
Correlation and Consolidation of
Distributed Logging Data in Enterprise Clouds

Sven Reissmann, Dustin Frisch, Christian Pape, and Sebastian Rieger
University of Applied Sciences Fulda

Department of Applied Computer Science
Fulda, Germany

{sven.reissmann, dustin.frisch, christian.pape, sebastian.rieger}@cs.hs-fulda.de

Abstract—Due to the availability of virtualization technolo-
gies and related cloud infrastructures, the amount and also
the complexity of logging data of systems and services grow
steadily. Automated correlation and aggregation techniques are
required to support a contemporary processing and interpre-
tation of relevant logging data. In the past, this was achieved
using highly centralized logging systems. Based on this fact,
the paper introduces a prototype for an automated semantical
correlation, aggregation and condensation of logging information.
The prototype relies on a NoSQL storage back-end that is
used to persist consolidated messages of distributed logging
sources in a highly performant manner. This step of consolidation
includes strategies for minimizing long-term storage, and by
using correlation techniques also offers possibilities to detect
anomalies in the stream of processed messages. In this context,
we will present the special requirements of handling scalable
logging systems in highly dynamic infrastructures like enterprise
cloud environments, which provide dynamic systems, services and
applications.

Keywords—Syslog Correlation; Log Analysis; Anomaly Detec-
tion; Monitoring; Enterprise Cloud.

I. INTRODUCTION

The vast rise of virtualization technologies and the related
wide availability of virtual machines (VM) has increased the
amount of logging data over the past years [1]. In addition to
virtual machines themselves, cloud infrastructures, in which
they are deployed, also deliver new services and applications
in a fast and highly dynamic manner, producing logging data
that is needed to monitor their state and service quality.
This leads to a growth of logging sources and the demand
for logging systems to dynamically handle new sources and
collect the corresponding data. Each new source provides
detailed logging information and increases the overall amount
of logging data. Typically, logging data will be compressed and
also anonymized at short intervals if personally identifiable
information is included. Also, outdated log entries can be
removed, but the number of logging sources (e.g., the number
of virtual machines) themselves often cannot be reduced. For
instance, in a virtualized cloud infrastructure where servers,
storage and also the network are virtualized, each system,
service and application should at least provide a minimal set
of logging data to allow an effective analysis of its status and
relevant events during service operation.

To support this analysis and evaluation across logging
information originating from a large number of different dis-
tributed source systems, correlation techniques offer a way to

group similar systems and applications. Furthermore, correla-
tion can be used for the aggregation of logging data, hence
providing a condensation based on its relevance. In [1], we
introduced a solution to persist logging data that originated
from syslog sources into a NoSQL-based (Not only SQL)
database by enhancing existing solutions. For correlation and
consolidation purposes, this data was also enriched with meta
information before providing the data for distributed analysis
and evaluation. This article elaborates on the implementation
and concepts outlined in [1] and presents extensions to use
different, e.g., structured logging sources and increase the
efficiency of our correlation engine. Furthermore, an evaluation
test-bed to enhance the scalability of our implementation
in OpenStack-based enterprise cloud environments is given.
Additionally, we present possibilities to use information from
external network and system management solutions to enrich
the events being correlated.

The article is laid out as follows. In the next section, the
state-of-the-art of distributed logging in cloud environments
is described. Section III gives examples of related work and
research projects that also focus on improving the management
and analysis of logging data in distributed cloud environments.
Requirements for the correlation and consolidation of logging
data in enterprise clouds are defined in Section IV. In Section
V, the implementation of a prototype for log correlation and
consolidation in cloud environments is presented. It provides
aggregation and condensation of logging data in cloud en-
vironments by correlating individual events from distributed
sources. At the end of the section, an example of the usage
of our prototype for the log analysis in cloud environments is
given. Section VI describes the deployment of our prototype
in an OpenStack test-bed. The performance of our prototypical
implementation is evaluated in Section VII using multiple test
cases. In the last section of this article, a conclusion is drawn
and aspects for future research are outlined.

II. STATE-OF-THE-ART

The following sections give an overview on the evolution of
logging methods in distributed environments using aggregation
and consolidation techniques for standard logging mechanisms
like syslog. Also, the advantages of evolving NoSQL databases
in this area are outlined.

A. Distributed Logging in Cloud Environments

Current cloud service providers offer a variety of monitor-
ing mechanisms. For example, Amazon Web Services (AWS)
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and RackSpace both provide monitoring and alarms for their
virtual machines. In the basic version, these services moni-
tor several performance metrics, like central processing unit
(CPU), input/output (I/O), and network utilization. Advanced
versions (e.g., Amazon CloudWatch [2]) allow the customers
to check the current status of services running in the virtual
machines and to define custom metrics and alarms that can be
monitored using individual application programming interfaces
(API) of the cloud service provider. While these APIs could
be used to send particular events and alarms, there is no
specific service to handle the aggregation, correlation and
management of logging data generated and provided by the
operating systems and services running in the virtual machines.
Furthermore, the individual APIs currently vary from provider
to provider. Hence, it is not possible to use a unified monitoring
implementation across different cloud service providers. This
also hinders the establishment of enterprise clouds that should
allow the integration of private or hybrid cloud services oper-
ated by public cloud service customers, as these solutions again
use individual monitoring techniques. An appropriate standard
to address the issue of cloud service provider-independent
logging, is currently in the works at the Internet Engineering
Task Force (IETF) [3].

Until such open standards are available, distributed logging
in cloud environments could be carried out by developing
specific logging mechanisms for the infrastructures, platforms
or applications (IaaS, PaaS, SaaS) used in the cloud. The
drawback of this approach would be the required software
development and maintenance effort. Moreover, the individual
APIs developed by the customers are likely to need a migration
to upcoming cloud logging standards in the near future. The
more appropriate approach, therefore, could be to extend
existing and established logging services to support distributed
cloud scenarios. The de-facto standard logging service offered
in every predefined Linux-based virtual machine image by
existing cloud providers is syslog, which is described in the
next section. In fact, syslog is also the basis for the upcoming
Internet-Draft [3] focusing on cloud-based logging services.
Logging data can be stored and structured in NoSQL-based
databases as described in Section II-C.

B. Log Aggregation and Consolidation with syslog

Syslog defines a distributed logging solution for generating,
processing and persisting host- and network-related events.
As a key feature, it allows one to separate the software
that generates events from the system that is responsible
for processing, storing and analyzing those events. Since its
introduction, the syslog protocol has evolved into the de-
facto standard for processing and forwarding logging events
on UNIX-based systems and network devices (i.e., routers,
firewalls). However, there has not been any standardization of
the protocol characteristics for quite a long time, which has led
to incompatibilities across vendor-specific implementations.

