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Abstract—Ever-increasing scientific literature enhances our 

understanding on how toxicants impact biological systems. In 

order to utilize this information in the growing field of systems 

toxicology, the published data must be transformed into a 

structured format suitable for knowledge modelling, reasoning, 

and ultimately high throughput data analysis and 

interpretation. Consequently, there is an increasing demand 

from systems toxicologists to access such knowledge in a 

computable format, here biological network models.  

The BEL Information Extraction workFlow (BELIEF) 

automatically extracts biological entities and causal 

relationships from any text resource and converts them into a 

formalized language, the Biological Expression Language 

(BEL). BEL is a machine- and human-readable language that 

represents molecular relationships and events as semantic 

triples: subject–relationship–object. In addition to the 

automatic extraction through text mining, BELIEF also 

features a curation interface to verify and modify the proposed 

triples and benefits from BEL’s human-readability. The 

curation interface facilitates this curation task by providing 

relevant information to ensure high curation accuracy and fast 

processing. The resulting BEL triples are then assembled to 

biological network models that represent specific biological 

processes for a given context, e.g., organism, tissue type, 

disease state. These biological network models can then be 

verified in a crowd-based approach utilizing a collaborative 

web-based platform before finally sharing them through a 

publicly available and specialized repository. In this strategy 

paper, we summarize over various solutions to challenges in 

the knowledge-based systems toxicological assessment. 

Keywords-component; text mining; BEL; knowledge 

management; network models; curation; systems toxicology. 

I.  INTRODUCTION TO SYSTEMS TOXICOLOGY 

Systems toxicology supports the detailed understanding 

of the mechanisms by which biological systems respond to 

toxicants. This understanding can be used to assess the risk 

of chemicals, drugs or consumer products. In this work, we 

give a summary on critical developments within the 

biological, toxicological, as well as computational domain 

that has led to this knowledge-based systems toxicological 

assessment approach [1]. 

 

A. Omics Profiling in Systems Toxicology, from Basic 

Research to Risk Assessment  

Towards the end of the second millennium a new field 

emerged in toxicological assessment when the high 

throughput analysis of the transcriptome called 

transcriptomics was first used to identify the cellular 

components and signaling pathways involved in toxicity 

response and in relationship to harm and disease [2][3]. This 

approach was called Omics profiling. Omics is the name of 

a group of biological fields, such as genomics for the 

discipline in genetics, proteomics for the study of proteins, 

metabolomics for the study of chemical processes involving 

metabolite (and the related field of lipidomics for lipids), 

transcriptomics, and others. This addition of Omics 

profiling to toxicological assessments opened new 

possibilities to better understand how different compounds 

cluster into similar mechanistic classes based on the 

molecular response profile they inflict on the test system. It 

has also enabled the discovery and validation of exposure-

response biomarkers, as well as the classification and 

ranking of drug candidates [4]. Omics profiling also guides 

the development of new and more precise toxicological 

endpoints and targeted cellular assays [5] and can be 

valuable in the approximation of the lowest dose that results 

in the perturbation of the system, especially when data are 

sparse and when the toxicant affects more than a single 

pathway [6][7]. 

Initiatives, such as the ToxCast [8], Adverse Outcome 

Pathways (AOPs) [9], FutureTox [10], and the Comparative 

Omics profiling Database (CTD; http://ctdbase.org/) [11],  

share the common goal to turn the sole use of apical 

endpoints into predictive toxicology by gaining better 

understanding of toxicological mechanisms [12]. The 
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Figure 1. Overview of the Systems Toxicology Workflow. A) The workflow starts with a careful selection of the experimental system and robust statistical 

design based on the choice of endpoints to be measured. B) Common endpoints in systems toxicology are the high throughput Omics measurements. 

Transcriptomics data can be analysed to obtain the systems response profiles triggered by the exposure. C) The transcriptomics data is often analysed in the 
context of causal biological network models for mechanistic interpretation and the models have to be carefully chosen to align with the biological context 

that the experiment has been conducted in. D) Finally, sophisticated algorithms are used to compute the Network Perturbation Amplitude (NPA) for each 

network and the aggregated overall Biological Impact Factor (BIF).  

ultimate goal of the toxicity testing in the 21st century is to 

use the insight gained from in vitro assays to predict adverse 

effects observed in laboratory animals and humans [13].  

