
A User Interface for Spatio-Temporal ‘Eventually’ Queries using Gamepad

Vineetha Bettaiah
University of Alabama in Huntsville

Department of Computer Science
Huntsville, USA

vb0003@cs.uah.edu

Ramazan S. Aygün
University of Alabama in Huntsville

Department of Compute Science
Huntsville, USA

raygun@cs.uah.edu

Abstract— Video databases have both spatial and temporal
components. Querying and retrieval of spatio-temporal content
is a challenging task due to lack of simple user interfaces. In
this paper, we propose a system to allow the user to
interactively build “eventually” queries in video databases. In
eventually queries, the user just needs to provide the starting
state (or information) and the ending state without providing
the intermediate states. This helps the user setup queries
without knowing all details. Our system uses a methodology
similar to the one in gaming. Queries are built by displaying
natural videos based on gamepad commands rather than on a
graphical interface using a mouse or a keyboard. The system
uses a semantic sequence state graph (S3G) to search the
database. The system is applied on a tennis video database.
This paper, proposes a novel spatio-temporal query and
retrieval system with user friendly interface for developing
“eventually” type spatio-temporal queries using gamepad.

Keywords-Video querying and retrieval; interactive query
interface; eventually queries.

I. INTRODUCTION
The video databases have both spatial and temporal

dimension. The process of retrieving spatio-temporal objects
and events that span space and time domains is known as
spatio-temporal query. The design of a good spatio-temporal
query system should consider representation of the spatio-
temporal information, query building, and simplicity. The
representation to model the spatio-temporal system must be
sophisticated enough to capture the semantic contents. Such
a system should be able to represent objects, events, and
changes in the data. It may be hard to build a spatio-
temporal query instantaneously. Therefore, the system
should allow the user to build the spatio-temporal queries
incrementally to retrieve one or a sequence of many events
which, cause the specified action. The spatio-temporal
query system must also be simple enough to be used by a
general-purpose user and should not require them to know
the internal representation of the database.

Significant effort has been made on querying spatio-
temporal databases and many of the approaches are based
on developing new languages or extending the existing
query languages such as SQL [11] or developing interfaces
for the user to build a spatio-temporal query. STQL
(Spatio-Temporal Query Language) [7] demonstrates how
SQL can be extended to query spatial objects that change
over time. It extends SQL by adding features like a set of

spatio-temporal predicates such as disjoint, meet, overlap,
coveredBy, covers, inside, contains, and equal. 2198
predicates are identified between two evolving regions.
Such a large number of predicates make it practically
impossible to name the predicates as well as their utilization
by the user. Jain et al. [1] uses pattern matching properties
of SQL to express spatio-temporal queries. Since the data is
represented as strings based on a grammar, it is possible to
apply pattern matching techniques. In [3], “conceptual-
neighborhood-graph” (or “closest-topological-relationship-
graph”) is developed based on spatio-temporal relationships
like overlap, meet. This graph is used to retrieve spatial
objects that changes over time [4].

 Besides query languages based on SQL, visual query
languages have also been proposed to query spatio-temporal
data since the data has at least spatial component. Icons are
usually used to represent objects. Lvis supports querying
moving objects [5][6]. Query-By-Trace [8], Visual
Interactive Query Interface [10] and Visual Query system S-
TVQL [9] are other examples of visual querying interfaces
for spatio-temporal content. All the above approaches
present difficulty in analyzing the query for the novice user.
Naik [2] provides a user interface for querying tennis video
databases. The user chooses (or click) the locations of
players and the ball on the available interface for each
instance in the query. However, point-and-click approach
using a graphical court view is tedious and does not provide
an intuitive method of building queries.

In this paper, we focus on the eventually operator in
temporal logic. If the user is interested in the next available
state from a current state, we basically call it as a ‘next’
query. If the user is interested in whether a state is reachable
from a current state, we call it as an ‘eventually’ query.
Eventually type query result allows the user to visualize all
intermediate steps to reach the given state. These types of
query allow the user to specify two states and view all
intermediate events and states between them and also
relieve the user from trying to recollect every possible next
event to query in case of “next” query. In other words, the
user does not need to specify all intermediate steps. It is
possible that the user may not know or not interested in
intermediate steps.

