transport
agent (MTA) can be an Internet node, too.
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Through IoTh, there is no difference between local and
remote Inter Process Communication (IPC) services. A process
can have its own IP address(es) and can interoperate with
other processes using standard protocols and standard ports.
Several processes running on the same host can use the
same port, since each one uses different IP addresses. The
same IPC protocols can be used regardless of the host on
which the process is running: nothing changes, whether the
communicating processes are running on the same host or on
different, perhaps remote, computers. This allows a simpler
migration of services from one machine to another.

Each process in IoTh can have its user interface imple-
mented as an Internet service. This means, for example, that it
is possible to create programs which register their IP addresses
in a dynamic DNS, and where their web user interface is
accessible through a standard browser.

IoTh is, from this perspective, the software counterpart
of Internet of Things (IoT [11]). In IoT hardware gadgets
are directly connected to the network. IoT objects interact
between themselves and with users through standard Internet
protocols. IoTh applies the same concept to processes, i.e.,
to software objects as if they were virtual IoT gadgets. These
IoTh-enabled processes using internet protocols to interoperate
can be called networked virtual appliances. If they were
implemented on specific dedicated hardware objects, they
would become things, according to the definition of IoT.

IV. RELATED WORK

IoTh uses and integrates several concepts and tools already
available in the literature and in free software repositories.

A. Virtual Ethernet Services

IoTh is based on the availability of virtual data-link layer
networking services, usually virtual Ethernet services, as Eth-
ernet is the most common data-link standard used. Virtual Eth-
ernet networking was first introduced as a networking support
for virtual machines. Originally, each virtual machine monitor
program was provided with its specific virtual networking
service. Some of them were merely an interface to a virtual
networking interface (tuntap [12]). The kernel of the hosting
operating system had to manage the bridging/switching or
routing between virtual machines and real networks. User-
mode Linux (UM-L [13]) introduced the idea of network
switch as a user process interconnecting several UM-L VMs.

Virtual Distributed Ethernet (VDE [14]) extended the virtual
switch idea in many ways:

• VDE created a virtual plug library to interconnect differ-
ent types of VMs to the same virtual switch. Currently,
User-Mode Linux, qemu [15], kvm [16], virtualbox [17]
natively support VDE in their mainstream code. Virtual-
lyi, any VM that supports tuntap can also be connected
to VDE using the virtual tuntap library.

• VDE switches running on different hosts can be con-
nected by virtual cables to form an extended virtual
Ethernet LAN. All the VM connected to one of the

interconnected switches regard the others as if they all
were on the same LAN.

• VDE provides support for VLANs, Fast spanning tree for
link fault tolerance, remote management of switches, etc.

• VDE is a service for users: the activation of a VDE
switch, the connection of a VM to a switch, or the
interconnection of remote switches, are all unprivileged
operations.

VDE switches were first implemented using user-level pro-
cesses, but there is an experimental version of faster VDE
switches running as kernel code (kvde switch). Although this
implementation runs as kernel code, kernel switches can be
started and managed by unprivileged users and processes.
kvde switch is based on Inter Process Networking (IPN [18])
sockets, a general purpose support for broadcast/multicast IPC
between processes.

The idea of a general purpose virtual Ethernet switch
for virtual machines has been implemented by some other
projects, too:

• OpenVswitch [19] is a virtual Ethernet switch for VMs
implemented at kernel level. OpenVswitch has VLAN
and QoS support. It has been designed to be a fast,
flexible support for virtual machines running on the same
host. It does not support distributed virtual networks, and
requires root access for its configuration.

• Vale [20] is a very fast support for virtual networking,
based on the netmap [21] API. It uses shared memory
techniques to speed-up the communication between the
VMs. Vale, like OpenVswitch, does not directly support
distributed networks and must be managed by system
administrators.