The state of the protocol (Berkeley Software Distribution
(BSD) Syslog Protocol), including the most commonly used
message structure and data types, has been documented by
the IETF in RFC 3164 [4]. Each syslog packet starts with a
so-called PRI (priority) part representing the severity of the
message as well as the facility that generated the message.
Severity and facility are together numerically coded using

decimal values; the priority value, which is placed between
angle brackets at the very beginning of the message, is
calculated by first multiplying the facility value by 8 and
then adding the severity value. RFC 3164 specifies eight
possible values for the severity of a message, as well as 24
facility values, which are assigned to some of the operating
systems’ daemons (i.e., the mail subsystem). The second part
of a syslog packet, following immediately after the trailing
bracket of the PRI part, is called HEADER and includes a
TIMESTAMP and HOSTNAME field, each followed by one
single space character. TIMESTAMP represents the local
time when a message was generated using the format ”Mmm
dd hh:mm:ss”, while HOSTNAME may only contain the
hostname [5], IPv4 address [6], or IPv6 address [7] of the
producer of the message. Finally, the MSG part of a syslog
packet consists of two fields, known as TAG and CONTENT,
where CONTENT contains the actual message, while TAG is
the name of the program that generated it. The TAG value
can be distinguished from the message or other optional
information by a colon or left square bracket depending on
the presence of an optional (but commonly used) combination
of the program name with its process ID. Listing 1 shows an
example of an RFC 3164 compliant syslog message.

<34>Oct 11 2 2 : 1 4 : 1 5 mymachine su : ’ su r o o t ’
f a i l e d f o r l o n v i c k on / dev / p t s / 8

Listing 1. Example of an RFC 3164 compliant syslog message.

While syslog messages are typically stored in files on the
generating host’s local filesystem, we outlined above that the
impact of virtualization technologies and the corresponding
growth of logging sources indicate that a centralized collection
and analysis of syslog events is of essential importance. Other-
wise, an overall rating of nearly identical messages originating
from different sources (i.e., from a cloud service that spreads
over multiple hosts) would be a difficult task. As a matter
of fact, centralized logging infrastructures and the utilization
of relays to cascade syslog servers in large environments were
considerations in the early development of syslog. Historically,
the BSD Syslog Protocol [4] uses the User Datagram Protocol
(UDP) to transport messages over the network, which may
lead to the imperceptible loss of important events. To address
this issue, the use of a reliable delivery mechanism for syslog
has been proposed shortly after the documentation of the
protocol characteristics [8]. Additionally, security features like
Transport Layer Security (TLS) and cryptographic signatures
have been proposed to assure the integrity and authenticity of
the data during transport of the messages from the sending
hosts [9][10][11]. Figure 1 shows an example of a centralized
logging environment, where a number of physical or virtual
servers send their messages to a central syslog server, which
then stores these messages appropriately.

A major drawback of the previously described syslog
protocol regarding correlation and analysis capabilities is
the unstructured nature of the messages’ format. In 2009, a
standard for a syslog protocol was proposed in RFC 5424
[12], which obsoletes the previously described but still widely
used BSD Syslog Protocol. The new protocol specifies the
PRI part of a syslog packet in the same way as its predecessor,
but includes it into the HEADER part of the packet together
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Fig. 1. Centralized logging of distributed systems and services.

with additional information such as the name and process
ID of the generating application and a message ID. Another
feature of the new HEADER format is the use of a formalized
TIMESTAMP value as standardized in RFC 3339 [13]. Most
important, however, is the possibility to add structured data
into a syslog packet, allowing to express information in a well
defined and easily machine-parsable format. An example of a
syslog message containing both structured data and a regular
free text message is expressed in Listing 2.

<165>1 2003−10−11T22 : 1 4 : 1 5 . 0 0 3 Z
mymachine . example . com

e v n t s l o g − ID47 [ exampleSDID@32473 i u t =”3”
e v e n t S o u r c e =” A p p l i c a t i o n ” even t ID =”1011”]
BOMAn a p p l i c a t i o n e v e n t l o g e n t r y . . .

Listing 2. Example of an RFC 5424 compliant syslog message.

Among the wide range of available syslog servers capable
of processing the previously delineated protocols, syslog-ng
[14] and rsyslog [15] are some of the most widely used solu-
tions on UNIX-based operating systems. Both implement RFC
3164 as well as RFC 5424 message transport, various security
features such as cryptographic signatures, message encryption,
and the ability to convert messages from one format to another.
The rsyslog server, which provides an open-source implemen-
tation of the syslog protocol, was selected for our research as
it provides interesting features like a large number of input and
output modules to support a wide range of logging sources and
novel storage back-ends like MongoDB, Hadoop Distributed
File System (HDFS), and Elasticsearch. Furthermore, message
normalization and modification techniques make it possible
to parse incoming messages and add structured information
to them, which enables post-processing applications to apply
correlation techniques and filtering rules. In our test-bed, which
we describe in detail in later sections of this article, we
make use of rsyslog’s input filters, message normalization
provided by liblognorm, and message forwarding capabilities
using various output modules.

C. Log Management utilizing NoSQL Databases

Regarding the persistence of logging data, important as-
pects are performance and scalability of the storage system,
especially as in many cases there is a tremendous amount of
data to be stored. Further, the flexibility to add new logging
sources that may introduce new data structures (i.e., when
providing individual structured data as described in the pre-
vious section) is a crucial requirement. While various storage
back-ends are available for centralized logging environments,
we would argue that only a certain type of these systems
qualifies by offering reasonable write performance and, even
more important, allowing complex analysis on the stored
data. That class of storage systems is called NoSQL, which
refers to a type of data storage that became an interesting
alternative to Structured Query Language (SQL) databases
over the past couple of years, especially for storing huge
amounts of information such as logging data.

Relational databases demand the structure of the data to
be specified at the time the database is created. This means
that creating a relational database for data that does not easily
map into a fixed table-layout (e.g., different log formats from
distributed sources) is not a simple task. NoSQL datastores,
in contrast, provide little or no pre-defined schema, allowing
the structure of the data to be modified or extended at any
time. This property qualifies NoSQL for persisting structured
syslog information, where on the one hand, the data is well
formatted, but at the same time, the structured key-value pairs
of the individual syslog sources may vary depending on the
type of service or system that generated the message.

While the name NoSQL makes it appear that the lack of
SQL is the most important difference, there are a number of
other characteristics that distinguish this type of storage system
from the well-known SQL database management systems
(DBMS). In almost all cases, a simple query interface is used
for storing, retrieving or modifying data, rather than an SQL
processor. While the query language of an SQL DBMS itself
does not necessarily have negative effects on performance, it
can be quite difficult to write efficient queries when trying to
do complex operations on the data, e.g., joining a large number
of tables. Another important difference of NoSQL compared to
SQL DBMS is the scalability over hundreds of hosts, which
is achieved in exchange for giving up 100% ACID (Atom-
icity, Consistency, Isolation, Durability) semantics. Instead,
NoSQL guarantees consistency only within certain boundaries
or within a specific record. At the same time, scalability leads
to high availability by doing transparent failover and recovery
using mirror copies. Of course, not all copies are guaranteed
to be up to date, because of the previously mentioned lack of
the ACID compliance.