Since video databases may require spatio-temporal
queries that include three dimensions, it is hard to build
such queries without a proper user interface. Especially,

38

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

incorporating temporal dimension is difficult. We observe
that one of the common environments in which users
provide spatio-temporal inputs to the system is the
environment of video games. In these eniveronments, a
player (or a user) provides spatio-temporal inputs of objects
using a gamepad. In our system, the queries are built by
displaying natural videos based on gamepad commands
rather than on a graphical interface. There are three
components in the system: building the query, searching and
retrieval of clips, and displaying query result. Semantic
sequence state graph (S3G) is used to search the database. A
query is built incrementally as a sequence of queries.
Though this paper describes the query building process
using “Eventually” type queries, the process is applicable to
build other types of spatio-temporal queries. We illustrate
the system on tennis videos.

Our paper is organized as follows. The following section
provides background about the database and indexing.
Section III describes how a gamepad is used for
“eventually” queries. Our examples and illustrations are
provided in Section IV. The last section concludes our
paper.

II. BACKGROUND
In this section, we provide information about our

semantic modeling and retrieval system (SMART) and our
semantic sequence state graph (S3G) for indexing and
retrieval of videos from a tennis video database.

A. SMART

The semantic content of a video corresponds to high-
level information in the video. SMART [1] models objects,
events, sequence of events and the resulting spatio-temporal
interactions among objects in the video. A sample
application on tennis videos that utilizes SMART is
developed for modeling and retrieval of semantic contents
in a tennis video. The semantic contents of a tennis video
are modeled using a set of objects, a set of events, a set of
locations on the court besides a set of camera views and a
set of production rules (grammar) which, are given in [1].
Objects: The set of objects ΣO contains three objects: the
ball b, the first player U and the second player V:
 ΣO = {U, V, b}.
Events: The set of events ΣE contains two distinct events:
the forehand shot F, and the backhand shot B:
 ΣE = {F, B}.
Locations: The tennis court is divided into 13 non
overlapping regions including the net N as shown in Figure
1. The set of locations ΣL includes all these 13 regions:
 ΣL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, N}
The production rules are used to encode the semantic
contents of the videos as a set of strings. Each video clip is
represented with one string.

Figure 1. Regions of the tennis court.

B. S3G - Semantic sequence state graph.
While SMART [1] represents the semantic information in a
video as a set of strings, the semantic sequence state graph
(S3G) [2] represents the same information in the form of a
graph. In tennis video, each object (ball, player1, player2)
can be in any of the 13 possible locations. Therefore,
theoretically, there are a maximum of 133 patterns of
assigning 3 objects to 13 locations. Each assignment pattern
defines a unique state in S3G, and the maximum number of
states in S3G is less than 133 due to game constraints. S3G
also reduces the number of states by maintaining only states
that are present in the video database. An event from the set
of all possible events Σ = {F1 (player1 hits forehand), F2
(player2 hits forehand), B1 (player1 hits backhand), B2
(player2 hits backhand)} makes the objects move causing
state-to-state transitions. Note that S3G may have cycles as
a state may be visited many times during the game. Thus, in
S3G, the semantic information of a clip is represented by a
sequence of states and transitions, starting from one of the 8
possible states (four serve locations and two players). The
semantic information of all clips, together, represents the
semantic information of the video.

Figure 2. Construction of S3G from SMART string data.

Example: S3G in Figure 2 is built for three clips of a video:
M1 = A[U] C[U7b7V10 b4 V4], M7 = A[U] C[U7b7V10
b4 BV10 b5 BU7 b4 V4], and M10 = A[V] C[U7b10V10 b7

39

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

]. The letter A represents a close-view of a player, while
letter C represents court-view. The sub-string for court-view
is indexed by S3G. In M1, Player1 (U) serves an ace from
location 7 as Player2 moves to location 4 to receive, but
Player2 fails. In M7, Player1 serves from position 7 again;
Player2 responds from location 5 with a backhand shot and
the ball hits location 5; and Player1 hits with a backhand
shot at location 7 and the ball goes to location 4. In M10,
Player2 serves the ball from location 10 and the ball hits
location 7. For example, nodes S1, S2, S3, S4 and the state
transition from S1 → S2, S2 → S3, S3 → S4, represent M7.

