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Abstract—Surgical tool tracking is an important key func-
tionality for many high-level tasks such as the visual guidance
of surgical instruments or automated camera control. Readings
from robot encoders and the kinematic chain are usually error
prone in this kind of complex setup, but still allow for a
coarse pose estimation of the instruments in image space.
This information can be utilized to (re-)initialize image-based
tracking in case of tracking loss and supervise the tracking
process. Accounting for the difficult environmental conditions
in surgery, the choice of an appropriate tracking modality
is important. We have chosen the Contracting Curve Density
algorithm (CCD) that maximizes the separation of local color
statistics along the contour of a model in contrast to the
background. As an application example, the visual guidance of
laparoscopic instruments under trocar kinematic is presented.

Keywords-robotic surgery; minimally invasive surgery; instru-
ment tracking; visual guidance.

I. INTRODUCTION

This paper is an extended version of a conference paper
referenced in [1]. It details the formerly announced tracking
of surgical instruments and proposes an approach that
combines both pose prediction using kinematically derived
data and image-based tracking. The extracted position
of the instrument is then utilized for visual guidance, a
prerequisite for many automation scenarios.
Endoscopic surgery is a challenging technique and has
had significant impact on both patients and surgeons.
Minimally invasive surgery (MIS) techniques avoid large
cuts and patients profit from less pain and collateral trauma.
Therefore, the time of hospitalization and the infection rate
can be reduced. Unfortunately, surgeons have to cope with
increasingly complex working conditions. Long instruments
which are unfamiliar and sometimes awkward to operate
for the surgeon, are used through small incisions or ports
in the body of the patient to perform the intervention.
In contrast to the conventional open surgery, visual
access to the internal operating scenery is not feasible.
This constrains the visual perception to an endoscopic
view without an intuitive depth perception or hand-eye
coordination. The introduction of telemanipulators, such as
the daVinciTMmachine [2], has overcome these limitations
and is a remarkable example of the ongoing research. The

instruments can now be controlled remotely by a surgeon
sitting at a master console, which can be placed somewhere
in the operation theater. A stereoscopic endoscope provides
a 3D view on the situs and improves the perceptual
limitations of flattened images. The master console is
equipped with sophisticated input devices and provides an
intuitive handling of the surgical instruments (Cartesian
control without any chopstick effect). The robots at the
slave system offer as much freedom of movement as the
surgeon’s own hand would do in conventional open surgery.
Also immersiveness is often improved by means of haptic
feedback.

Recently, automation of error-prone and recurrent (sub-)
tasks that yield to the quick fatigue of surgeons and
noticeable account for a higher overall surgery time
have drawn the attention of researchers. Given that
knot-tying occurs frequently during surgery, automating
this challenging subtask is tackled by several groups
(e.g., [3]–[5]). Furthermore, techniques for assisting the
surgeon with visually guided instruments (see [6]–[9]) and
autonomously navigated endoscopic cameras have been
developed (e.g., [10], [11]). Visual servoed instruments are
a promising approach in robot-assisted surgery to introduce
autonomy and to overcome intrinsic system limitations,
often caused by calibration problems. Since visual servoing
uses feedback from one ore more cameras to guide a robotic
appendage, robust tracking of surgical tools is of particular
interest for this kind of application. Also for the reason of
documenting and benchmarking surgical interventions, and
to anticipate potential mistakes in the surgical workflow,
modeling and analyzing surgical procedures has become an
active field of research, whereat instrument tracking plays
an important role (e.g., [12], [13]).
Despite the manifold of challenges in minimally invasive
surgery and the above mentioned achievements in partially
autonomous navigation and manipulation, the visual
identification, segmentation, and tracking of operated
surgical tools during surgery is a crucial requirement for
developing techniques that assist the surgeon. As most of
the methods require position information of the surgical
instrument, a robust and precise automatic detection is
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the first step towards higher level functionality. In this
paper, we present an approach that allows for a markerless
tracking of surgical instruments and its application to visual
instrument guidance.
In literature, many of the proposed instrument tracking
approaches rely on image processing techniques that use
either pure color information or additional geometrical
knowledge. Wei et al. [10] analyzed the typical color
distribution in laparoscopic images to identify an adequate
color for optical markers that are attached to the distal
end of the instrument. The marker is segmented in HSV
color space and background noise is filtered at a rate
of 17Hz. Uckert et al. [14] includes additional shape
information about the shaft to fit a bounding box to the
color-classified pixels. In order to cope with the typical
camera distortion of endoscopes, two different shapes are
used: a trapezoidal for near-field cases and a rectangular
for far-field cases. In [15], it was taken advantage of the
metallic appearance of the shaft to track gray regions by
joint hue saturation color features. A seeded region growing
method was implemented, operating at 13fps. The fulcrum
is estimated with a series of images in order to project
an approximated instrument direction and shape into the
image. Voros et al. [16] also reduce the search space by
considering the insertion point of the instrument. At the
beginning of the procedure, the fulcrum has to be visible
in the image and is marked with a “vocal mouse”. They
state that any kind of surgical instrument can be detected
since no color information is used, but only the gradients
of the instrument edges, constrained by the incision point.
To enhance the computation speed, the image resolution
is reduced to 200 × 100 pixels. The precision of the
predicted tip position ranges around 11 pixels. The Center
for Computer Integrated Surgical Systems and Technology
(CISST, Johns Hopkins University, Baltimore) tracks the
articulated DaVinciTMinstruments. Burschka et al. [17] used
template images of the instrument to detect the position
of the forceps in stereo images, enriched with additional
information and orientation information derived from the
trajectory provided by the robot. The method works in real-
time, but they report that the kinematic data suffers from
significant rotational and translational errors. More recently,
the CISST reported a general purpose articulated object
tracker [18] and demonstrated its application to surgical
scenarios. The geometry and kinematics of the objects have
to be known a priori. The appearance of different body
parts is modeled by a class-conditional probability and
compared with the image after rendering the target object
geometry. So far, images are hand segmented to train the
appearance model and computation time is around 5sec per
frame at a resolution of 640× 480.