Although there are different implementations of NoSQL
datastores that fit completely different needs, all are designed
to fit new requirements, like storing unstructured data or
performing full-text search queries. In [16], Cattell presents
an overview of the available types of NoSQL technologies
and names some of the actual implementations of the various
technologies. Looking at the distinct approaches of NoSQL,
three main types can be identified. Key-value stores allow
one to store unstructured data in a single distributed key-
value index for all the data. The data is typically stored as
binary large object (BLOB) without being interpreted and
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can be accessed by a client interface, which provides basic
operations like insert, delete and index lookups. Key-value
stores achieve high performance when querying for keys, but
are not very well suited to perform searches on the stored
objects themselves. Going one step further, extensible record
stores, also referred to as column-oriented datastores, allow
the storage of closely related data in an extendable row-
and-column layout. Scalability is achieved by splitting both
rows, through shards on the primary key, and columns, by
using pre-defined column groups. Besides using a row and
column model, extensible record stores are not bound to the
restrictions of the highly structured table layout SQL uses, as
new attributes can easily be added at any time. Still, they allow
one to store data in a more detailed structure compared to the
previously mentioned key-value stores. A third type of NoSQL
is referred to as document-based datastores or document stores.
Here, document is not to be confused with an actual document
in the traditional sense. Instead, these types of databases are
able to store collections of objects, each of which may have a
completely independent number of attributes of various types.
The structure of new documents can be extended at any time,
meaning that documents may consist of any number of key-
value pairs of any length. Like the previous, document stores
can partition the data over multiple machines for scalability
and replication of the data. Document stores provide a high
degree of flexibility and interoperability, but like other NoSQL
systems, they do not provide ACID transactional conformance.

Looking at the requirements for storing logging data and
being able to do complex analysis of the data later on, not
all of the previously named NoSQL technologies are suitable.
Key-value stores as well as column-oriented databases allow
highly efficient queries for the data using their keys, while
not being applicable for doing full-text search queries and
correlation on the stored data. Document stores, in contrast,
allow highly efficient search queries on the stored data objects
as well as the documents’ keys. Further, the flexibility to add
any newly formatted document at any time is an important
feature when storing individually structured syslog messages.
For the implementation of our prototype, we use Elasticsearch
[17], a document store that offers a high-performance, full-
featured text search engine based on Apache Lucene [18].

III. RELATED WORK

The challenge of persisting and evaluating decentralized
logging data has been in the focus of many research pub-
lications. For instance, the evaluation of decentralized log-
ging information in IaaS, PaaS and SaaS cloud environments
was described in [19] and [20]. Also, an Internet-Draft is
in development [3] covering processing of syslog messages
from distributed cloud applications. Besides the requirements
by these new highly distributed applications, there is also a
challenge for analysis and structuring of logging information.
Existing solutions for automated log analyzers comply with
only some of these requirements [21]. Therefore, Jayathilake
[21] recommends structuring logging data and extracting the
contained information. In this context, NoSQL databases are
best suited for handling these variable fields. These databases
provide an adaptive approach of persisting data and allow
the use of different table schemata or, e.g., a document-
based approach to storing key-value pairs. As outlined in [22]
and [23], the evaluation and rating itself can be automated

by event correlation and event detection techniques. Both
publications also describe the usage of the correlation solution
Drools, which we use for our research. Correlation techniques
help to reduce and consolidate the logging data so that only
a condensed representation including relevant information,
required for analysis and evaluation, will be persisted. As
described in [23], a reduction of syslog data by up to 99%
is possible. A solution based on the NoSQL database Mon-
goDB using MapReduce to correlate and aggregate logging
data in distributed cloud analysis farms is described in [24].
This solution, however, lacks event correlation and detection
techniques.

IV. REQUIREMENTS FOR CORRELATION OF LOGGING
DATA IN ENTERPRISE CLOUDS

In the introduction of this article, we described that cen-
tralized logging environments tend to produce a tremendous
number of logging events at the central logging server. To
manage the storage of all these events and provide a way to
perform a fast analysis on the stored data, the use of the previ-
ously mentioned NoSQL datastores seems obvious. However,
looking at the amount of data that has to be manually analyzed
and evaluated, the question arises whether it is possible to
automate the process of evaluating the relevance of certain
syslog events or even reduce the amount of data that will be
stored. The latter is only reasonable if it can be guaranteed
that no valuable information will be lost after the reduction
of messages. In the next sections, we are going to describe in
detail our approach for automatic evaluation and reduction of
syslog events. Also, a method for identifying interesting types
of events for which a correlation or consolidation is possible
is proposed at the end of this section.

A. Correlating Distributed Logs in Enterprise Clouds

The core objective of our previous work was the processing
of data provided via syslog and the identification of important
events in the network or on individual hosts. For instance, the
sequence of messages of an ongoing Secure Shell (SSH) brute-
force attack illustrates the demand for an automated rating
of messages. During a brute-force attack, the SSH daemon
generates a log entry for each invalid login attempt. These mes-
sages are delivered to a centralized syslog server, indicating
individual failed login attempts. However, the relatively small
number of such specific events might become lost in the large
total number of syslog messages received from all distributed
sources. At the same time, a single message indicating that an
SSH login attempt was successful will definitely be hard to
identify among the huge number of syslog messages denoting
failed login attempts while the brute-force attack is running.
Figure 2 shows a visualization of authentication messages
collected by a central syslog server used to monitor servers,
network devices and storage systems for students’ web servers
at the University of Applied Sciences Fulda.

The resulting graph gives an overview of the general
behavior and basic noise of these logging messages. The
Holt-Winters [25] algorithm was used to compute and adapt
a confidence band over time, which represents the normal
behavior of the time-series data. If specific values are violating
this confidence band for a number of periods in a given
time window, these values are marked as failures or aberrant
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Fig. 2. Holt-Winters based vertical bands representing high occurrences of
SSH login attempts resulting in ”Failed password” messages.

behavior. This is also visualized in the graphical output by
yellow vertical areas (vertical bands in the graph). In this
example, the peaks were results of distributed brute-force
attacks with common user account names, such as root, admin
or test.

An IT operator analyzing the logging data, however, is
not interested in displaying each individual login attempt, but
rather wants to know whether the brute-force attack led to
a successful login into one of his systems. To answer this
kind of question, the syslog messages must be filtered for
data of corresponding SSH daemons and searched for failed
login attempts that are followed by a successful login. Thus, a
system registering a large number of failed login attempts, and
finally a successful login, might experience a successful brute-
force attack, while the possibility of an attack rises along with
the number of failed login attempts. The time-consuming and
costly search for attack patterns like this can be simplified by
an automated rating of syslog messages. To identify individual
messages describing similar events from different operating
systems and platforms, it is required to normalize syslog data
before correlating and persisting them. For the lookup of SSH
login attempts, it is sufficient to examine single individual
syslog messages. In order to identify a completed attack, a
sequence of these matching messages must be investigated. If
the conditions for a successful attack are met, it is possible
to generate a new prioritized syslog message to support the
immediate detection of these security threats in the network.
By using the flexibility of structured data in syslog messages
we described earlier, it is possible to add certain tags to
the parsed or newly generated messages. These tags may be
used later on, in order to support analysis by allowing the
application of filters, e.g., to separate newly injected messages
from the normal syslog messages after they are persisted all
together into the Elasticsearch cluster.