The semantic sequence state graph, as described above,
has a limitation. From the string representation of M1, it is
clear that the temporal order of states in M1 is (S1, S4)
indicating that S1 is the first state and S4 is the second state.
Similarly, temporal orders of states in M7 and in M10 are
(S1, S2, S3, S4) and (S5, S1), respectively. The initial S3G did
not contain temporal orders of states in various clips. The
lack of temporal order information could lead to the
retrieval of clips that do not satisfy the criteria specified by
the query. For example, if a query specifies a direct
transition from S1 to S4 through a forehand shot from
player1, the system will retrieve two clips M1 and M7
because both clips are attached to S1 as well as S4.
However, note that in M7 there is no direct transition from
S1 to S4. Retrieval of incorrect clips also occurs when a
state is visited multiple times during graph traversal. This is
possible due to the occurrence of several instances of a same
state in a single clip. This limitation can easily be resolved
by attaching to each clip a list of temporal orders (ranks) of
the state as shown in Figure 2 by dotted red squares. With
the enhanced S3G, the retrieval of clips is a two step
process. In step 1, clips common to all states involved in
the query are selected. In step 2, clips in which states do not
satisfy the temporal order constraints are deleted. In
addition, timings of these ranks are stored in the database.
For example, time of S1 in clip M1 may be at 127th second,
time of S4 in clip M1 may be at 129th second. Hence the
event, player1 hits a forehand shot from S1 to S4 starts from
127th second and ends at 129th second. These are
represented as StartTime and EndTime respectively for each
event

III. INTERACTIVE RETRIEVAL OF VIDEO CLIPS USING
GAMEPAD.

A user-friendly interface is needed to get spatio-
temporal input from the user. There were some approaches
in the past to handle spatio-temporal queries. For example,
Jain et al. [1] developed a user interface with drop-down
menus to get input from the user. These inputs are first used
to develop a SQL string pattern that can be mapped to
spatio-temporal expressions. Then a SQL query is built. On
the other hand, Naik et al. [2] develop a graphical user
interface with a mouse point-and-click approach using
court-view for tennis. Basically, the user needs to choose an
object and then click where the object should be on the

court. After a state is built, the next or future states are built
in a similar fashion. In this paper, we propose a better user
interface than the previous approaches: a) we provide a
court-view (from a tennis video) to the user for interactions
and b) the inputs are obtained using a gamepad. The
gamepad provides multiple buttons that enable switching
objects and locating them on the court-view.

A. Features of Gamepad
The gamepad provides a set of interactions as shown in

Figure 3 to build spatio-temporal queries: an 8-way switch
(A) for directional controls, a set of 10 buttons, B={b1, b2,
…, b10}, a record (R) button to store the current information,
and a record/search (R/S) button.

Figure 3. Gamepad features

B. Mapping Gamepad Input to Semantic Information in
S3G
The critical part of querying is to map the input from the

gamepad to semantic information for tennis video to be used
for retrieval. Each feature or button (e.g., button b1) of
gamepad produces a numerical input when pressed. These
numerical inputs are mapped to semantic information. For
example, the 8-way switch has eight active positions
corresponding to eight directions. The switch generates
unique code for each direction. Thus it is used to input the
direction of movement of the object on the tennis court
while building the query. Based on the input from switch A
and other features of the gamepad, our system builds the
query and provides as input to the retrieval system based.
Every node in S3G, represents particular semantic
information about ball-player location. The search process
matches the semantic information specified by the query
with the semantic information of the video represented by
S3G. If a match is found, clips attached to the matching
nodes are retrieved from the database and displayed to the
user.

C. Algorithm for Eventually Query

The system retrieves the desired video clips from the
database using an approach that has three main steps. First,
spatio-temporal queries are built interactively using the
gamepad. Secondly, a search process is initiated where
clips that include the states of interest are identified by
applying queries to our graph based indexing structure

40

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

(S3G) and fetched from the database. Finally, the system
provides a visual display of the query results by displaying
all relevant events in real time using original video in the
database. An implementation of “Eventually” query is
given by following algorithm.