B. TCP-IP stacks

As described in the introduction, the TCP-IP networking
stack is generally unique in a system and it is considered
as a shared systemwide service provided by the kernel. The
implementation of the TCP-IP stack can be found in the kernel
source code of all the free software kernels. In Linux, the
IPv4 stack is in the directory /net/ipv4 and the IPv6 stack
is in /net/ipv6. Alpine [22] is an early approach to network
virtualization for protocol development. In fact, Alpine used a
customized BSD kernel running as a user process to serve as
a partial virtual machine monitor to virtualize the system calls
for networking. TCP-IP stack implementations as libraries
are common as software tools for embedded system design.
Many manufacturers of embedded system platforms provide
their own TCP-IP libraries as part of their development kits.
Some of these libraries have been released as free software.
Unfortunately, many of these libraries provide minimal or
partial implementation of the networking stacks to be used for
specific purposes only and are tailored or optimized for a spe-
cific embedded system hardware architecture. Adam Dunkels
wrote two general purpose and free licensed TCP-IP stacks for
embedded systems: uIP [23] and LWIP (Light Weight IP) [24].
uIP is a very compact stack for microcontrollers having limited
resources, while LWIP is a more complete implementation for
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powerful embedded machines. LWIP was initially designed for
IPv4, but a basic support for IPv6 has recently been added. In
2005, when LWIP did not support IPv6 yet, VirtualSquare labs
created a fork of LWIP, named LWIPv6 [25]. LWIPv6 then
evolved independently and is now a library supporting both
IPv4 and IPv6 as a single hybrid stack, i.e., differently from
the dual-stack approach, LWIPv6 manages IPv4 packets as a
subcase of IPv6 packets. When LWIPv6 dispatches an IPv4
packet it creates a temporary IPv6 header, used by the stack,
which is deleted when the packet is later delivered. LWIPv6 is
also able to support several concurrent TCP-IP stacks. It has
features like packet filtering, NAT (both NATv4 and NATv6),
slirp (for IPv4 and IPv6) [26].

C. Process/OS interface

In this work, we use two different approaches to interface
user processes with virtual stacks and virtual networks. A
way to create networked software appliances is to run entire
operating systems for embedded computers as processes on a
server. Contiki [27], or similar OSs, can be used to implement
new software appliances from scratch. This approach cannot
be used to interface existing programs (e.g., an existing web
server like Apache) to a virtual network, unless the software
interface for networking is completely rewritten to support
virtual networking.

ViewOS [28] is a partial virtualization project. View-OS
virtualizes the system calls generated by the programs, so
unmodified binary programs can run in the virtualized envi-
ronment. ViewOS supports the re-definition of the networking
services at user level. Processes running in a View-OS partial
virtual machine, where the networking has been virtualized,
will use a user-mode stack instead of the kernel provided one.
Server, client and peer-to-peer programs can run transparently
on a View-OS machine as if they were running just on the
OS, but using a virtualized stack instead of the kernel stack.

Another project provides network virtualization in the
NetBSD environment: Rump Anykernel [29]. The idea of
Rump is to provide user-mode environments where kernel
drivers and services can run. Rump provides a very useful
structure for kernel code implementation and debugging, as
entire sections of the kernel can run unmodified at user level.
In this way, it is possible to test unstable code without the risk
of kernel panic.

At the same time, Rump provides a way to run kernel
services, like the TCP-IP stack, at user level. It is possible
to reuse the kernel code of the stack as a networking library,
or as a networking deaemon at user level. Antti Kantee, the
author of Rump, named this idea Anykernel. In Rump, it is
possible to run each device driver or system service in three
different ways: as kernel code, as user-mode code embedded in
the application process, or as a user-mode server. These three
operational modes respectively correspond to three kernel
architectures, when applied to all the drivers and services:
monolithic kernels, exokernels and microkernels. Then an
Anykernel is a kernel where the kernel architecture is flexible
and can be independently decided on each driver or server.

D. Multiple Stack support

Some IoTh applications require the ability for one process
to be connected to several TCP-IP stacks at the same time.
The Berkeley sockets API has been designed to support only
a single implementation for each protocol family.

ViewOS and LWIPv6 use an extension of the Berkeley
sockets API, msocket [30], providing the support for multiple
protocol stacks for the same protocol family. A new system
call msocket is an extended version of the socket system
call: msocket has one more (leading) argument, the pathname
of a special file which defines the stack to use. msocket is
back compatible with the standard Berkeley sockets API: it
is possible to define and modify the current default stack of
a process. The socket system call will use the current default
stack. The default stack is part of the process status, and it
is inherited in the case of fork or execve. Existing programs
using only socket can work on any available stack, one at a
time.

V. USAGE CASES

This section describes some general usage cases of IoTh.
A complete description of the experiments, including all the
details to test the results, can be found in Section VII.