B. Consolidating Logging Data from Distributed Services

A second goal of our work was to reduce the number
of messages that actually get persisted into the Elasticsearch
cluster. This may seem subordinate against the backdrop of
increasing computing performance and concepts like BigData.
Reducing the actual amount of data that gets persisted, how-
ever, still results in faster and easier analysis, even when using
the novel NoSQL techniques. In practice, we actually observe
the reduction of stored messages in long-term storage as a

requirement for many companies. Such reduction techniques
basically delete messages of a certain age or do not persist
messages below a certain severity. However, this results in
a loss of valuable contextual information, which is why we
would argue that such simple consolidation mechanisms are
not practicable for logging data. Our novel approach first
provides a grouping mechanism, where identical or recurring
events are summarized. Based on those groups we are able
to generate new syslog messages containing a dense represen-
tation of all the valuable information of the initial messages,
thus allowing us to actually drop those messages without losing
any contextual information. Using our solution, it is possible
to reduce the number of messages that need to be stored at the
central database server, and therefore we are able to improve
the performance of this system without losing information.
Furthermore, it is possible to manipulate the severity of the
newly generated messages, in order to increase their value for
later analysis.

An example application of such modification of syslog
messages might be the detection of the previously mentioned
brute-force attack, which results in a flood of low-priority
security event messages. By generating a single message of
high priority — telling an administrator what the actual attack
looked like, judging from the number of login attempts, the
duration of the attack and the actual result — we produce
information that supports estimating the situation and the next
steps to be taken. In addition, regardless of waiving all the
failed login attempts at the central database server, further
investigation is still possible by performing an exact analysis
of the attack using the logfiles stored at the individual server
that was under attack. A second example of consolidating
messages would be the correlation of application access logs.
For instance, in a cloud environment new machines will be
spawned on demand, so several systems provide a single
service in a cooperative way. An example could be a number
of dynamically started Hypertext Transfer Protocol (HTTP)
servers receiving requests via a load balancer. The requests on
the individual servers will be logged to the centralized syslog
server, but these individual events must be aggregated, e.g.,
to support the decision process of starting or stopping virtual
machines running the HTTP servers. The access log messages
can be correlated to an access count per timeslot and it is
also possible to count active HTTP servers by differentiating
distinct logging sources. As already illustrated in the previous
example, it is again not necessary to persist the original access
messages. The correlated logging information is useful to
evaluate the load on all servers and can also be used to
determine whether running machines have to be stopped or
new ones need to be started.

Taking the logging information into account, a confident
decision can be made that goes beyond the possibilities of
network-based load balancing and failover techniques. A more
generic approach would be to use correlation engines like
Drools to count messages matching a set of rules for specific
timeslots and to generate diagrams for these kinds of messages.
This approach allows one to compare different timeslots and
to answer questions like “Were the same number of cron
jobs executed on Monday and Tuesday?”. Also, a visual
representation of these results, e.g., as presented in [26], could
be possible with the benefit of easily identifying anomalies at
first sight.
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C. Identifying logging events of interest

When trying to automatically process syslog messages with
the objective of evaluating their importance by using corre-
lation techniques, one has to start by identifying sequences
of messages that point to certain events. We did a manual
analysis of such events by using large amounts of syslog in-
formation provided by the General Students’ Committee of the
University of Applied Sciences Fulda and a number of virtual
servers we previously set up to collect and simulate specific
attacks. To analyze the dataset, we implemented a small Java-
based application that counts similar messages in five-minute
intervals based on regular expressions. The results of these
calculations are stored in a round-robin archive using RRDtool
[27], which is able to generate a graphical representation of the
data. This simplified approach to represent logging data in a
diagram allows us to use algorithms applicable for time series
data, e.g., forecasting or anomaly-detection algorithms. The
RRDtool utility itself implements an exponential smoothing
algorithm for forecasting and anomaly detection also known as
Holt-Winters Aberrant Behavior Detection [28]. We used this
algorithm to identify aberrant behavior in the syslog data of
specific applications we monitored. An example of this method
based on counting warning messages from the postfix/smtpd
process on mail servers is shown in Figure 3. Investigating
the logging data to find the cause of the peaks indicated in
the graph led back not only to temporary name resolution
problems, but also to authentication issues on this host.

Fig. 3. Holt-Winters based vertical bands representing high occurrences of
postfix/smtpd warning messages.

On one hand, the visualization of logging data, as shown
in Figure 3, can be used to support network operators trying
to find and investigate problems in the monitored network.
On the other hand, it is a convenient approach to identify
interesting logging data in order to construct suitable rules for
aggregation, correlation, and of course anomaly detection. It is
also imaginable that this use of time-series algorithms provides
a way to realize an automated generation of rulesets for
detecting aberrant behavior in logging data. One prerequisite,
however, is the feasibility of such algorithms to work on
highly-structured data, which allows them to unambiguously
identify certain events, as a similar method shows [29].

V. IMPLEMENTATION OF LOG CORRELATION AND
CONSOLIDATION IN CLOUD ENVIRONMENTS

To facilitate the analysis of security event messages in
distributed cloud environments and to reduce the amount of

logging data that needs to be permanently stored, we presented
a log correlation and consolidation prototype in [1]. In this
section we will give an overview of the functional principle of
the prototype and an example application of our solution by
showing the correlation of logging data being generated during
an SSH brute-force attack as described in Section IV-A.

A. Mode of Operation

As we already mentioned, our prototypical implementation
uses rsyslog [15] as the central syslog server, which receives
and normalizes syslog messages originating from distributed
sources. Since the majority of the compute cloud providers
offer syslog-based logging in their VMs, our entire approach
using rsyslog can be used to correlate the logging data across
multiple and heterogeneous cloud environments (e.g., cloud
federations or hybrid clouds). The Complex Event Processing
(CEP) Engine Drools Fusion [30] is used as a basis for a cor-
relation and consolidation prototype, which was implemented
in Java. Finally, we use the Elasticsearch [17] document store
for permanent persistence of all the received and correlated
syslog messages.

As pictured in Figure 4, syslog messages are sent from the
distributed clients — either virtual machines or physical hosts
— to the rsyslog server using a TLS connection over TCP.
While this will slightly increase the overhead for processing
and transmitting the messages, it guarantees reliable delivery
as well as authenticity and privacy of the received messages.
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Fig. 4. Correlation and aggregation of logging data at a central syslog server.

Normalization of the received messages is performed at
the central syslog server using liblognorm [31], a high-
performance log normalization library for rsyslog. The use
of this library enables us to parse incoming messages from
different sources by specifying normalization rules in a syntax
similar to regular expressions before relaying the messages
to the designated output module. From the parsed messages,
we then extract and process valuable information and add
it back to the original syslog message using an RFC 5424
[12] compliant structured log format. It is obvious that this
normalization step is needed to assure that messages originat-
ing from different clients, which may use a slightly different
message format for the same type of event, can be handled
in a unified way. More important, the identification of diverse
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messages having the same meaning in terms of correlation
can be identified and denoted by adding unique tags to the
structured information of the original messages, which can
easily be interpreted by our correlation prototype.