The comprehensive integration of classic toxicology 

approaches and Omics profiling forms the basis of systems 

toxicology. There is also strong emphasis on the 

development of computational platforms to enable 

quantitative analysis of molecular changes in response to a 

stressor and to accurately model the toxicological system 

[14].  

 

B. Knowledge Modelling and Computational Analysis as 

Core Instruments in Systems Toxicology 

There are a number of ways to extract meaningful 

signals from high throughput measurements involving a 

variety of suited software solutions on top of sophisticated 

laboratory instruments. At the same time the data generated 

by these high throughput methods creates a challenge in the 

analysis and interpretation with traditional data processing 

applications. Different pathway tools provide ways to 

analyze high throughput data, mainly differentially 

expressed genes to highlight the biological processes, in 

which the genes are known to function. These partially web-

based tools that include the DAVID Bioinformatics 

Database [15] or the Gene Set Enrichment Analysis (GSEA) 

method [16] employ pathway repositories, such as 

Reactome [17], Biocarta, [18], and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) [19] that enable the 

mapping of the regulated genes into pathways. Fortunately, 

as the number of datasets increases, more literature that 

describes biological relationships is published. Using this 

knowledge, the creation of causal relationships from 

scientific evidences is becoming an efficient and popular 

methodology to analyze molecular data. Such models allow 

the interpretation of data in the context of directional graphs 

with signed interactions (edges) between biological entities 

(nodes) [20][21][22][23], providing the network perspective 

for the stressor response [24]. 

Causal biological network models are also the 

cornerstone of the workflow for impact assessment that we 

have developed over the past years [25][26]. The workflow 

starts with the design of appropriate experiments for data 

production. This includes the choice of exposure regimen, 

experimental test system, and the selection of measurements 

that will be made (see Figure 1). In addition to apical 

endpoints, transcriptomics profiling is almost always 

included to allow mechanistic interpretation of exposure 

effects. After conducting rigorous quality controls and 

statistical analyses, the gene expression changes are 

converted into a systems response profile that illustrates 

how the level of each molecular entity (here mRNA) is 

changed in response to the exposure. Finally, the 

transcriptomics data are analysed in the context of causal 

biological network models that summarize the a priori 
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Figure 2. BEL Nanopub Overview. The three crucial elements of a BEL nanopub are the BEL Statement showing the knowledge statement in a triple and 

controlled terminology, as well as the citation information and actual evidence sentence. Experiment context is an optional field to simplify the triple 

assembly into biological network models. BEL nanopubs are coded in XML. 

knowledge in a given context [25][26] (see Figure 1).  

The network models, here causal network models, were 

built form scientific literature to reflect biological processes 

that are, e.g., assumed impacted in the lung and vascular 

system in response to cigarette smoke exposure [27][28]. 

The current suite of models consists of network families 

describing cell proliferation [29], cell fates [30], cell stress 

[31], pulmonary inflammation [32], tissue repair and 

vascular inflammation [33].  

The causal network models are used in combination with 

transcriptomics data and computational algorithms that 

transform gene expression changes into Network 

Perturbation Amplitude (NPA) scores and the aggregated 

Biological Impact Factor (BIF) [34][35]. Such calculation 

requires the network model to contain a measurable layer 

reflecting gene regulations by some of the entities in the 

model backbone. The transcriptomics data are used to infer 

the activities of the backbone nodes based on the regulation 

of their target gene in the dataset.  

These inferred changes in the backbone node activities 

are evaluated in the context of the overall network topology; 

the NPA score depicts the predicted effect that the exposure 

has on the biology described by the network model 

[26][34][35]. In some cases it is beneficial to get an 

overview of the overall biological impact that a stressor 

elicits on the test system. The BIF is an aggregation of the 

NPA scores stemming from perturbation of the individual 

biological processes included in the network model suite 

[35]. The advantage of computing a single holistic score is 

that it allows a high-level comparison of biological effects 

resulting from different exposures. Several use cases 

employing this approach have been published 

[36][37][38][39][40][41]. 

The following sections of this strategy paper will 

summarize the key modules in the implementation of this 

knowledge-based toxicological assessment. 