The remainder of this paper is as follows. In Section
II, the underlying hard- and software that is used for all

Figure 1. Hardware Setup. Ceiling mounted robots with surgical
instruments and master console

experiments is introduced. Section III outlines our tracking
approach that combines servo readings from the robot as
well as image analysis to robustly track surgical instruments
in image space. In Section IV, the tracking output is
applied to the visual guidance of the instruments. Finally, in
Section V, experimental results are presented. Conclusions
are drawn and future work is outlined in Section VI.

II. ROBOTIC SYSTEM

Several works that are engaged with computer vision
aspects in robot-assisted surgery are drawn on a simplified
environment. Either the system lacks an endoscopic camera
(that usually suffers from strong distortions) or the eval-
uation was performed within an unrealistic environment.
In the majority of cases dimensions of the workspace or
distances between camera and instrument are incorrect due
to a missing multi-arm setup or port-kinematics. Therefore,
the findings of this research project have been assessed
within a realistic scenario of robotic surgery [4].

A. Research platform for MIS

As illustrated in Figure 1, the slave manipulator of the
system consists of four ceiling-mounted robots which are
attached to an aluminum gantry. The robots have six de-
grees of freedom (DoF) and are equipped with either a
3D endoscopic stereo camera or with minimally invasive
surgical instruments, which are originally deployed by the
DaVinciTMsystem. The surgical instruments have 3DoF. A
micro-gripper at the distal end of the shaft can be rotated
and adaption to pitch and jaw angles is possible. Through
the aid of a magnetic clutch the instruments can be inter-
changed quickly for better handling. The mechanism will
also disengage the instruments if forces beyond a certain
level are exerted and prevents damage in case of a severe
collision. Forces exerting on the instruments are measured by
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strain gauge sensors and fed back to the operator by means
of haptic devices. The master-side manipulator is equipped
with a 3D display, some foot switches for user interaction
(such as starting and stopping the system or executing the
piercing process) and with the main in-/output devices,
two PHANToMTMhaptic displays. The devices are used for
6DoF control of the slave manipulator, but also provide
3DoF force feedback derived from the measurements at the
instruments. The control software of the system realizes
trocar kinematics, whereby all instruments will move about
a fixed fulcrum after insertion into the body.

B. Distributed Software Environment

The multi-tier software architecture of our system is
distributed over 3 standard PC’s: a simulation and control
PC, a vision PC (equipped with a NVIDIATMQuadro FX
580 graphics card) and one computer is connected to a
CAN network (cp. Fig. 2). The commands for the servo-
motors that control the joints of the instrument as well as
the data that is provided by the amplifiers of the strain gauge
sensors are communicated between the simulation PC and
the PC that is connected to the CAN network. The GUI of
the simulation environment comprises an interface to a 3D
model of the scene, which can be manipulated in real time.
Parameters of each model can be adjusted and joint angles
of the robots can be altered this way. New trajectories can be
generated by means of a key framing module, incorporating
a collision detection. On one hand, joint data is directly
sent to the robot hardware, on the other hand the poses of
the instruments and the robots are synchronized with the
“Vision PC” for further application in image analysis. For
this reason, enough computing power can be provided for
image analysis, i.e., instrument tracking, visual servoing or
augmented reality. Most of the image processing tasks run
in individual threads that have access to an image database,
which holds up-to-date images provided by the stereoscopic
endoscope.