Listing 3 shows an example of rules that can be used with
liblognorm to normalize syslog messages indicating successful
or failed SSH password login attempts. During normalization,
the values for username, source IP address and TCP port
number as well as the SSH protocol version used in the
authentication attempt are identified and provided as structured
data in the processed syslog messages. Most important, a list
of tags (labels) can be added to the message, indicating the
type of event that was denoted by the parsed message. In our
example, the tags SSHSUCCESS or SSHFAILURE are added
to messages depending on the type of event, whereas these
tags may be assigned to multiple various messages pointing
to the same security event. We illustrate this by the two latter
rules, which both get assigned the tag SSHFAILURE. For
performance reasons, the complete rule base gets merged into
an optimized parser tree by liblognorm, allowing effective
analysis of the received messages.

r u l e =SSHSUCCESS : Accep ted password f o r %u s e r :
word% from %i p : ipv4% p o r t %p o r t : number% %
p r o t o c o l : word%

r u l e =SSHFAILURE : F a i l e d password f o r %u s e r :
word% from %i p : ipv4% p o r t %p o r t : number% %
p r o t o c o l : word%

r u l e =SSHFAILURE : F a i l e d password f o r i n v a l i d
u s e r %u s e r : word% from %i p : ipv4% p o r t %p o r t :
number% %p r o t o c o l : word%

Listing 3. Example normalization rules for matching SSH password
authentication attempts.

The normalization step still has a heavy impact on per-
formance due to the string matching operations that must be
performed on all incoming syslog messages. For this reason,
we make use of the ruleset feature in rsyslog, which allows
us to have multiple input queues for message submission. In
each queue we apply only a subset of specific normalization
rules based on the type of the incoming messages. On the
one hand, this minimizes the number of rules that need to be
matched against the incoming messages; on the other hand,
it allows us to distribute our whole prototype over multiple
cloud instances as described in more detail in Section VI.
The decision to use rulesets would also allow us to forward
messages directly to the storage back-end in case they are
not affected by correlation. However, an evaluation study we
present in Section VII shows that in case of an Elasticsearch
back-end this has a negative impact on performance.

After normalizing, the logging information is serialized
using JavaScript Object Notation (JSON) and forwarded
to an appropriate rsyslog output module, which connects
to our correlation prototype. Listing 4 depicts an example
of a structured syslog message, providing the most useful
information from the originating syslog message through a
data substructure and the type of event through its list of
tags. The prototype embodies a correlation engine, which
analyzes the messages and also instantly transfers them into

an Elasticsearch cluster for permanent persistence. Therefore,
our prototype utilizes the Elasticsearch Java API to become
part of the cluster as a transparent node not storing data itself,
but forwarding it to an appropriate data nodes.

{
” d a t a ” : {

” p r o t o c o l ” : ” s sh2 ” ,
” p o r t ” : ”54548” ,
” i p ” : ” 1 0 . 0 . 2 3 . 4 ” ,
” u s e r ” : ” r o o t ”

} ,
” t ime ” : ”2014−01−29T16 : 0 6 : 0 0 . 0 0 0 ” ,
” h o s t ” : ” t e s t . example . com ” ,
” f a c i l i t y ” : ” a u t h ” ,
” s e v e r i t y ” : ” i n f o ” ,
” program ” : ” s shd ” ,
” message ” : ” F a i l e d password f o r r o o t from

1 0 . 0 . 2 3 . 4 p o r t 54548 ssh2 ” ,
” t a g s ” : [ ”SSHFAILURE” ]

}

Listing 4. Structured syslog message of a failed SSH password authentication
attempt.

Our implementation of the correlation prototype is based
on the Complex Event Processing (CEP) Engine Drools Fu-
sion [30], which supports temporal reasoning on a stream of
data, allowing us to extend events with a property containing
the time of occurrence provided by the syslog message’s
timestamp value. This enables us to define rules that may
consider a number of similar messages in a specific time
interval when evaluating the importance of incidents at the
monitored systems. The rules can easily be extended to provide
arbitrarily complex correlation and consolidation techniques. A
more detailed example of possible rules used in the correlation
engine is shown in Section V-B.

Drools automatically keeps track of all events that any of
the rules may apply to, using an in-memory cache. Messages
that do not match any of the rules, in contrast, will be removed
from the in-memory cache. However, messages matching at
least one rule are correlated, and the result is stored with a flag
representing the successful correlation and a reference to orig-
inal messages (that have been correlated) in the Elasticsearch
cluster. By periodically searching for successful correlation
flags in the Elasticsearch cluster and pruning the original
messages they refer to, we can achieve a consolidation.

B. Example Application

As an example application of our prototype we are showing
the correlation of logging data being generated during an SSH
brute-force attack as described in Section IV-A. The aim is
to generate a new syslog message of high priority in the case
of a successful SSH login, which follows immediately after
a certain number of failed logins, hence pointing to an SSH
brute-force attack, which possibly succeeded. The detection of
this scenario should be carried out completely autonomously
by our prototype. In order to detect such a scenario, first we
need to match the corresponding syslog messages of failed and
successful SSH logins. These messages need to be isolated and
filtered from the stream of logging data originating from the
syslog server to trigger certain operations on them. Since we
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already normalized incoming syslog messages at the central
syslog server using liblognorm, we can easily recognize all
interesting events by their list of tags, which we previously
added to the structured data values of the messages. An ex-
ample of an unsuccessful SSH authentication attempt message
including its additional tag was already shown in Listing 4.

To accomplish the detection of a successful SSH brute-
force attack we utilize the temporal reasoning features of
Drools Fusion [30], which allow us to construct rules that
describe particular events by a sequence of specific syslog
messages within a certain time. First, we need to detect an
ongoing SSH brute-force attack, before we can then search
for subsequent successful logins. Therefore, we specify a
rule entitled ”SSH brute-force attempt” as shown in Listing
5, which will match syslog messages containing the value
SSHFAILURE in the list of their tags. Furthermore, by
evaluating the values of the producing host and the username
used to authenticate, we build up multiple in-memory queues
of various authentication attempts. If we can match a series
of ten failed messages within a one minute time window
concerning a specific user account at one specific system, we
assume a certain chance of an ongoing brute-force attack.
Our current implementation shown in Listing 5 then retracts
all messages from the time frame and generates a new syslog
message with the facility ”security” and severity ”warning”,
containing the message ”SSH brute-force attack” together
with further additional information. Beyond that, the new
value BRUTEFORCE is added to the list of message tags,
allowing us to easily identify the message in a second rule
described below.

r u l e ”SSH b r u t e−f o r c e a t t e m p t ”
no−l oop
when

Message ( $ h o s t : hos t ,
$ u s e r : d a t a [ ” u s e r ” ] )

$ a t t s : CopyOnWri teAr rayLis t ( s i z e >= 10)
from c o l l e c t (

Message ( t a g s c o n t a i n s ”SSHFAILURE” ,
h o s t == $hos t ,
d a t a [ ” u s e r ” ] == $ u s e r )

ove r window : t ime (1m) )
t h e n

Message l a s t = ( Message ) $ a t t s . g e t ( $ a t t s .
s i z e ( ) − 1) ;

f o r ( O b j e c t f : $ a t t s ) {
r e t r a c t ( f ) ;

}

i n s e r t ( m e s s a g e F a c t o r y ( l a s t )
. s e tT ime ( l a s t . ge tTime ( ) )
. s e t S e v e r i t y ( Message . S e v e r i t y .WARNING)
. s e t F a c i l i t y ( Message . F a c i l i t y . SECURITY)
. s e t M e s s a g e ( ” SSH b r u t e−f o r c e a t t a c k ” +

” f o r @{ d a t a . u s e r } from @{ d a t a . i p }” )
. addTag ( ”BRUTEFORCE” )
. message ( ) ) ;

end

Listing 5. Drools fusion rule to detect running SSH brute-force attacks.