 

II. KNOWLEDGE ACQUISITION FOR KNOWLEDGE 

MODELLING  

In this section, we describe the toolset and 

implementation strategy for knowledge acquisition and 

ultimately knowledge modelling in order to analyze and 

interpret systems toxicology data.  

A. BEL and the BEL framework 

Today, an overall accepted and widely spread exchange 

format for knowledge is through the unstructured text, 

natural language. Natural language contains many 

redundancies, uses varying vocabularies, introduces 

complication by using grammar and different sentence 

structures, as well as containing implications. All these 

factors make the unstructured text as such useless for 

knowledge management through computational tools. Our 

causal biological network models represent the aggregation 

of unstructured scientific knowledge formalized in the 

Biological Expression Language BEL [42]. BEL is a 

computer and human readable language specially designed 

to formalize biological relationships and allow the 

construction of network models to facilitate downstream 

computational analyses. While there are other conventions 

available that allow the formalization of unstructured 

biological knowledge, e.g., BioPAX [43] and SBML [44], 

BEL presents a considerable advantage that it is simple to 

read and edit by a biologist, because the formalization is 

close to natural language with simplification into a triple, 
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here subject, predicate, and object as well as restriction of 

vocabulary via defined namespaces (see Figure 2). BEL 

conserves causal, e.g., increases and decreases, and non-

causal correlative relationships, here positive correlation, 

negative correlation, and association. Based on Semantic-

web technology, BEL uses a nanopublication model for 

publishing an assertion, together with attribution and 

provenance metadata [45] (Guidelines for Nanopublication 

http://nanopub.org/guidelines/working_draft/). A BEL 

nanopub is the smallest unit of information and represents a 

biological relationship with its provenance. Two elements 

are crucial, the BEL statement and the evidence, where 

evidence is the supporting text and citation information. 

Additionally, each BEL statement can be associated with 

experimental context information such as organism, organ, 

tissue, cell line, disease state and more. This context 

information is finally used to construct biological network 

models under specific experimental conditions. 

In BEL subjects and objects are represented by a 

function of biological entities controlled by the BEL syntax 

and BEL terms that are managed in namespaces. A function 

can be the abundance of a particular biological entity, here 

chemical abundance a(), protein p(), genes g(), RNA r() or 

micro-RNA mRNA(). Biological process bp() or disease 

path() functions capture cellular parameters or processes in 

BEL. A detailed description of the BEL syntax and the use 

of BEL namespaces is described in detail on 

www.openbel.org. 

BEL is accompanied by a set of tools packaged in the 

BEL framework (www.openbel.org). These tools allow the 

syntactic and semantic validation and compilation of single 

BEL triple into an assembled network model. The BEL 

framework also includes a knowledge assembly models 

managing software and a connector for Cytoscape network 

visualization software [46] in order to visualize and analyze 

the assembled networks in graph. 

 

B. From Knowledge to BEL, the BEL Information 

Extraction workFlow (BELIEF) 

An approach that is becoming more and more popular 

and that started back in the 80s is to either manually or 

automatically curate / parse and semantically annotate 

natural language word by word, sentence by sentence. The 

domain of text analytics with the help of linguistics was 

established and is increasingly developing tools and 

algorithms that better identify entities either via extended 

vocabularies or sophisticated statistical methods such as 

machine learning. At the same time, domain experts as well 

as curators and computational scientists focus on a way to 

define formats for a better and more applicable 

representation of knowledge. As it stands today, text mining 

either focuses on high recall and rather low precision, which 

is the case for most automated solutions, or on low recall 

but high precision, which is typically the case for manual 

curation.  

The solution obviously lies in semi-automated 

knowledge extraction where linguistic tools identify 

relevant entities from natural language with a high recall 

and are manually curated for high precision. 

Fluck et al. have addressed the challenge in efficiently 

extracting knowledge from the rich source of scientific 

articles by proposing a workflow combining both, the 

automated extraction method using text mining 

methodology and the manual curation of these results to 

ensure precision [47]. In the next two sections we will 

explain the challenges each methodology (manual versus 

automated) has and how in the third section both approaches 

can be combined into an efficient workflow, BELIEF. 