C. System Calibration

Unfortunately, many possible error sources contribute
to a comparably high aberration between the real-world
hardware and the underlying CAD models of the simulation
environment. Camera calibration, exact mounting of the
surgical instruments (concerning the magnet coupling) and
even the instruments itself introduce quiet large errors.
For instance, the flexibility and play of the carbon fiber
shaft of the instruments and the gripper at the distal
end may vary approximately ±1.5cm (cp. Fig. 3(c)).
Furthermore, the ceiling mounting of the robots afflicts
several intrinsic aberrations, such as variations in the
dimensions of the elements and errors of mounting angles.
Since all errors sum up, the exact Cartesian position of the
distal end of the instrument deviates from the emulation.
In order to minimize all intrinsic errors and to establish the
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Figure 2. Software Architecture. The software of the system is distributed
across 3 PC’s that communicate via network connections

transformations between the individual system components
(such as the instrument, different robot bases, etc.) a precise
calibration has to be performed. However, an important
issue for the acceptance of robotic systems in the operating
theater are pre-calibrated components to avoid complicated
or long-lasting procedures during an intervention or ahead.

As mentioned above, the robots are mounted on a
gantry, assembled of profiled girders. Particularly the
coplanarity of the robot’s base relative to its attachment
cannot be guaranteed and is hardly to be measured. In order
to overcome intrinsic variations of the single aluminum
elements and errors of mounting angles, a calibration
between each of the robot basements is performed.
To align the basements of two robots R1 and R2 we employ
the following error model:

0
R1
T · R1

CT = 0
R2
T · R2

CT (1)

In this equation 0
R1
T is the position of the base of the robot

R1, expressed in global coordinates. In order to measure the
relative displacement between the robots a calibration frame
C in global coordinates is defined and the position and
orientation of this frame is measured in local coordinates
of each robot. The frame can be replicated by mounting
a precisely manufactured calibration trihedron of known
size on the flange of both robots. A number of points
M = (p1, . . . , pi) are labeled on a checkerboard calibration
plate that is positioned in-between the robots, reachable for
all four arms (figure 3(a)). The trihedrons of the robots R1

and R2 are then driven to all points and the corresponding
relative transform (e.g., R2

CT ) can be determined.

Mounting displacements of the robots are not the only
source of errors in the system. If we go further down,
we find that also the attachment of the instruments bears
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(a) System Calibration Overview (b) Hand-Eye Calibration (c) Excentricity

Figure 3. System Calibration. Figure 3(a) depicts a schematic overview of the kinematic chain. The hand-eye calibration is exemplified in illustration
3(b). Figure 3(c) shows excentricity and play of the instrument shaft.

certain variances. The magnetic clutch as well as the
mechanical fit and the flexibility of the carbon fiber shafts
results in a quite high aberration. In case of the endoscopic
camera a hand-eye calibration solves this problem [19].
One way to calculate the displacement of an attached
endoscope with respect to the flange of the robot, is to
solve R2

F2
T ·X = X · R2

F2
T ∗ (compare Fig. 3(b)). Regarding

the surgical tools, this method would introduce two issues
in the context of medical procedures: on one hand it
is difficult to create a calibration pattern which can be
precisely reached by the forceps or attached to the shaft. On
the other hand, it is challenging to perform the calibration in
the sterile environment of an operating room. The proposed
method allows a pre-calibration of every instrument, which
can be applied to the system previous to the intervention.
To compensate the excentricity, an approximation which
simplifies the calculation and applies only to small angles
is used. An aberration dx and dy from the center will lead
to a positional error or approximately

√
dx2 + dy2. The

parameters shown in Fig. 3(c) can be found by positioning
the instrument over a planar surface with the z-axis of
the robot’s tool system normal to the surface. By rotating
the end effector about 360◦ a circular path is described
and the relevant parameters can be determined. In order
to compensate for this excentricity, the found correctional
transformation has to be applied to the end effector prior to
the calculation of the inverse kinematics of the robot.

State of the art endoscopes offer physicians a wide-
angled field of view which is imperative for minimally
invasive interventions. In order to determine the projective
parameters of the camera system a calibration procedure is

to be performed a priori.