A. Client Side usage cases

• Co-existence of multiple networking environments. This
feature can be used in many ways. For example, it is
possible to have a secure VPN connected to the internal
protected network of an institution or a company (an
intranet) on which it is safe to send sensitive data and
personal information, and a second networking environ-
ment to browse the Internet.
As a second example, technicians who need to track
networking problems may find it useful to have some
processes connected to the faulty service, while a second
networking environment can be used to look for informa-
tion on the Internet, or to test the faulty network by trying
to reach the malfunctioning link from the other end.

• Creation of networking environments for IPC. Many
programs have web user interfaces for their configuration
(e.g., CUPS or xmbc). Web interfaces are highly portable
and do not require specific graphics libraries to run.
Using IoTh it is possible to create several Local Host
Networks (LHN), i.e., virtual networks for IPC only, to
access the web interfaces of the running processes. LHN
can have access protection, e.g., an LHN to access the
configuration interface of critical system daemons can be
accessible only by root owned processes. All daemons
can have their own IP address, logical name and run their
web based configuration interface using port 80.
Let us take the CUPS example. The web interface of
CUPS is available at the port 631 on localhost, and
allows users to read the status of the printers. System
administrators can add or reconfigure printers, CUPS asks
for a password authentication for these operations. Using
IoTh it is possible to define the FQDN cups.localhost
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to be a static IP address in the file /etc/hosts. An IoTh
version of CUPS could join two LHN using msockets
and use the same IP address on both. One virtual net-
work is for system administrators, the other for users.
User browsers can be connected to the LHN for system
administrators if they are enabled, otherwise they can
use the other LHN. All the configuration options will be
disabled by CUPS for all accesses from the user LHN.
The same approach as CUPS could be used for many
system daemons providing a web interface. In this way,
the LHN for system administration works as a single-
sign-on channel for all the daemons. In fact, system
administrators will not be required to be authenticated
by a password, as only processes owned by a privileged
account can join that LHN.

• Per user IP addresses. It is possible to use IoTh to assign
an IP address to each user working on the same server.
This is useful, for example, in critical environments,
where tracking the responsibility of all the activities on
the network is required. In multiuser and multitasking
operating systems using a shared TCP-IP stack it is not
generally possible, unless the configuration forces the
system to log the mapping between each TCP connec-
tion or UDP datagram, and the owner of the process
which requested the networking operation. It would be
clearly a very expensive procedure in terms of processing
power and storage requirements. This problem has been
described in detail in User Level Networking (ULN)
[31]. Through IoTh, each user can be given their own
VDE, where their TCP-IP stacks or their processes can
be connected. The router of user VDEs can assign IP
addresses, or a range of IP addresses, to each user. In
this way, there will be a direct mapping between each
IP address and the user responsible for it. Likewise, it is
possible to track the personal computers connected to a
public network. Because of the distributed nature of VDE,
the IP addresses of a user can be assigned to processes
running on different hosting computers.
IP addresses assigned per user allows for the implemen-
tation of differentiated services. Users or classes of users
can be assigned different QoS and access constraints.

B. Server side usage cases

• Virtual hosting is a well-known feature of several net-
working servers: the same server provides the same kind
of service for multiple domains. Apache web server is one
of the most common examples of daemons supporting
virtual hosting. The same Apache process can work as a
web server for many domains. The target IP address used
by the client, or the address specified in the GET request
of the html protocol, can be used by Apache to assign
each request to a domain.
IoTh generalizes this idea. It is possible to run several
instances of the same networking daemon, giving each
one its IP address. It is possible to run several pop,
imap, DNS, web, MTA, etc., daemons, each one using

its own stack. All the daemons will use their standard
port numbers.
It may be objected that it is already possible to obtain
a similar result by assigning all the IP addresses to the
networking controller of the server (or to a controller)
and configuring each daemon to bind its specific IP
address. In this way, one shared TCP-IP stack manages
all the addresses, and each daemon selects the one to
use. Unfortunately, this makes this approach complex and
prone to error for system administrators.
For example, the difference between this approach and
the IoTh method is clear when the IP address of a daemon
must be modified. Several configuration files must be
edited in a consistent manner, using one shared stack to
complete the required operation: /etc/network/interfaces,
the daemon’s configuration files and, in well configured
systems, the iptables directives of the firewalling rules.
Using IoTh it is sufficient to change the daemon’s ad-
dress.
It is possible to envisage daemons designed for IoTh
that run several concurrent networking stacks and provide
specific services, depending on the stack they receive the
requests from.