It would also be possible to postpone the persistence of
the logging data until the correlation is finished, to store all

messages related to the attack with a higher priority (e.g.,
emergency) in the Elasticsearch cluster. Another possibility
would be to persist the generated messages in addition to
the existing ones instead of retracting the original messages.
As described earlier, messages still needed for correlation are
automatically kept in the in-memory cache by Drools Fusion
according to the rules we defined, whereas messages that no
longer match any of the rules get removed from the cache,
self-controlled by Drools.

A second rule ”Successful SSH brute-force attack”, which
we illustrate in Listing 6 matches successful SSH logins
after a brute-force attempt was recognized. This is done by
detecting a successful authentication message with the tag
SSHSUCCESS within a ten-second window after a message
containing the tags SSHFAILURE and BRUTEFORCE was
recognized, containing the same username respectively. In that
case, the message indicating the successful login is altered
by increasing the severity to ”emergency” and adding another
value ”INCIDENT” to the list of tags, to ease traceability of
the security event message. Additionally, a short description
is appended to the textual message to make it more meaningful.

r u l e ” S u c c e s s f u l SSH b r u t e−f o r c e a t t a c k ”
no−l oop
when

$ a t t : Message ( t a g s c o n t a i n s ”SSHFAILURE” ,
t a g s c o n t a i n s ”BRUTEFORCE” ,
$ h o s t : hos t ,
$ u s e r : d a t a [ ” u s e r ” ] )

$suc : Message ( h o s t == $hos t ,
d a t a [ ” u s e r ” ] == $use r ,
t a g s c o n t a i n s ”SSHSUCCESS” ,
t h i s f i n i s h e s [10 s ] $ a t t )

t h e n
$ a t t . addTag ( ” INCIDENT ” ) ;
$ a t t . s e t S e v e r i t y ( S e v e r i t y .EMERGENCY) ;
$ a t t . s e t M e s s a g e ( $ a t t . ge tMessage ( )

+ ” [ b r u t e f o r c e ] ” ) ;

u p d a t e ( $ a t t ) ;
end

Listing 6. Drools fusion rule to detect successful SSH brute-force attacks.

Figure 5 illustrates how the detection of a successful
SSH brute-force attack is displayed in the user interface of
our prototype. In the example shown, the correlated message
has been logged in addition to the individual login attempt
messages. Obviously, the increased severity of the security
event is more likely to be recognized by an operator inspecting
the syslog messages than events with the regular severity info.

Fig. 5. Extract of our prototype’s user interface showing the detection of a
successful SSH brute-force attack.
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Instead of altering the matching syslog message, it would
also be reasonable to generate a completely new one as shown
in Listing 5. An even more interesting approach that we briefly
discuss in Section VIII is to trigger an event in an existing
network management system like OpenNMS [32].

VI. USING THE PROTOTYPE TO ENABLE LOG
CORRELATION IN AN OPENSTACK CLOUD ENVIRONMENT

The in-memory cache of Drools Fusion limits the number
of events our engine is able to correlate. Also, a single engine
instance limits the scalability, which is a major drawback in
cloud environments that should rather scale elastically both
up and down with respect to performance. To overcome
these limitations and also to test our implementation in a
cloud environment, we integrated our correlation engine in a
Rackspace Private Cloud [33] test-bed based on OpenStack
Havana [34]. Our syslog correlation prototype shown in Figure
4 was set up as an OpenStack Nova VM instance using an
Ubuntu 12.04.3 LTS Cloud Image. Subsequently, Java 1.7 and
the code for our prototype (named jCorrelat) were installed.

A. Scalability of our prototype in an OpenStack environment

While the CPU performance and memory capacity of
the VM instance could be resized using OpenStack Nova,
or respectively the hypervisor beneath it, a comprehensive
scale-out solution in the cloud demands the ability to scale
over multiple instances. Hence, multiple instances running our
prototype should be launched. To balance the load across these
VM instances, an additional implementation that distributes the
log messages across the instances was evaluated. Furthermore,
we considered as an option using the load-balancing facility of
OpenStack’s networking component Neutron. While both so-
lutions are feasible, the practicability to enhance the scalability
of our prototype using these approaches is rather limited. This
is due to the fact that, if the correlation were carried out across
multiple VM instances, these instances would need some sort
of shared or distributed memory. While there are solutions for
Java-based, distributed, in-memory data stores, e.g., Terracotta
BigMemory [35] or Hazelcast [36], these solutions are rather
expensive and also increase the complexity of the management
of our solution.

Therefore, we chose a simpler approach that forwards
logging information to the corresponding VM instance based
on the application it was received from. To accomplish this
distribution, multiple output modules were defined in the
centralized rsyslog logging server. Figure 6 depicts the us-
age of multiple VM instances of our correlation engine in
an OpenStack test-bed. Each instance receives logging data
for a specific application. If the correlation of logging data
originating from different applications is required, logging
information from multiple applications could be sent to a
single VM instance as shown in Figure 6. If the correlation
needs more memory, e.g., due to complex rulesets that need
to store the logging data for a long period in the in-memory
database, distributed memory techniques as described above,
e.g., using [35] or [36] could be added. This way, the in-
memory cache for the correlation engine stores the logging
data across multiple VM instances. Using queries to external
data stores for the correlation, e.g., searching in the persisted
messages in Elasticsearch, did not prove successful in our tests,

as the latency added to each incoming log message is too
high to handle bursts of logging information coming from the
applications.

Fig. 6. Scale-out solution for our correlation engine using OpenStack.

As described in Section V, our correlation engine is based
on Drools Fusion. Though discussions about a distributed setup
can be found in the Drools forums (e.g., the discontinued
Drools Grid), Drools is currently using an extended Rete algo-
rithm [37] for its rule engine that relies on shared memory and
is therefore limited to a single machine. Hence, our solution
to use separate Drools VM instances in OpenStack Nova is
currently sufficient for our experiments. Another interesting
possibility could be the integration with the Storm distributed
and fault-tolerant realtime computation framework [38].

Since we presented our first research results in [1], the
OpenStack Havana release has brought two new components
that can be used for our distributed syslog correlation engine
shown in Figure 6. The first is Heat, which offers an OpenStack
orchestration API. Using this API, the setup we described in
Figure 6 can be implemented as a Heat template. This template
describes the entire environment and VM instance configura-
tion for our correlation engine prototype, hence allowing an
automatic deployment within an OpenStack environment. This
orchestration could also be combined with configuration man-
agement tools like Chef [39] that handle automatic preparation
of the operating system and our correlation engine within the
VM instance. Furthermore, Heat manages the lifecycle needs
of the instance, e.g., scaling instances up and down, but espe-
cially stopping and starting new ones. This way, Heat supports
an auto-scaling mechanism that enables us to automatically
start more VM instances of our correlation engine, e.g., in
case of an increasing logging volume.