 

1) Limitations of Manual Curation 

Manual curation typically has the goal to bring 

unstructured text into structured data where various 

information sources are brought into one repository, here 

typically a database, and the data are annotated with 

controlled terminology. For a long time great effort has been 

made to build biological databases such as, e.g., 

UniProtKB/Swiss-Prot (www.uniprot.org/), MGI 

(www.informatics.jax.org/), HGNC (www.genenames.org/). 

The manual curation process is the dominant methodology 

for these efforts where a team of curators reviews literature 

and other knowledge sources for annotations given the 

specific context. These annotations are then stored in a 

structured format into databases [48][49][50]. However, one 

large source for variability even in these structured 

repositories is the variability from curator to curator defined 

by the experience the curator has and the effort the curator is 

taking. In fact, it was shown that expert curators present an 

accuracy of 90% for a specific task while the inter-curator 

agreement ranges from 77% to a minimum of 31% [51][52]. 

These results demonstrate the issues of this sophisticated yet 

very time consuming process that jeopardizes the quality 

and goal of these standardized repositories to some extent. 

Even when annotation guidelines are specified in order to 

create harmonization across different curators given a 

specific task, the personal variability is still high and 

impactful in the biological domain. Therefore, high-quality 

manual curation of the scientific literature is a very 

challenging and time-consuming effort and impacts the 

progress in the creation of these biological databases [53]. 

 
2) Limitations of Automated Curation 

With the limitations of human curation, computational 

teams started focusing on automated curation processes to, 

in most cases, replace parts of the manual curation task [54]. 

Tools for named entity recognition (NER) for gene and 

protein name recognition are widely used within the 

database community. Typically tools such as Textpresso 

[55] and ProMiner [56] are employed to identify specific 

entity classes [57][58]. While the speed and output quantity 

in which automated annotations perform is impressive, the
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Figure 3. BELIEF Text Mining Pipeline Overview. The Expectation line shows a very high-level view on the functionality. In the row “Implementation 

BELIEF Pipeline” all relevant modules are shown. Various NLP tools are used for detecting and splitting sentences, identifying words etc. In the next step 

NER is used to detect relevant entities with given dictionaries, here namespaces. The relationships between these detected entities is captured in the next step 

and finally a BEL nanopub compliant output is generated.

results also have a greatly increased rate of errors compared 

to manual curation [53]. More specifically, it was shown 

that automated curation caused critical errors in assignments 

of particular functions that may affect as many as 30% of 

the proteins, and may even exceed 80% of individual 

protein families [48]. In a recent paper that modeled 

annotation errors in the Gene Ontology database, it was 

estimated that up to 49% of sequences functionally 

annotated by automatic sequence comparison methods could 

be mis-annotated [59]. Comparable errors were also 

observed in other analyses [48][60][61]. The introduction of 

errors in the public database could lead to severe error 

propagation that could make the data useless and even 

misleading when it comes to the interpretation of 

experimental data [48][62].  

 

3) Solution and Performance of a Semi-automated 

Solution 

Although text mining solutions did take over parts of the 

manual curation tasks, there was no approach shown before 

where a full knowledge statement was extracted and coded 

into a predefined syntax and become subject for manual 

curation. Looking at both approaches in annotating and 

extracting knowledge from unstructured text, the strength 

and weaknesses become obvious. The manual approach 

obviously results in much more reliable output at the cost of 

time, effort and harmonization / reproducibility. At the same 

time, automated annotation and extraction has a 

dramatically improved curation speed with full 

reproducibility but lacking precision. These strength and 

weaknesses are complementary and suggest a combined 

approach, here semi-automated approach.  

Especially in biological research and pathway modeling the 

identification of relationships between entities, e.g., protein-

protein, drug-protein interactions or protein-disease 

relationships is crucial for mechanistic and network 

analyses. To be efficient, the automated curation process 

would have to be able to mimic the human ability to infer 

relations from the text. Text mining tools are currently not 

only able to detect and identify biological entities in the text, 

but they are also able to infer the relationships between 

these entities. The accuracy of text mining tools was 

estimated and demonstrated a high-performance of about 

82-85% overall (Elsevier), 80 % for ProMiner for human 

and mouse gene/protein name recognition and about 50% 

for BioRat [63][64]. Altogether these evidences demonstrate 

that text mining is an efficient tool to curate unsolved 

amounts of data with a consistent quality for data detection 

and annotation. 