• Service migration in IoTh is as simple as stopping the
daemon process on one host and starting it on another
one. In fact, a daemon process can have its embedded
networking stack, so its IP address and its routing rules
are just configuration parameters of the daemon process
itself. A VDE can provide a virtual Ethernet for all the
processes running on several hosts. Stopping the daemon
process on one server and activating it later on a second
server providing the same VDE is, in the virtual world,
like unplugging the Ethernet cable of a computer from a
switch and plugging it into a port of another switch of
the same LAN (the ports of both switches should belong
to the same VLAN).

• With IoTh it is possible to design network daemons which
change their IP addresses in a dynamic way. One Time
IP address (OTIP) [32] applies to IP addresses the same
technique used for passwords in One Time Password
(OTP) services [33]. In OTP, the password to access a
service changes over time, and the client must compute
the current password to be used to access the service.
This is common for protecting on-line operations on bank
accounts. When a customer wants to use his/her account,
the current password must be copied from the display of
a small key-holder device. OTIP uses the same concept
to protect private services accessible on the Internet. A
daemon process changes its IP address dynamically over
time and all its legitimate users can compute its current IP
address using a specific tool, and connect. Port scan traces
and network dumps cannot provide useful information
for malicious attacks, because all the addresses change
rapidly.
This method has mainly been designed for IPv6 networks.
In fact, the current server address can be picked up as one
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of the valid host addresses available on the local network,
most of the time among 264 possible addresses. Clearly, a
264 address space is too large for attackers to try a brute
force enumeration attack on all the available addresses,
and even if they eventually succeeded, the retrieved
addresses would have to be exploited before their validity
expires and the servers move to new addresses.

C. Other usage cases

IoTh allows us to use several networking stacks. These
stacks can be several instances of the same stack, or different
stacks. In fact, it is possible to have different implementations
of TCP-IP stacks or stacks configured in different ways,
available at the same time. Processes can choose which one
is best suited to their activities.

This feature can be used in different ways:
• Using an experimental stack as the single, shared stack

of a remote computer can partition the remote machine in
cases of a malfunctioning of the stack itself. IoTh enables
the coexistence of the stack under examination with a
reliable production stack, which can be used as a safe
communication channel.

• Processes can have different networking requirements.
For example, communicating peers on a high latency link
need larger buffers for the TCP sliding window protocol.
It is possible to configure each stack and fine tune its
parameters for the requirements of each process, as each
process can have its own stack.

VI. HASH-BASED ADDRESSES

The deployment of IoTh based services requires the defini-
tion of several IP addresses. In fact, the number of IP addresses
used by IoTh can be orders of magnitude higher than the
number of IP addresses currently assigned only to hardware
or virtual controllers.

Although each (numerical) IP address could be defined
by some form of autoconfiguration (stateful or stateless [8],
[9]), the real problem is to provide the mapping between
each Fully Qualified Domain Name (FQDN) of a service and
the corresponding IPv6 address of the process providing the
requested service. In other words, the management of a high
number of IoTh addresses by the standard Domain Name
Service (DNS) procedures can be complex, error prone and
time consuming for system administrators.

In [35], we propose a novel IP address self-configuration
scheme based on a 64-bit hash encoding of the FQDN to be
used as the host part of the IPv6 address. The complete IPv6
address will then be composed by the network prefix of the
(virtual) LAN followed by the hash encoding of the FQDN.

The above referenced paper shows how the name resolution
of hash-based addresses can be managed automatically, requir-
ing system administrators the provide solely a unique FQDN
for each service. The hash-based IP addressing self assigning
method is completely consistent with the name resolution
protocols in use on the Internet [34]. So, existing networking
clients and DNS implementations can seamlessly interoperate

with DNS providing addresses using the hash-based name
resolution.