 IS ← (ILb, IL1, IL2)

 FLb ← Final_ball_loc
 FL1 ← Final_player1_loc
 FL2 ← Final_player2_loc
 FS ← (FLb, FL1, FL2)

 QueriedClipsList ← Ø // List of clips having subset of the
intermediate events between IS and FS
 OutputClipList ← Ø // List of clips having all the events
between IS and FS

 IS_Present = SearchState (IS)
 FS_Present = SearchState (FS)
 if IS_Present = = false OR FS_Present = = false then
 Print “Query state does not exist”
 else
 IntermediateStates = SelectConnectedStates(IS, FS)
 // IntermediateState (ImS)
 if ImS = = NULL
 Print “Cannot reach the FinalState from InitialState“
 else
 for i in range(0 to ImS.size) :
 QueriedClipsList=QueriedClipsListUImS[i].clipList
 for k in range (0 to ImS[i].clipList.size)
 for l in range (0 to ImS[i+1].clipList.size)
 if ImS[i].clipList[k] == ImS[i+1].clipList[l]
 if ImS[i].clipList[k].order ==
 ImS[i+1].clipList[l]+1
 OutputClipList = OutputClipList ∩
 ImS[i].clipList[k]
 endif
 endif
 end
 end
 end
 endif
 endif
end

The query building process starts with the actual tennis

game video being played in a window of the user interface
(UI). The video automatically pauses at the start of the first
serve. To build an “Eventually” query the user presses

“Eventually Query” button on the UI in Figure 4. The
system displays icons for all three objects in locations
corresponding to the current state. An “Eventually” query
requires the specification of an InitialState and a FinalState.
The user may select current state as the InitialState and
record (ILb, IL1, IL2) by pressing R/S button or may specify an
arbitrary InitialState by using the gamepad. Switch A is
used to move and position objects on the tennis court in a
pre-determined order (ball, player1 and player2) by moving
their icons. The position of each icon is constantly displayed
on the UI window. The record button R is used to record the
locations of the ball and player1 (ILb, IL1) for the InitialState.
After positioning player2, R/S button is used to record its
location (IL2) to complete the information needed to fully
specify the InitialState. Similarly, the FinalState (FLb, FL1,
FL2) is also specified using switch A, buttons R and R/S.
However, this time, when R/S button is pressed, it not only
records the location of player2, but also initiates the search
process.

void Eventually_Query ()
begin
 // ILb, IL1, IL2 represents location of ball, player1, player2
respectively of the InitialState IS
// FLb, FL1, FL2 represents location of ball, player1, player2
respectively of the FinalState FS
// S.clipList denotes the list of clips associated with state S
 ILb ← Initial_ball_loc
 IL1 ← Initial_player1_loc
 IL2 ← Initial_player2_loc

 IS ← (ILb, IL1, IL2)

 FLb ← Final_ball_loc
 FL1 ← Final_player1_loc
 FL2 ← Final_player2_loc
 FS ← (FLb, FL1, FL2)

 QueriedClipsList ← Ø // List of clips having subset of the
intermediate events between IS and FS
 OutputClipList ← Ø // List of clips having all the events
between IS and FS

 IS_Present = SearchState (IS)
 FS_Present = SearchState (FS)
 if IS_Present = = false OR FS_Present = = false then
 Print “Query state does not exist”
 else
 ImS = SelectConnectedStates(IS, FS)
 // ImS - IntermediateState
if ImS = = NULL
 Print “Cannot reach the FinalState from InitialState“
 else
 for i in range(0 to ImS.size) :
 QueriedClipsList=QueriedClipsList U ImS[i].clipList
 for k in range (0 to ImS[i].clipList.size)
 for l in range (0 to ImS[i+1].clipList.size)
 if ImS[i].clipList[k] == ImS[i+1].clipList[l]
 if ImS[i].clipList[k].order ==
 ImS[i+1].clipList[l]+1
 OutputClipList = OutputClipList ∩
 ImS[i].clipList[k]
 endif
 endif
 end
 end
 end
 endif
 endif
end

In the second step, the query built is executed to
determine if there is a sequence of consecutive events that
takes the game from InitialState(Si) to FinalState(Sj) in
S3G. Note thst Si and Sj are used to denote initial and final
state instead of IS and FS for convenience. If Si or Sj is not
present in S3G, the algorithm terminates saying that queried
events are not present in the tennis video. If both the states
are present, the system finds all possible paths from Si to Sj
using a graph-traversal algorithm. One clip may completely
include a path or a path may be spanned by a sequence of
successive clips. Let the set of clips associated with Sk be Ck
for i<= k <= j. The clips present in the list {Ci∩Ci+1∩Ci+2 . .
. . ∩Cj } are identified, and each clip in which, the states
satisfy the order constraint is placed in OutputClipList as a
clip that includes the path completely. The clips present in
the list {Ci∩Ci+1U Ci+1∩Ci+2 U Ci+2∩Ci+3 . . . U Cj-1∩Cj} are
identified and this list is called QuriedClipList. A virtual
clip which takes the game from Si to Sj is created by
reordering these clips in increasing order.