In 2014 Fluck et al. released the BEL Information 

Extraction workFlow BELIEF (see Figure 3) [47]. The 

BELIEF infrastructure embeds an extraction information 

workflow combined with NER and relation extraction (RE) 

methods into a state of the art environment.  

The combination of various linguistic tools into one 

workflow requires an extra effort in normalizing the results 

(see Figure 3). 

BELIEF addresses the biological network model 

curation needs by identifying chemical, gene/protein, and 

biological process and disease terms in scientific articles. 

Additionally to that BELIEF identifies relationships through 

a combination of specialized ontologies and linguistics 

rules. On top of the BELIEF text mining pipeline sits the 

BELIEF Dashboard that provides users a manual curation 

interface for the automatically extracted BEL nanopubs (see 

Figure 4). 
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Figure 4. Overview of the BELIEF Dashboard. The main window contains two sections: 1. the evidence text with the next sentence and browsing buttons, 

and 2. the automatically generated BEL nanopub with options for modifications and export. The right banner contains supporting information such as the 
concepts together with the namespace sources that were detected, a namespace browser to assign new concepts that were not detected, as well as the citation 

information that automatically retrieved all required information based on the Pubmed ID provided.

The dashboard offers the possibility to the curators to 

visualize, edit, correct, and delete statements to ensure 

precision on the high recall output from the underlying text 

mining pipeline. In an assessment Fluck et al. not only  

showed a higher detection rate of this combined curation 

approach in BELIEF but also a much higher user acceptance 

rating on the simplification of the curation effort [47].  

III. KNOWLEDGE ASSEMBLY AND VERIFICATION 

With the creation of BEL nanopubs extracted from and 

curated in BELIEF, causal network models can be 

assembled using the BEL framework tools. These network 

models are typically assembled from BEL nanopubs given a 

specific context. After assembling, these networks are 

further assessed either with experimental data or additional 

knowledge sources, e.g., databases or other scientific 

articles. However, this verification can also be carried out in 

a crowd-based approach. Boué et al. developed a web-based 

platform for a collaborative verification of these causal 

network models [27]. In their publication the authors show 

the outcome of a community challenge called Network 

Verification Challenge (NVC) by using their platform and 

verifying 50 biological network models relevant to lung 

biology and early COPD. Each participant was given the 

opportunity to confirm, reject, or modify the networks on a 

website (https://bionet.sbvimprover.com/) and to add 

mechanistic detail [65]. The challenge showed that even for 

a group of domain experts unfamiliar with BEL, the crowd 

performed well at representing scientific findings in BEL. In 

a similar setup Fluck and Rinaldi performed a BEL task in 

the BioCreative V challenge. The goal of the challenge was 

to address curation challenges presented in BEL with text 

mining solutions. The outcome was that even for 

computerized systems, BEL did not bring a challenge in 

adapting algorithms and addressing the challenge tasks well 

[66]. 

IV. KNOWLEDGE SHARING  

As previously stated, the collaborative approach in 

verifying the representation of literature-based knowledge 

proved most useful. To ensure continuity in this review 

approach, network models must be shared and available to 

the public domain to allow the community use, review, and 

further provide feedback. In fact, one of the strongest 

motivators for participants going through the verification 

process was the use of these networks for their own research 

projects. 
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Figure 5. Process to build Causal Biological Network Models using BEL. A) The causal statements are identified in scientific literature and processed by 

text mining software within BELIEF. B) Domain expert biologists verify the statements using the curation dashboard in BELIEF. C) Semi-automated 

curation workflow gives rise to nanopubs that contain all essential information about the causal statements. D) The compilation process builds the isolated 
nanopubs into a coherent representation that can be E) visualized and verified using software such as Cytoscape.

However, the representation of network information in 

databases is not trivial. Boue et al. prepared an overview 

on network-based databases and their attributes [27]. In 

the same article, the authors present the Causal Biological 

Network database that is specialized for BEL triples and 

allows to query the data and find the right network model 

in the large number of available network models. 