III. INSTRUMENT TRACKING

The tracking of surgical tools is particularly challeng-
ing due to the changing appearance of the background
(e.g., background movement through organs, non-uniform
and time-varying lightning conditions, smoke caused by
electro-dissection and specularities), but also due to the
partial occlusion of the instrument and body fluids that may
change the appearance of the instrument itself. In many
cases of surgical tool tracking the tracking is constricted
to a sequential “frame-by-frame detection” (also referred
to as detection), rather than including a motion model.
Accordingly, no optimization of the configuration space or
pose prediction is performed over time.

A. Instrument Tracking Supported by Kinematic Prediction

In a Bayesian prediction-correction context, the state of
the object is updated by integrating posterior statistics and
therewith knowledge about time-depending characteristics
of the movement. This “intelligence” within our tracking
pipeline is provided by a Kalman filter [20] that is running
on the output of a contour tracker, known as contracting
curve density algorithm (CCD), based on the separation
of local color statistics (see [21], [22]). The separation is
performed between the object and the background regions,
across the projected shape contour of a CAD model under a
predicted pose hypotheses. An overview of the process flow
is given in Figure 5.
Tracking always involves a detection step to initialize the
system in the very first frame or after encountering a
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Figure 4. The CCD algorithm tries to maximize the separation of color
statistics between two image regions. The algorithm first samples pixels
along the normals for collecting local color statistics.

track loss. Instead of simply relying upon visual data, we
take an estimated object pose, derived from the kinematic
measurement of robot sensor readings. The precision of this
approximation is limited due to the absolute accuracy of our
system (and the performed calibration).
The idea of integrating joint angle measurements for tracking
purposes was e.g., also applied by Ruf et al. [23] to track
a polyhedral tool and simultaneously adapt inaccuracies in
the static calibration of the robot. To restrict the initial
search from the first frame to a specific region is com-
putational more efficient than a complete image analysis
and can also be considered from a biological point of
view: Biologically inspired algorithms seek to direct the
attention rapidly towards a region of interest, using an
attention-based type of filter, and only process a smaller
amount of the visual input data [24]. Bottom-up approaches
compute visual salient features, such as regions of high
contrast, local scene complexity or high scene dynamics.
The second type of visual attention is often referred to as
top-down attention, as the attention is controlled from higher
areas of cognition. Kinematic measurements, which are fed
to the visual information processing by another software
component (thus, a higher area of cognition), can guide the
attention directly to a region of interest

B. Model Building

Our system is equipped with the EndoWristTMneedle
driver tools that are originally deployed with the
DaVinciTMsystem. The instruments are composed of a long
shaft, a wrist joint and two brackets. It is represented as a
polygonal mesh model (cp. Fig. 6) with 6DoF (3 rotations,
3 translations) by a 4 × 4 transformation matrix in our

simulation environment. In order to represent the instrument
in 2D image space, we build a rectangular model with
rounded edges at the distal end and neglect the brackets.
As already mentioned, CCD maximizes local color statistics
(object vs. background) along the model contour. More
detail is given in Section III-C. Only three of the object
edges can be used for normal contour point sampling and
collecting statistics for the CCD algorithm. The fourth edge
has to be neglected, since it is not an exterior edge of the
shaft and therewith no color separation between model and
background is possible. The inclusion of the edge would
yield to irrepressible shifting of the model alongside of the
shaft.
The instrument’s 6 pose parameters are reduced to a planar
roto-translational pose s with scale h and rotation θ by
projecting the 3D model into the image plane.

s = (tx, ty, h, θ) (2)

An important aspect of the proposed approach is the use
of pose estimates, derived from the kinematic chain, that
are fed to the tracking pipeline prior to the visual tracking.
Instead of referring the tracking parameters s to global image
coordinates, we align the tracking frame with the estimated
orientation and position of the instrument Tref in every
cycle (cp. Fig. 6). Therewith, the tracking is performed in a
local coordinate system that is axis aligned with the frame
of the instrument model. Since the uncertainty of the state

y

x

W

Tref

Figure 6. Instrument CAD model and tracking contour model of the shaft
with sampling normals.

hypothesis is represented by a squared covariance matrix
(with the dimension of the state), we can now alter the
matrix and set a higher confidence in the direction of the
shaft (the y-axis). This anticipates an uncontrolled sliding
of the model alongside of the instrument shaft. The entries
in the covariance matrix are found empirically for all DoFs.
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Figure 5. Tracking Pipeline. The camera pose can be obtained after calibrating the extrinsic parameters and the overall system. The kinematic measurement
of the instrument in 6 degrees of freedom is transfered to a 2D model with 4 DoF (tx, ty , h, θx). It is used to (re-)initialize the Contracting Curve Density
algorithm and to supervise the tracking quality.