The auto-scaling mechanism can also include the distribu-
tion of logging data originating from a specific application. For
example, it is possible to include the name of the application
in the name of the VM instance, which can then be used by the
central logging server to distribute the logging data to specific
correlation instances. As the auto-scaling could lead to high
resource usage, the maximum number of instances should be
limited. Also, an accounting mechanism for the VM instance
usage is necessary. Such an accounting mechanism is offered
by another component included in OpenStack Havana, named
Ceilometer, which is closely integrated with Heat. Ceilometer
offers a standardized interface to collect measurements and
accounting information within OpenStack. This opens up an
interesting approach to ensure the accounting of our instances.
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A promising concept is also proposed by the integration of an
Elasticsearch storage driver for Ceilometer in one of the forth-
coming OpenStack releases [40]. This way, a standardized way
to collect logging information in an OpenStack environment
could be combined with the advanced log analysis and long-
term storage capabilities offered by Elasticsearch as described
in Section II-C. In [40], syslog and logging information coming
from other applications within an OpenStack environment has
already been considered. If this project would find its way into
a new version of OpenStack, we could integrate our correlation
engine in between, thereby getting a standardized interface to
log data in an OpenStack environment, while also enabling the
correlation and consolidation of logging events.

B. Integration of non-syslog logging data

Regarding the OpenStack enterprise cloud test-bed we
described in the previous section, besides consuming syslog
based logging data, OpenStack also produces its own individ-
ual type of log files. OpenStack log files use a structured log
format that contains a timestamp, the process ID, the severity
and the log message in each line [41]. The log message often
spreads across multiple lines as the log is filled with Python
tracebacks. One way of using this log data in our correlation
engine would be to send it directly to our prototype. As the
structured log format used by OpenStack is not fundamentally
different from the syslog format described in Section II-B, the
adaptation of our prototype to consume OpenStack’s Python-
based logs is easy to implement. However, the most appropriate
way to integrate OpenStack logging in our correlation engine
is the configuration of OpenStack to use centralized logging
to our rsyslog server, as described in [41]. This can also be
implemented for a variety of other application-specific non-
syslog logging mechanisms, e.g., log4j, log4net [42]. Due to
syslog being the de-facto standard especially for logging in
Linux based environments, a large number of application-
specific log files and formats can be sent to or consumed
by current syslog server implementations. Another benefit
of converting application-specific logs to syslog messages,
beyond the centralization of the logging data, is normalization
as described in Section V and an overall decrease in complexity
due to the unified logging.

C. Correlation with information from external management
systems

While logging data that is used for the correlation in
our prototype should be converted to a syslog-based format
(as described in the previous section), information originating
from management systems like network management and mon-
itoring, system management, service management or facility
management could be valuable to correlate events in the log
with events from these external management systems. An
example could be the physical location of the node that runs the
service in a data center or context information like scheduled
downtimes for a service during which certain events should be
ignored. This sort of filtering also increases the performance of
the correlation as rules could be tailored to take such contextual
factors (e.g., downtimes) into account.

Since we use JSON to send the logging data to our
correlation prototype, as described in Section V, events coming
from external management systems could be injected using a

simple TCP or web-service interface. Such a service could be
used either to push events from the management system to our
correlation engine prototype or to periodically pull information
from the management systems. In our OpenStack cloud envi-
ronment, for example, we use OpenNMS [32] as a network
management system that collects monitoring information from
the systems and network equipment. By using the events from
external network, system and service management systems,
the output of the correlation engine could also in turn be
used as a feedback for these systems. One example could be
the automatic creation of a trouble ticket if a ruleset in our
prototype is positively evaluated. Normally, such an automatic
creation could lead to a large number of open tickets, but
due to the correlation and especially consolidation of events
offered by our prototype, the quality of the information and
integration with trouble ticket or service management systems
could instead be improved.

VII. PERFORMANCE EVALUATION

In this section, we present the results of our performance
evaluation study in which we monitored the number of pro-
cessed syslog packets considering various storage back-ends
for permanent data persistence.

A. Test-bed setup

For the performance evaluation we set up a test-bed using
the Rackspace Private Cloud as delineated in Section VI.
Our prototype runs on an Ubuntu 12.04.3 LTS Cloud Image,
which has been assigned four Intel i7 CPU cores at 2.80
GHz, a total of 8 GB memory and a solid-state drive (SSD)
storage device. On the same system we have set up rsyslog as
the central syslog server together with liblognorm, which we
utilize to apply the normalization rules described in Section
V. Permanent persistence of syslog messages is done using
various storage back-ends that are also set up on the same
virtual machine and available to our prototype and the rsyslog
server through a TCP socket.

The transport of syslog messages from distributed sources
is simulated using loggen [43], a syslog message generation
tool provided by the syslog-ng project for testing purposes,
which has been installed on a remote machine. The tool may
be configured to generate random syslog messages as well
as injecting real messages by doing loop-reads on a prepared
file. For message submission we provide a dedicated 1 Gbit/s
Ethernet connection to the generating machine, connecting
it over TCP. The use of any security features like TLS or
signatures was renounced in our test in favor of throughput
performance.

In order to compare the performance impact of our corre-
lation and consolidation prototype, we set up various storage
back-ends and ran the test explained below several times,
each time configuring an appropriate rsyslog output module.
The individually used storage back-ends and the corresponding
output modules are presented in Table I.

B. Evaluation of the test-beds’ peak performance

According to Gerhards [44], the rsyslog server is capable of
processing up to 250k messages per second over the network.
To prove the correctness of our test-bed setup, in a first
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TABLE I. UTILIZATION OF STORAGE BACK-ENDS AND RSYSLOG
OUTPUT MODULES

Backend type Output module Description

File omfile Persist messages to a single file on disk

MySQL ommysql Persist messages into MySQL using the cor-
responding TCP socket

Elasticsearch omelasticsearch Persist messages into Elasticsearch using the
corresponding REST API

jCorrelat (1) omtcp Forward messages to our prototype, which
persists them into Elasticsearch without ap-
plying any correlation rules

jCorrelat (2) omtcp Forward messages to our prototype, which
persists them into Elasticsearch after applying
the appropriate correlation rules

experiment we examined the actual peak performance without
any bottlenecks like normalization and correlation or disk I/O
latency. Therefore, we configured loggen to generate random
syslog messages of different sizes (256, 512 and 1024 byte)
and submit these to the central syslog server as fast as possible
using six concurrent TCP stream-sockets. The syslog server
immediately forwards the received messages to the /dev/null
device using the file output module and does not apply any
further processing like message normalization or correlation
techniques.

Figure 7 depicts our result, showing that the number of
messages processed by the central syslog server is dependent
on the message size. At an average message size of 512 byte,
we get rather close to the number that was stated in [44]. In
addition, the graph on the right side of Figure 7 illustrates
that we are able to saturate the 1 Gbit/s Ethernet link to about
85.5% of capacity in all of the test cases.

Fig. 7. Maximum syslog packet throughput (left) and bandwidth utilization
(right) without any normalization and correlation.