It is worth noting that hash encoding might generate col-
lisions. Thus, multiple FQDNs can correspond to the same
hash-based IP address. The same problem can arise in OTIP
generated addresses (see Section V) where two processes
could temporarily acquire the same address. In both [35] and
[32] there is a discussion about the statistical relevance of
the problem. Being an instance of the well-known birthday
paradox problem, the probability of hash collision can be
estimated as follows:

Pr[(n,m)] ≈ 1− e−
m2

2n (1)

where m is the number of elements choosing the same random
key amongst n possible keys.

Figure 3 shows the probability function (1) plotted for up to
1Mi (i.e., 220 ) computers. The probability of two addresses
colliding is less than one in 30 million for a LAN connecting
more than 1 million hosts. In more realistic cases, network
connecting less than one thousand nodes, the probability has
the order of magnitude of one in 3 · 1014.

Although very unfrequent, collisions of hash-defined ad-
dresses may happen, but such collisions can be detected by
DNS servers and reported to system administrators who can
change some of the FQDNs of the services to solve the
problem. On the contrary, for OTIP it is not possible to
completely avoid the collision problem, which, however, could
only cause extremely unlikely temporary unreachability state
of the services involved in the collision.

VII. PRACTICAL EXAMPLES

This section presents some practical experiments on IoTh.
These experiments are based on several tools which have been
designed or extended to provide a working proof-of-concept
of IoTh. For an independent testing of the results published
in this paper, the source code of all the software is available
under free software licenses on public repositories.

The tools used for the experiments include
• Virtual Distributed Ethernet: vde switch, vde plug;
• LWIPv6: the stack and sliprv6;
• Contiki: including the VDE interface;
• View-OS: umview or kmview, umnet (network virtualiza-

tion), umnetlwipv6 (interface to lwipv6), umfuse (virtual
file system support), umfusefile (single file virtualization).

A. Example 1: client side IoTh

.
This example shows how to use IoTh to run a browser on

its own network.
First of all, start a VDE switch, a ViewOS VM and connect

the VDE to a remote network. It is sufficient to have an
unprivileged user account on far.computer.org, slirpvde6 is
able to route the entire subnet.

$ vde_switch -daemon -sock /tmp/vde1
$ umview xterm &
$ dpipe vde_plug /tmp/vde1 = \
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Fig. 3. Probability of address collision in a 64 bits hash

> ssh far.computer.org slirpvde6 -D -N -

The new xterm is running in the View-OS VM. In that xterm
type:

$ um_add_service umnet umfuse
$ mount -t umnetlwipv6 none /dev/net/default
$ mount -t umfuseramfile -o ghost \
> /etc/resolv.conf /etc/resolv.conf
$ ip link set vd0 up
$ /sbin/udhcpc -i vd0 -q \
> -s ˜/etc/udhcpc/default.script
$ firefox new

The first command loads the View-OS modules for network
and file system virtualization. View-OS uses the mount oper-
ation to load a new network stack. It becomes the default
stack for the VM because the target of the mount operation
is /dev/net/default. umfuseramfile is used to vir-
tualize /etc/resolv.conf: in this way, the virtual file is
writable in this View-OS VM, and it is possible to define the
DNS server to be used by the VM.

Then the following commands activate the virtual controller
vd0, start a DHCP client to request a dynamic address for vd0,
and start a browser.

All the connections of the browser will be seen from the
Internet as if they were generated by far.computer.org

Figure 4 shows an example in which one browser is con-
nected to the local networking service (the one in Bologna),
while a second browser uses IoTh and is connected to an
American network (the one in Kansas City).

B. Example 2: server side virtual network appliance

This example shows how to start virtual networked appli-
ances. More specifically, the programs used in this example
are a simple web server, based on Contiki, and a simple virtual
network-attached storage (NAS), based on LWIPv6.

The source code for the Contiki example is included in the
subversion (svn) repository of VDE on sourceforge [36] as a
patch to the Contiki source tree. From the patched version of
Contiki it is possible to generate the test program named
webserver-example.minimal-net-vde.

As a first step, launch a VDE switch connected to a tap
interface and assign an IP address to it.

$ sudo vde_switch -d -s /tmp/vde2 -tap tap0
$ sudo ip link set tap0 up
$ sudo ip addr add 192.168.100.1/24 dev tap0

Then start the Contiki web server:

export CONTIKIIP=192.168.100.2
export CONTIKIMASK=255.255.255.0
export CONTIKIVDE=/dev/vde2
webserver-example.minimal-net-vde

From a browser it is now possible to reach the Contiki web
server at its own IP address, as shown in Figure 5.