Currently, the database contains biological network 

models that reflect causal signaling pathways across a 

wide range of biological processes, including cell fate, 

cell stress, cell proliferation, inflammation, tissue repair, 

and angiogenesis in the pulmonary and cardiovascular 

context.  The database is openly accessed giving access to 

over 120 manually curated and well annotated biological 

network models. The database uses MongoDB that stores 

all network models and previous versions of each mode as 

JSON objects. With these objects users can query the 

database for genes, proteins, biological processes, small 

molecules, and keywords in the network descriptions in 

order to access the required network. On top of the 

database is a query and visualization layer that allows the 

users to browse the content and visualize the networks 

featuring filters for nodes and edges. A link to the 

supporting text in pubmed is available with each edge 

(http://causalbionet.com). 

V. FUTURE OF KNOWLEDGE MODELING IN SYSTEMS 

TOXICOLOGY 

In the field of network toxicology, the current static 

models will eventually be replaced with dynamic models 

that can capture time and dose effects and provide better 

predictions on toxic outcomes [14]. This can be 

accomplished only by developing new and / or combining 

current modeling languages to handle differential 

equations that allow dynamic modelling in the context of 

a priori knowledge. There is also a need to invest in tools 

that can make conversions from one language to another 

(e.g., BEL to SBML) so that recorded knowledge is not 

syntax dependent and therefore limited in the toolset 

linked to the given syntax. There is still substantial work 

in enlarging the namespaces and controlled vocabulary to 

allow the curation of all species context. For instance, the 

zebrafish is a very attractive model system in modern 

toxicology research and it would be unfortunate if high 

throughput measurements from such species cannot be 

interpreted using causal biological network models. While 

the semi-automated curation workflow described here and 

in [67] is a major step towards efficient curation, it would 

further benefit from automated literature identification 

within a topic, and eventually the identified articles could 

be connected to the text mining tool, after which the 
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exposed statements would be verified by curators. Such 

an approach would quickly pave the way to systems 

toxicologist’s vision of a robust systems toxicology 

knowledgebase to keep up to date with the growing 

scientific knowledge. However, regardless how large, 

independent curation efforts cannot harness all the 

available information, leaving significant gaps in 

knowledge. One way to accomplish this is the education 

of researches about controlled vocabularies for expressing 

study results and enforcing a nanopub submission along 

with scientific manuscripts. In essence, a nanopub is the 

smallest unit of information and represents a biological 

relationship with its provenance derived from a 

publication. Ideally the entire content, including figures 

and tables with captions, could be represented in this 

format [68]. A community-driven approach the Concept 

Web Alliance has described guidelines for writing a 

nanopub, which has to consist of a statement, the origin of 

the statement, and the origin of the nanopub [45]. Even 

big datasets, often rather hidden in the supplemental parts, 

could be made more expedient when expressed in 

machine-readable formats with sufficient metadata on 

origin and context. Such approach has been tested in the 

assertion of differential gene expression in Huntington’s 

disease [69], and the Open PHACTS Discovery Platform 

provides a guideline for precompetitive nanopub creation 

and outlines how nanostatements can be cited following 

their usage in a discovery project [70]. While nanopubs 

could be formalized in any modelling language, the 

aforementioned conversion tools would enable more 

efficient use of the growing toxicology knowledgebase. 

VI. CONCLUSION 

The emerging field of systems toxicology encourages 

new approaches in the processing of experimental data. 

Unlike many standard toxicological approaches, the 

amount of data generated for a single sample requires 

sophisticated computational approaches for the processing 

and computationally available a priori knowledge for the 

interpretation. In this work, we present a workflow that 

creates these computer-readable knowledge clusters, here 

biological network models (see Figure 1). The starting 

point is the identification of relevant knowledge sources. 

The workflow continues with computational approaches 

to create knowledge statements (here BEL Nanopubs) and 

their manual curation by experts to ensure correctness of 

the knowledge formalization. This leads to the creation of 

assembled network models that can be used with 

computational methods (here the network perturbation 

amplitude) to calculate an overall biological impact factor 

for toxicity assessment (see Figure 5). As knowledge 

changes and extends by time, a strategy must be put in 

place to ensure knowledge representation based on the 

current opinion in a specific biological field. 
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