C. Tracking with CCD

As already mentioned above, tracking in the context of
MIS procedures is exacerbate by changing environment
conditions. Simple color segmentation approaches often
fail due to varying lightening conditions of different light
sources or need a sophisticated fine tuning of parameters.
Algorithms that are based upon edge detection suffer from
the large amount of feature edges from the background.
Figure 7 shows a typically intra-operative scene with
an artificial heart and tissue in the background. Neither
the Sobel- nor the Canny operator can distinguish the
instrument shaft reliable from the background.
The amenity of the CCD modality is that the model’s
appearance is adjusted over time, since local color statistics
are computed in every tracking cycle and maximized
according to the shape of the model. Therefore, the method
can be applied to marker-based as well as markerless
tracking. In fact, the color or texture of the tracked object
does not matter, as long as a separation in terms of color
between object and background can be achieved. Also a
change of the appearance over time (e.g., an account of
body liquids) does not disturb the tracking if not the entire
object is affected at once.

After setting the initial pose, a Kalman filter generates a
prior state hypothesis s−t by applying a Brownian motion
model to the previous state (st−1).

s−t = st−1 + wt (3)

with w being a white Gaussian noise sequence.
The CCD modality requires a sampling of good features for
tracking from the object model under the given pose s−t
and camera view. As a first step, the visible internal and
external edges from the polygonal mesh model have to be
identified under the current pose hypothesis. Alongside of
this contour a set K of uniformly distributed sampling points
{h1, . . . , hk} is taken to collect color statistics around each

sample position on each side of the contour. The basic idea
of CCD is to maximize the separation of local color statistics
between the two sides of the object boundaries (object
vs. background) [21]. The colored shaft of the instrument
supports this idea by varying from red tissue and organs.
Contemporaneously, the algorithm can account for small
change of the shaft appearance over time (e.g., from body
liquids), since the statistics are updated in every iteration.
We first sample points along the respective normals, sepa-
rately collect the statistics, and afterwards blur each statistic
with the neighboring ones (cp. Fig. 4). From each contour
position hi, foreground and background color pixels are
collected along the normals ni up to a distance L (that is
manually defined and fix), and local statistics up to the 2nd

order are estimated

v
0,B/F
i =

D∑
d=1

wid (4)

v
1,B/F
i =

D∑
d=1

widI(hi ± Ldni)

v
2,B/F
i =

D∑
d=1

widI(hi ± Ldni)I(hi ± Ldni)T

(5)

with d ≡ d/D the normalized contour distance, where
the ± sign is referred to the respective side, and image
values I are 3-channel RGB. The local weights wid decay
exponentially with the normalized distance, thus giving a
higher confidence to observed colors near the contour.
Single line statistics are afterwards blurred along the con-
tour, providing statistics distributed on local areas

ṽ
o,B/F
i =

∑
j

exp(−λ |i− j|)vo,B/Fj ; o = 0, 1, 2 (6)
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Figure 7. Edge detection. The images show edge detection results of
the Sobel (left) and the Canny (right) filter. In both cases the tool shaft
can hardly be distinguished from background noise. The organ surface
comprises many small vessels and structures that raise edges in the vicinity
of the tool tip.

and finally normalized

I
B/F

i =
ṽ
1,B/F
i

ṽ
0,B/F
i

(7)

R
B/F

i =
ṽ
2,B/F
i

ṽ
0,B/F
i

in order to provide the two-sided, local RGB means I and
(3× 3) covariance matrices R.
The second step involves computing the residuals and Ja-
cobian matrices for the Gauss-Newton pose update. For
this purpose, observed pixel colors I(hi + Ldni) with
d = −1, . . . , 1 are classified according to the collected
statistics (8), under a fuzzy membership rule a(x) to the
foreground region

a(d) =
1

2

[
erf

(
d√
2σ

)
+ 1

]
(8)

which becomes a sharp {0; 1} assignment for σ → 0;
pixel classification is then accomplished by mixing the two
statistics accordingly

Îid = a(d)I
F

i + (1− a(d))I
B

i (9)

R̂id = a(d)R
F

i + (1− a(d))R
B

i

and color residuals are given by

Eid = I(hi + Ldni)− Îid (10)

with covariances R̂id.
Finally the (3 × n) derivatives of Eid can be computed
by differentiating (8) and (10) with respect to the pose
parameters

Jid =
∂Iid
∂s

=
1

L

(
I
F

i − I
B

i

) ∂a
∂d

(
nTi

∂hi
∂s

)
(11)

which are stacked together in a global Jacobian matrix Jccd.
The state is then updated using a Gauss Newton step:

s = s+ ∆s (12)
∆s = J+ccdEccd

The optimization is done until the termination criteria is
satisfied (∆s ≈ 0).