The next step shows how to migrate the Contiki web server
to another hosting machine. Then compile the Contiki web
server on the other host, or copy the executable file, if the
architecture of the remote machine is compatible with the local
one. Open a new terminal window and create a VDE cable to
the remote machine (far.machine).

$ dpipe -d vde_plug /tmp/vde2 = \
> ssh far.machine vde_plug /tmp/vde2[]

Open an ssh connection on the remote machine and start
the Contiki web server using the same sequence of commands
described here above. Now reload the web page on your
browser. Nothing seems to change. The page is overwritten
by an identical one, but that page is now provided by the
Contiki server running on the remote machine.

The NAS example uses LWIPv6. The source code for this
example is available from the wiki site of VirtualSquare [37].
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Fig. 4. Client side example of IoTh: the browsers are using two different stacks. The one in Kansas City uses a user-mode TCP-IP stack and a virtual
networking switch.

Fig. 5. A server side example of IoTh usage: the web page of the browser in foreground is provided by the contiki based virtual networked appliance started
in the terminal window in background.

On a computer where the LWIPv6 library has already been
installed (it can be generated from the sources available on
the svn repository or simply installed as a packet for Debian
Sid users), compile the webnas4 example.

Change your current directory to a subtree of the file system
which does not contain private data, as its contents will be
exported, and start webnas4 as follows:

$ /path/to/webnas4 \
> 192.168.100.3/24+02:01:02:03:04:05 /dev/vde2

All the contents of the current directory are now exported
to the VDE network and accessible via web by loading the
page http://192.168.100.3 on the browser.

It is possible to use static global IP addresses for the Contiki
address and for the NAS example, and to define a default
router for both as follows:

$export CONTIKIDR=192.168.100.1

for Contiki and the option route:192.168.100.1 for
webnas4, using a convenient global IP prefix instead of

192.168.100. In this way, both virtual network appliances can
be reached by any Internet user. These examples use IPv4 to
shorten the address in the commands and to make them more
readable, although they can be modified to use IPv6 instead.

VIII. SECURITY CONSIDERATIONS

Several aspects of security must be taken into consideration
in IoTh.

It is possible to limit the network access possibilities of
an IoTh process and restrict the network services it can use.
In fact, each IoTh process must be connected to a virtual
local network to communicate, and virtual local networks have
access control features. In VDE, for example, the permission to
access a network is defined using the standard access control
mechanisms of the file system. Each VDE network can be
restricted to specific users, groups using the file permissions
or Access Control Lists (ACL). The interaction between pro-
cesses connected to a VDE and the other networks (or the
entire Internet) can be regulated by specific configurations of
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TABLE I
COMPARISON IN BANDWIDTH (MB/S) BETWEEN A KERNEL STACK AND IOTH

10MB kernel 10MB IoTh 20MB kernel 20MB IoTh 40MB kernel 40MB IoTh
localhost 116 29.9 118 35.9 136 37.4
network 1Gb/s 104 41.9 112 49.0 112 51.7
network 100Mb/s 11.2 11.0 11.1 11.0 11.1 11.0

the virtual routers used to interconnect that VDE.
Limiting the IoTh process access to networking is just one

aspect of IoTh security. It protects the environment from the
effects of faulty, buggy or malicious processes.

It is also possible to consider the positive effects of IoTh
with respect to protection from external attacks. Port scanning
[38] is a method used by intruders to get information about a
remote server, planned to be a target for an attack. A port scan
can reveal which daemons are currently active on that server,
then which security related bugs can be exploited.

This attack method is based on the assumption that all
the daemons are sharing the same IP stack and the same IP
addresses. This assumption is exactly the one negated by IoTh.
Port scanning is almost useless in IoTh, since an IP address
is daemon specific, so it would reveal nothing more than the
standard ports used for that service. When IoTh is applied to
IPv6, the process IP address on a VDE network can have a
64-bit prefix and 64 bits for the node address. A 64-bit address
space is too large for a brute force address scan to be effective.

There are also other aspects of security to be considered re-
garding the effects of IoTh on the reliability of the hosting sys-
tem. Daemon processes run as unprivileged user processes in
IoTh. They do not even require specific capabilities to provide
services on privileged ports (CAP NET BIND SERVICE to
bind a port number less than 1024). The less privileged a
daemon process is, the smaller the damage it may cause in
cases when the daemon is compromised (e.g., by a buffer
overflow attack).