C. Evaluation of the correlation prototype performance

This time, our test setup uses liblognorm at the central
syslog server to apply normalization rules as described in
Section V. For message generation we again use loggen, which
we advised to do loop-reads on a prepared file containing
real syslog messages that were previously collected in our
test environment. The file contains a total of 20,000 messages
including a vast variety of different syslog facilities, one-third
of which are authentication related messages including various
SSH brute-force attempts.

Figure 8 summarizes the results of our tests. It clearly
shows that the best performance can be achieved when writing

to a single syslog file on disk, which is not surprising as it
does not involve the overhead of sending messages over a TCP
socket, like in the other test cases. However, the use of the file
storage back-end is included only for comparison, as it appears
obvious that its application is not practicable in a centralized
syslog environment due to the huge amount of messages
from different sources and the lack of any reasonable analysis
capabilities. Also, when persisting messages into MySQL, we
experienced good performance, but analyzing the logging data
afterwards is not easy as the read performance decreases with
the number of stored messages. A countermeasure would be
indexing, but this in turn creates a heavy burden on write
performance. Message persistence into Elasticsearch was done
using rsyslog’s corresponding output module, which uses the
Elasticsearch representational state transfer (REST) interface
to insert logging data. As shown in Figure 8, the write
performance of this method is poorer than writing to MySQL,
most likely because the REST interface involves the overhead
of using HTTP when submitting messages.

Fig. 8. Comparison of message throughput with different storage back-ends.
Our prototype appears twice showing its performance without any correlation
rules installed (jCorrelat (1)) and with the rules for SSH brute-force detection
applied (jCorrelat (2)).

In the case of sending messages to our prototype, we first
measured the message throughput without performing message
correlation by simply removing any rules, hence operating in
transparent mode. In contrast to using the Elasticsearch REST
interface directly via an appropriate rsyslog output module,
we get much better performance when using our prototype
without applying any correlation. The reason is the usage of
the Elasticsearch Java API in our prototype, which allows it
to join the Elasticsearch cluster, acting as a transparent node
by simply forwarding all messages to the actual data nodes.
This way, we are able to decrease the overhead of sending via
REST and consequently increase performance.

Finally, when activating message correlation in our pro-
totype as described in Section V-B, we achieve roughly the
same throughput we would get by sending messages using
the Elasticsearch REST interface or the MySQL back-end,
but with the benefit of increased significance of the persisted
security event messages. For this reason, we argue that the
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application of our prototype is perfectly suitable for logging
environments that are already using one of the discussed SQL
or NoSQL back-end types. In addition, a feature we described
briefly in Section V-A but did not use in our performance
evaluation is rsyslog’s rulesets facility. It allows normalization
rules to be applied only to messages matching a certain
ruleset (i.e., matching the syslog facility auth), which would
reduce the application of normalization rules to only one-
third of the syslog messages we sent to our prototype. As
normalization uses string parsing operations, which are known
to be CPU intensive, using this method would allow us to
reduce normalization overhead and increase performance even
further.

VIII. CONCLUSION AND FUTURE WORK

In the previous sections, we presented a solution to auto-
matically correlate and consolidate syslog messages containing
logging data from distributed sources in cloud environments.
Besides evaluating the requirements for such implementations
and defining an appropriate concept, a prototype was devel-
oped. The prototype addresses the requirements for correlation
and consolidation of distributed logging sources in today’s
enterprise cloud environments. It supports the proper conden-
sation of log messages by grouping individual messages. The
achieved reduction improves the performance of processing
and analyzing logging data, especially in distributed environ-
ments with many systems (typically virtual machines) sending
similar logging information.

Existing monitoring solutions could be enhanced to use the
presented prototype as a filter, improving the quality and rele-
vance of the logging data (e.g., by using escalation techniques,
traps, or sending messages regarding detected events) as shown
in the example of an SSH brute-force attack in Sections
IV-A and V-B. The integration of the prototype with existing
network monitoring tools (e.g., OpenNMS, Splunk) is one of
the next steps for our research. An interesting starting point
could be their interfaces to correlate events, i.e., to perform a
root-cause analysis, that could be extended to consume relevant
events that were filtered from the distributed logging data by
our prototype.

A current limitation regarding the amount of logging data
that can be correlated is the available memory. Theoretically,
the prototype could also use data that is already stored in the
NoSQL storage for the correlation to overcome this limitation.
While this approach has a negative impact on performance, it
could on the other hand dramatically increase the accuracy
of complex correlation over long-term data. The enhancement
could be easily implemented using Elasticsearch’s API not
only for the analysis but also while filtering and before
persisting the logged data in the NoSQL database. In the next
version of our prototype, we will implement this extension and
evaluate the performance impact (regarding latency to store a
log entry and overall throughput of the correlation engine). For
example, we could integrate this approach into the OpenStack-
based cloud environment presented in Section VI.

Our predefined ruleset outlined in this paper can easily be
generalized to fit the requirements of other use cases. In our
ongoing evaluation we will therefore contrast the results of
our prototype to comparative work being presented in [22],

[23] and [24]. Another possible topic for future research is
the integration of existing knowledge-based systems and auto-
mated reasoning as developed, e.g., for network anomaly and
intrusion detection systems (IDS) [45]. Even more interesting
could be the integration of existing work that has been pub-
lished regarding the detection of anomalies in syslog messages.
Makanju et. al. [46] describe a promising solution to detect
anomalies in logging data of high performance clusters (HPC).
Administrators can confirm the detected anomalies to correlate
them with error conditions and trigger a consolidation. These
techniques could also facilitate the definition of correlation
rules as patterns are detected without prior configuration.

Syslog-based event forecasting, as described in [29], could
be another promising option for our prototype. The prototype
could be used to enhance the information being evaluated
to generate the forecast, but can also consume the forecast-
ing data. This way, existing rulesets could be augmented.
Furthermore, the definition of rules could be simplified by
automatically deriving rules from the forecasts, which have
been submitted to our prototype. A starting point for further
research could be the use of confidence bands generated by
the Holt-Winters algorithm shown in Section IV-C. To detect
failures and error conditions in cloud environments this has
already been proposed in [47]. We will evaluate the extension
of this approach to allow for the correlation and aggregation
of logging data in enterprise cloud environments.

Since we published our first research results in [1], Amazon
Web Services released the Kinesis cloud service, which offers
real-time processing of streaming data at large scale [48].
While this solution seems to offer a promising alternative
for the correlation and consolidation of logging data within
the Amazon Cloud, moving large amounts of logging data
from enterprise clouds towards Amazon presents an obstacle.
Additionally, Kinesis is based on streaming, rather than tem-
poral reasoning or complex event processing as described in
Section V-B. The scalability of Kinesis, however, is paramount,
and we are evaluating integration of techniques like Twitter
Storm [38] in our solution. In this respect, Esper [49] also
presents an interesting alternative to Drools Fusion and offers
high scalability when used in combination with Storm. The
visualization and analysis of logging data in an Elasticsearch
cluster could also perhaps be improved by enabling time-based
comparisons and corresponding plots using Kibana [50], which
integrates seamlessly with Elasticsearch.
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