The tracking pose is observed and compared to the
kinematic prediction in order to detect tracking loss. This
can either be a total loss of tracking, or the sliding of the
model alongside of the instrument shaft. For this purpose,
we restrict the output of the visual system to lie within a
certain range, derived from the current prediction (position
and angular values). Since we perform the tracking in
a local coordinate frame, we can also easily set pose
limits from this values. Furthermore, the estimate of the
pose covariance matrix gives a hint for the quality of the
tracking. By choosing an empirical maximum threshold for
the determinant of the posterior covariance, we can imply
a tracking loss.

IV. APPLICATION TO VISUAL GUIDANCE

The tracking approach introduced above is utilized to
visually guide the surgical instruments and the endoscopic
camera.
Although the robotic system is calibrated carefully, the above
mentioned inherent imprecisions cannot be determined with
a satisfying accuracy to position instruments with a very
high precision (which means 1mm or below). In particular,
the transformation F2

IT that follows from the aberration
of the carbon fiber shaft of the instrument (cp. Fig. 3(c))
cannot be minimized to a satisfying amount.

Visual servoing is a popular approach to guide a robotic
appendage (i.e., a surgical instrument in our case) using
visual feedback from a camera system. In general, visual
servoing can roughly be divided into two categories:
position-based visual servoing control (PBVS), in which a
Cartesian coordinate is estimated from image measurements
and image-based visual servoing (IBVS) approaches, which
seek to extract features directly from an image series. In
general, the accuracy of image-based methods for static
positioning tasks is less sensitive to calibration than PBVS
[25]. Image-based servoing does not depend as much on
calibration as the error is reduced directly in image pixels.
However, a practical difficulty during the alignment of
surgical instruments with a desired position in space lies in
the fact that the instrument is not necessarily in the field
of view of the camera and therewith no image-features
can be extracted. Hence, we first drive the instrument to a
Cartesian coordinate (reconstructed using stereopsis of the
3D endoscope) which is in the field of view of the camera.
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Since the 3D reconstruction suffers from a certain error
(caused by the mentioned intrinsic errors) we continue with
image-based servoing to overcome the remaining distance.
In fact, an eligible point close to the final position is chosen.

Given a target position that the robot is to reach, visual
servoing aims to minimize an error e(t), typically defined
by

e(t) = s(m(t), a)− s∗ (13)

where s∗ represents the target pose, s(m(t), a) the measured
pose, m(t) the measured image feature points and a any
additional knowledge needed, such as information from the
camera calibration. The function s(m(t), a) characterizes
the end point of the tool tip of an instrument carried by
the robot. In PBVS the position of the tracked features is
extracted from the camera image coordinates and projected
to the world frame by the mapping a, determined during
camera calibration. The target position can be extracted from
image features in a similar way. While PBVS minimizes the
error e(t) in world coordinates and the camera is treated as a
3D positioning sensor, IBVS directly tries to find a mapping
from the error function to a commanded robot motion.
As mentioned above, PBVS is used to drive the instrument
to a reconstructed point, which is located within the view of
the camera. As soon as this point is reached, the remaining
distance to the target goal is minimized in image coordinates.
In many IBVS scenarios the camera is attached to the robot
which is to be commanded (eye-in-hand configuration) and
therewith the velocity of the camera ξ is calculated. In
our setup, the instrument and the endoscope are carried by
two different robots and the calculated velocity ξ has to be
transformed to the robot that carries the instrument.
A single image feature, for instance the tip of an instru-
ment or a carried needle, is tracked in both left and right
camera coordinates. The feature vector s = (xL, xR)T =
(uL, vL, uR, vR)T comprises these coordinates:

s(t) =

[
u(t)
v(t)

]
(14)

Its derivative ṡ(t) is referred to as image feature velocity.
It is linearly related to the camera velocity ξ = [ υ ω ]T ,
which is composed of linear velocity υ and angular velocity
ω. The relationship between the time variation of the feature
vector s and the velocity in Cartesian coordinates ξ is then
established by

ṡ = Lsξ (15)

where L is the interaction matrix or image Jacobian [26].
The interaction matrix Lx related to an image point x =
(u, v)T reads as follows:

Lx =

[
− 1
z 0 u

z uv −(1 + u2) v
0 − 1

z
v
z 1 + v2 −uv −u

]
(16)