As the query is built, the clips that satisfy the conditions
specified by the user are made available to the user. Each
clip has StartTime and EndTime that determines the timings
of the beginning and ending of a clip, respectively. The user
query may not involve retrieving back to back clips from the
same video. Therefore, the clip is played for the user, and it
is paused automatically at FinalState to let the user define
the next query. Also the current QueriedClipList and the
OutputClipList are displayed in the UI. OutputClipList
contains the set of clips that satisfy the user query.
However, it may be possible that when the user reaches a
step in query building process, there might not be any clip
that satisfies all the conditions specified by the user so far.
Our system also maintains QueriedClipList that maintains
all clips that satisfied all sub-queries. The user may check
either list to see the relevant clips.

41

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

IV. ILLUSTRATION
Figure 4 displays the user interface for building a query.

It has three components: tennis video display, the court
view, and buttons for functionalities and drop boxes for
query results. The tennis video display is the major
component for building a query. As the user builds a query,
a corresponding clip is shown to the user. The tennis court
view helps the user to associate objects with locations.
There are three buttons available: “New Query” to start a
new query, “Eventually Query” to skip some states during
query building process, and “Query History” to visualize the
query built so far. The drop boxes are used to see the list of
clips that satisfy the conditions during a query building
process.

The three steps involved in the query process is
supported by the UI. The first step of building the query is
done in the query window, “searching step” is done in the
background and search results are appropriately displayed
into two lists mentioned. And the last step is done by
displaying the queried event in the query window. The
black ring icons represent each of the player’s location (L1
and L2) and yellow icon represents the ball location (Lb).

Figure 4. Snapshot of the User Interface

When the “Eventually Query” button is pressed any time
during the query process, the icons for the players and the
ball appear in the query window as shown in Figure 4. This
allows the user to provide the location L1, L2 and Lb for the
Player1, Player2 and Ball using the features of gamepad.
These locations are recorded as InitialState IS (IL1, IL2, ILb).
As shown in Figure 5 IL1= location 8, IL2 = location 6 and ILb
= location 3. Similarly, FinalState FS is provided by moving
the corresponding icons using features of gamepad as shown
in Figure 6. Thus FS (FL1, FL2, FLb) = (5, 9, 2). Figure 6 also
shows the snapshot after providing the eventually query

have been executed. QueriedClipList contains four clips
that match any intermediate event between IS and FS.
OutputClipList shows one clip that has the entire events
between IS and FS.

Figure 5. Snapshot after providing then InitialState IS

Figure 6. Snapshot showing the queried FinalState FS and results after
executing the “Eventually” query

V. USABILITY STUDY
A usability study was conducted to compare our

gamepad user interface (GI) with the mouse interface (MI)
that uses point-and-click approach developed by Naik [2]
satisfaction as metrics (ISO, 1998). Ten users who were
almost randomly selected to participate in the study were
trained to use both interfaces and then were asked to build
five test queries of varying complexity to take

42

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

measurements to assess the three metrics. The environment
was designed to ensure that the study was fair and unbiased.

The user satisfaction was measured using preference and
ease-of-use. Preference is a measure that indicates the
likelihood of using one interface over the other. After
completing all queries each user was asked to indicate his or
her preference on a scale from 1 to 5 (1 – I definitely choose
MI, 2 – I prefer MI over GI, 3 – I have no preference, 4 – I
prefer GI over MI, 5 – I definitely choose GI). The metric
ease-of-use was also ranked on a scale of 1 to 5 (1 – very
low, 2 – low, 3 – average, 4 – high, 5 – very high) for both
user interfaces. Based on the user data, it was concluded that
the users overwhelmingly (9 out of 10) preferred GI over
MI with preference receiving an average score of 3.7/5.0.
For the metric ease-of-use, all users ranked GI high (score
4) and MI average (score 3), respectively. This clearly
indicates the gamepad interface causes less user discomfort
than the mouse interface. The overall opinion of users also
favored GI over MI.