In some cases, IoTh can limit the effects of Denial of
Service (DoS) attacks. In fact, DoS attacks may succeed by
overloading not only the communication channels, but also
the TCP-IP stacks of the target machine. In this latter case,
in IoTh, a maximum load boundary for the daemon process
can confine the effects of the attack to the target service,
which is overloaded by the high rate of requests, while the
other daemons running on the same host would be much less
affected.

IX. PERFORMANCE OF IOTH

IoTh provides a new viewpoint on networking. As this paper
has shown in the previous sections, IoTh allows a wide range
of new applications. IoTh flexibility obviously costs in terms
of performance. A fair analysis of IoTh performance has to
consider the balance between the costs of using this new
feature and the benefits it gives. In the same way, processes run
faster on an Operating System not supporting Virtual Memory,
but, for many applications, the cost of Virtual Memory is
worthwhile because you can run a greater number of processes.
The IoTh approach can co-exist with the standard management

Fig. 6. A graphical view of Table I data

of IP addresses and services. System administrators can decide
which approach is more suitable for each service.

Table I shows the comparison of the bandwidth of a TCP
connection between the Linux Kernel TCP-IP stack imple-
mentation and a IoTh implementation based on VDE and
LWIPv6. The program used for the test is the NAS example
of the previous section. The test set includes the measure
of the bandwidth for file transfers of 10MB, 20MB and
40MB between processes running on the same host, on hosts
connected by a 100Mb/s LAN and by a 1Gb/s LAN. The
test environment consists of two GNU-Linux boxes (Debian
SID distribution), Linux 3.2 kernel, NetXtreme BCM5752
controller, dual core Core2Duo processor running at 2Ghz,
HP ProCurve Switches 1700 and 1810G. The files have been
transferred using wget.

From the table and from the graph (Fig. 6) it is possible to
see that IoTh can reach a sustained load of about 50MB/s, so
the overhead added by the new approach is appreciable only
on very fast communication lines. On a 100Mb/s LAN the
difference is minimal. The improved performance for larger
file transfers is caused by the constant startup cost (socket
opening, http protocol, etc.), which is distributed on a longer
operation. On localhost or on fast networks, the bandwidth of
IoTh is about a quarter to a half of the bandwidth reached by
the kernel.

It is worth considering that, in this test, both VDE and
LWIPv6 run at user level. These are the performance values
of the less efficient implementation structure of IoTh. Kernel
level implementations of the TCP-IP stack library, and of the
virtual networking switch engine, will increase the perfor-
mance of IoTh.

X. CONCLUSION AND FUTURE WORK

IoTh opens up a range of new perspectives and applications
in the field of Internet Networking.
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IoTh unifies the role of networking and IPC, so it can
play an important role in the design of future applications:
distributed applications and interoperating processes can use
the same protocols to communicate.

The research on IoTh is currently working in two differ-
ent directions: the design of new IoTh applications and the
evolution of the infrastructures to support IoTh.

The challenge of supporting new IoTh based services creates
a need to analyze the TCP-IP protocols, in order to evaluate if
and how these protocols, designed for physical networks, need
to be modified or updated to be effective in IoTh. An example
of a question that needs to be evaluated is whether the DNS
protocol can have specific queries or features for IoTh.

On the other hand, IoTh requires an efficient infrastructure,
able to provide a virtual networking (Ethernet) service to
processes. This support must be optimized by integrating the
positive results of currently available projects and then extend-
ing them to provide new services. For example, the speed of
Vale [20] should be interfaced with the flexibility of VDE.
There are several features in use on real networks that could
be ported on virtual networks, e.g., port trunking. The research
should also consider new efficient ways of interconnecting the
local virtual networks to provide a better usage of virtual links,
both for efficiency and for fault tolerance.

All the software presented in this paper has been released
under free software licenses and has been included in the
Virtual Square tutorial disk image [39]. This disk image can
be used to boot a Debian SID GNU-Linux virtual machine.
All the software tools and libraries used in this paper have
already been installed and the source code of everything not
included in the standard Debian distribution is also available
in the disk image itself.
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