Variable z represents the depth of a point relative to the
camera frame. There exist different ways to approximate the
value of z, for example via triangulation in a stereo setup or
via pose estimation. Most of the existing methods assume an
calibrated camera, even if the impact of the calibration is not
very high. Few systems even assume a constant depth of the
tracked feature and therewith a constant image Jacobian. In
our approach, variable z is estimated via the kinematic chain
of the system. The interaction matrix can then be updated on-
line and the approach is easily transferable to miscellaneous
camera configurations. For instance, we equipped another
robot arm with a second monocular FujinonTMendoscope
that provides a different view on an object. Using equations
(13) and (15) we obtain ė = Leξ and our final control law

ξ = λL+
e e (17)

where λ is a positive gain factor and L+
e the Moore-Penrose

pseudo-inverse of Le.
As mentioned above, a single visual feature s is tracked in
the left and right images equation (15) is rewritten as[

ẋL
ẋR

]
=

[
LL
LR

R
LV

]
ξL (18)

The spatial motion transform R
LV to transform velocities

expressed in the right camera frame R to the left camera
frame L is given by

R
LV =

[
R
LR S(t)RLR
0 R

LR

]
(19)

where S(t) is the skew symmetric matrix associated
with the linear transformation vector t and where (R, t)
is the transformation from the left to the right camera frame.

To consider the characteristics of the trocar kinematic
during minimally invasive surgery, the instrument movement
at the fulcrum has to be zero in all directions that are
perpendicular to the instrument shaft. Since the location
of the incision point is well-known from the simulation
software, the 6DoF motion of the robot can be constrained
to 4DoF at the trocar. The velocities T

T ξ = (TTυ,
T
Tω)T at

the trocar point T and the velocities I
Iξ = (IIυ,

I
Iω)T of the

instruments tip I are related as follows:

T
IV · IIξ = T

T ξ

⇔
[
T
IR S(TIt)

T
IR

0 T
IR

] [
I
Iυ
I
Iω

]
=

[
T
Tυ
T
Tω

]
(20)

Assuming a straight shaft, TIR is the identity matrix and t =
(0, 0, d)T with d being the insertion depth of the instrument.
Since only the z-direction (the direction of the shaft) is free
to move, the linear velocity at the insertion point is denoted
by I

Iυ = (0, 0, IIυz). Solving (20) yields to

I
Iωx = −

I
Iυy
d

and I
Iωy =

I
Iυx
d

(21)
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So far, we covered the control of surgical instruments.
Furthermore, automated camera control (e.g., the endoscope
automatically follows an instrument) is also of high interest
to assist surgeons. The control law is similar to the instru-
ment control, but in contrast, we prohibit movements in the
directions of the shaft. For safety reasons of the patient it is
not suitable that the endoscope induces depth motion. Taking
Eqn. (21) into account and setting the camera velocities
C
Cυz = C

Cωz = 0 we obtain the new interaction matrix Lcam

ṡ =

[
Lυ
Lω

] [
υ
ω

]
(22)

=

[
− 1
z 0

0 1
z

] [
υx
υy

]
+

[
xy −(1 + x2)

1 + y2 −xy

] [
ωx
ωy

]
=

[
− 1
z −

1
d (1 + x2) − 1

dxy
− 1
dxy − 1

z −
1
d (1 + y2)

]
︸ ︷︷ ︸

Lcam

[
υx
vy

]

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the tracking
system, more or less crucial instrument poses during system
operation have been taken. After presenting the results of
the tracking, the compliance of the trocar during visual
guidance of an instrument is shown.
The evaluation has been performed on a Intel Xeon
QuadCoreTM2.4Ghz system. Images were taken and
processed in real-time with full PAL resolution (768× 576)
from the framegrabber. As a first step, the precision of the
instrument projection into image space, derived from the
kinematic data, was verified (cf. Fig. 12, first image). The
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Figure 11. Evaluation of the trocar constraint by means of a magnetic
tracking system

Figure 12. Left image: Initial estimation of the instrument pose, derived
from sensor readings. Right image: Mismatch of the model scaling factor
and the instrument due to strong specular reflections.