VI. CONCLUSION
This paper presented an innovative user friendly system

for retrieving the desired clips from tennis game video using
a gamepad. The system allows user to build spatio-temporal
‘eventually’ queries. Eventually query is an important type
of query since it is usually difficult to have a proper user
interface but it is very important since the user does not
need to provide all the details about a query. We have used
S3G to build eventually queries. We have developed an
interface that gives the feeling of playing a game as the
inputs are received through a gamepad. As future work, we
look into other types of temporal queries. We also plan to
specify the type of shot (forehand and backhand) while the
user builds a query.

Though the indexing capability of S3G is described for
tennis game videos it can easily be used for indexing
general videos like other games and news events. In all
videos objects interact because of events caused by objects
or natural phenomena in a limited space over time. The only
differences among different types of videos are number of
objects, events, spatial layout, and the associated semantics.
Therefore, S3G can be used to index general video.
However, the number of states and the number of arcs
(transitions) may become very large if the video involves
too many objects and events. If the designer takes sufficient
care to minimize the number of states and transitions based
on the number of active objects and relevant events then
S3G can be used effectively. For example, in a basketball
game, there are ten players on the court and one ball.
Passing the ball, dribbling from one location to another,
shooting are examples of events (state transitions).

At present, S3G is built from the string representation of
the video manually generated by SMART [1]. Future
research should focus on automating the generation of the
string data using video analysis techniques. Also work for
automatic feature extraction for building content based

image retrieval is going on in parallel in our group. It is
suggested that experiments be conducted in an environment
of a collection of videos. Minor modifications are needed to
S3G to accommodate retrieval of selected clips from
multiple videos. However, the optimization for searching
S3G is limited since we are interested in all paths for an
eventually query to retrieve all relevant clips. In the future,
the probabilistic relationship between states through
transitions can also be studied.

ACKNOWLEDGMENT
This material is based upon work supported by National

Science Foundation under Grant No. 0812307.

REFERENCES
[1] Jain, V. and Aygun, R. S., “SMART: A grammar -based

semantic video modeling and representation,” IEEE
Southeastcon, 2008, pp. 247-251.

[2] Naik, M., Jain, V., and Aygun, R. S., “S3G: A Semantic
Sequence State Graph for Indexing Spatio-temporal Data -
A Tennis Video Database Application,” IEEE International
Conference on Semantic Computing, 2008, pp. 66-73.

[3] Erwig, M. and Schneider, M., “Spatio-Temporal
Predicates,” IEEE Trans. on Knowledge and Data
Eng., vol. 14, no. 4, July 2002, pp. 881-901.

[4] Erwig, M. and Schneider, M., ”Developments in spatio-
temporal query languages,” Tenth International
Workshop, Database and Expert Systems Applications,
1999, pp. 441-449.

[5] Bonhomme, C., Trépied, C., Aufaure, M., and Laurini, R.,
“A visual language for querying spatio-temporal
databases,” Proceedings of the 7th ACM international
Symposium on Advances in Geographic information
Systems, 1999, pp. 34-39.

[6] Sourina O., “Visual 3D Querying of Spatio-Temporal
Data,” International Conference on Cyberworlds, 2006, pp.
147-156.

[7] Erwig, M. and Schneider, M., “Spatio-Temporal
Predicates,” Technical Report, FernUniversit at Hagen,
1999.

[8] Erwig, M. and Schneider M., “Query-by-Trace. Visual
Predicate Specification in Spatio-Temporal Databases,”
Proceedings of the 5th IFIP Conf. on Visual Databases,
2000, pp. 199-218.

[9] Cavalcanti, V. M., Schiel, U., and de Souza Baptista, C.,
“Querying spatio-temporal databases using a visual
environment,” Proceedings of the Working Conference on
Advanced Visual interfaces, 2006, pp. 412-419.

[10] Li, X. and Chang, S. K., “An Interactive Visual Query
Interface on Spatial/temporal Data,” Proceedings of the
Tenth International Conference on Distributed Multimedia
Systems, 2004, pp. 257-262.

[11] Silberschatz, A., Korth, H. F., and Sudarshan, S., Database
System Concepts, 3rd Ed., McGraw Hill, 1997.

43

MMEDIA 2011 : The Third International Conferences on Advances in Multimedia

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-129-8

	I. Introduction
	II. Background
	III. Interactive retrieval of video clips using gamepad.
	A. Features of Gamepad
	B. Mapping Gamepad Input to Semantic Information in S3G
	IV. illustration
	V. Usability study
	VI. conclusion
	Acknowledgment
	REFERENCES