data is received by the tracking framework via network and
applied to the CAD model of the instrument. To project
the instrument pose into image space, a virtual camera is
set up in a similar fashion, with position and orientation
equal to the real endoscope. The projection of the shaft
does not have to overlay the instrument that is to be tracked
perfectly, but a good match supports a fast initialization of
the tracking. A good agreement of projection and instrument
helps to keep the normals of the sampled contour points
smaller, making the tracking more robust and faster. The
search length was determined experimentally.
For evaluation purposes, a series of images was annotated
by hand. Figure 8(a) shows the projection of the kinematic
prediction into image space in comparison with the ground
truth. The average distance error calculated over all frames
is around 33 pixels. The offset between the estimation and
the actual position of the instrument is well observable. The
average distance between the tracked point and the ground
truth could be reduced to 5.7 pixels. For the depicted
image series, tracking was lost one time for a period of
approximately 10 frames (lower left side in Fig. 8(b)). The
plots of the tracking x− and y− errors (Fig. 8(c) and Fig.
8(d)) point out a fast reinitialization of the tracking around
frame number 170. Excluding the 10 frames of the tracking
loss, the accuracy can further be reduced to 4.6px.
As already stated, the presented approach is not limited to
a specific appearance of the instrument. In fact, we used
three different instruments with blue, red and gray colored
shafts. In our artificial environment, the background is
very dark, since no brightened ribcage or abdominal wall
limits the sight. Therewith, tracking the gray shaft is most
challenging. While the detection of the shaft itself works
flawless, more sliding of the model is observable, compared
to the blue or red shaft. Since the color of the distal end of
the instrument changes from gray to silver, no hard contour
is given anymore. In this case, CCD loses tracking during
fast movements.
The main flaw of the proposed approach is the detection
of the accurate scaling factor. Since the CCD algorithm
seeks to maximize color statistics alongside of the contour
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(a) Kinematic Prediction vs. ground truth in image space
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(c) Errors compared to ground truth (x-axis)
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(d) Errors compared to ground truth (y-axis)

Figure 8. Tracking errors: The ground truth data was annotated by hand. Figures 8(a) and Fig. 8(b) show the error of the kinematic prediction vs. the
ground truth and the tracking in image space respectively. Figure 8(c) and Fig. 8(d) depict the errors in x− and y− direction in pixels, compared to the
ground truth.

edges between model and background, strong specularities
at the shaft can distort the measurement and are spuriously
recognized as part of the instrument (cp. Fig. 12). Those
kind of reflections especially appear at low distances (less
than 3cm) between the instrument and the light source,
dependent on the present luminosity. Then, the center of
the shaft can still be located accurately, but the distance to
the tip is wrong.

Regarding the visual guidance, we evaluated the compliance
with the trocar point, in addition to the experiments that
have been performed in the original work. Therefore, we
utilized a magnetic tracking system (Polhemus LibertyTM).
Since the magnetic markers were attached at the distal end
of the instrument, the influence of the robot motors can be

neglected. Figure 11 shows the movement of the instrument
and the fulcrum.

VI. CONCLUSION AND FUTURE WORKS

This paper has explored the tracking of surgical
instruments in minimally invasive surgery and its application
to the visual guidance of the instruments and the endoscopic
camera. Encoder readings from the robots were used to
predict an approximated pose of the instrument in image
space. The approximation is then used to (re-)initialize the
image-based tracking, to set pose limits and to supervise a
tracking loss. As modality, the Contracting Curve Density
algorithm was used, which maximizes local color statistics
collected at the model contour in order to separate it from
the background.
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Figure 9. Top row: Tracking a reddish instrument. The tracking is very stable, even is the shaft color is similar to the background. The white line (ending
in a red dot) indicates the projection of the kinematic prediction, the green dot is dedicated to the actually tracked position. The images are overlie with
the instrument model and the contour normals used for sampling the local color statistics. Bottom row: Instrument tracking with a blue shaft. Since CCD
does not employ a color or texture map of the instrument it can be applied to various shaft colors without changes.

Figure 10. Tracking a grayish instrument shaft. As background, artificial skin and a heart model was used. In a real laparoscopic intervention the depth
field would be more restricted, resulting in a brighter and more uniform illumination of the scene.

The performed experiments are very promising. Without
the need for changing the model or program parameters, a
blueish and a reddish instrument was tracked accurately.
Problems in finding an adequate scaling factor can arise due
to specular reflections, if the distance between instrument
and light source is small. During a preprocessing step, this
reflections could be removed, since their location and pixel
values are well-known. In order to prevent a misplacement
of the model at the distal end of the shaft, a non-uniform
distribution of sampling normals could be introduced.
After splitting up the model into an articulated model with
two parts, one representing the shaft and one representing
the rounded tip, the number of sampling points at each
sub-model could be adjusted independently. As the statistics
that are collected at the shaft would be weighted more
than the statistics at the end, a shift could presumably be
prevented. Also a simple blob detection that looks for the
silver-colored forceps could be employed in addition.
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