
A Crowd-sourced Method for Real-time Detection
and Localization of Unexpected Events

Taishi Yamamoto

Graduate School of Information Science and Engineering
Ritsumeikan University

Shiga, Japan
Email: is0145rp@ed.ritsumei.ac.jp

Kenta Oku, Kyoji Kawagoe

College of Information Science and Engineering
Ritsumeikan University

Shiga, Japan
Email: {oku@fc, kawagoe@is}.ritsumei.ac.jp

Abstract—In this paper, a Real-Time Smart and Quick
Unexpected-Event Detect (RT-SQUED) method is proposed to
detect and localize unexpected events, such as traffic accidents,
in real-time, assuming crowd sourcing with smartphone devices.
The authors previously proposed the SQUED, a crowd-sourced
system for detection and localization of unexpected events from
smartphone-sensor data. When SQUED users find an event, they
point their smartphones toward a direction of the event. SQUED
can detect the location and the time of the event using the
smartphone-sensor data. However, the SQUED method is difficult
to scale because of its computational cost problem. Therefore, it
becomes difficult to detect events in real-time. Our new method,
called RT-SQUED, solves this problem using concurrent two-
phase processing. RT-SQUED is composed of rough and concrete
processing phases. In this paper, effectiveness of RT-SQUED is
also discussed.

Keywords–event detection; smart phones; crowd-sourced system;
global positioning system; sensor data.

I. INTRODUCTION

Recently, event detection using sensors, such as cameras
or microphones, has attracted much attention owing to the
spreading of such sensors. Moreover, many event-detection
methods using setting-type and special-purpose sensors have
been developed [1][2]. The popularization of smartphones is
changing how events are detected, because a smartphone is
equipped with many kinds of sensor devices, e.g., a camera,
a microphone, a GPS, and an accelerometer. A special sensor
does not need to be installed in a specific location in advance,
because almost everyone possesses a smartphone. Although a
smartphone sensor can be used for event detection, a crucial
problem remains. Sensor data contains many errors because of
its low measurement accuracy and the human’s irregular hand
movements.

We previously proposed a Smart and Quick Unexpected-
Event Detector, SQUED, to detect unexpected events using
built-in smartphone devices [3]. SQUED gathers data from
the smartphones of people near the location of an unexpected
event, such as a traffic accident. Both a location from the
GPS and the direction from a geomagnetic sensor are used
to identify the actual event location. The main points of
SQUED are 1) crowd sourcing and 2) a novel event-detection
method, allowing it to estimate an accurate location even from
inaccurate data. SQUED can detect an event even if only two
people are near the event location. Moreover, the more people
who are around the location, the more accurately SQUED can
detect the location, using our event-detection method. Finally,

it is available in blind spots, which are the biggest problem
for pre-installed event-detection equipment.

However, SQUED method has the following two problems.
First, it is difficult to expand the detection range. The wider
the detection range is, the more the event detection interval
decreases. Second, it is difficult to detect multiple events
occurred simultaneously. These problems are caused by high
computational cost in detecting events.

In this paper, we propose an improved SQUED method,
RT-SQUED, to be able to detect the event efficiently in
a wider range. RT-SQUED performs two-phase processing,
concurrently. In the first phase, RT-SQUED roughly divides
its detection area into grid units for the event detection.
Second, RT-SQUED counts the number of users whose eye’s-
view triangles overlapped in each grid. By these phases,
it can recognize regions not have to search. Therefore, the
computational cost can be reduced when the scaling of the
detection range is allowed. In the second phase, RT-SQUED
apply the original SQUED method to the grid in which the
number of users whose eye’s-view exceeds the threshold.

This paper is organized as follows. Section II discusses
our previous work. The proposed event detection method is
described in Section III. Section IV presents the results of
evaluation and discussion of the proposed method. The related
works are also explained in Section V. Finally, Section VI
concludes this papers.

II. PREVIOUS WORK

A. Basic concept
In Figure 1(a), the ”x” symbol indicates the actual location

where an event occurred. Figure 1(a) shows three original
directions obtained from the sensors of three pedestrians, P1,
P2, and P3. Although each pedestrian tends to precisely point
his/her smartphone toward the event location, an imprecise
direction may be obtained from inaccurate sensor data, as
shown in Figure 1(a). In Figure 1(a), the three direction lines
do not intersect. Even for any pair of direction lines, the
intersection is far from the actual event location.

The basic concept of our SQUED method is shown in
Figure 1(b). In Figure 1(b), the eye’s-view triangle introduced
in our method is shown. The eye’s-view triangle starts from
the location of a pedestrian, with a pre-specified angle center-
ing from the event direction estimated from the pedestrian’s
smartphone sensor. As in Figure 1(b), when an event occurs at
location ”x”, a triangle for each pedestrian is constructed from

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-452-7

MMEDIA 2016 : The Eighth International Conferences on Advances in Multimedia

��
��

��

(a) Eyes direction

��
��

��

(b) Eyes view

Figure 1. Eyes direction and eyes view

the sensor data. Three triangles are checked in this case. The
intersection of the three triangle regions is calculated. The red
area, a parallelepiped represented by dashed lines, indicates
the event location area, inside which the event likely occurred.
With this introduction of an eye’s-view triangle, the event-
location area can be detected even when the observed sensor
data contains noise, as in Figure 1(a). The more pedestrians
who view an event and point a smartphone at it, the more
precisely the location can be detected.
B. Definition

We define some symbols to describe our event detection
method. R, a rectangular region, is pre-assigned as the event
detection range. R is represented as a set of ∆ × nx times
∆ × ny grid points {Pij}, i = 1, .., nx, j = 1, .., ny ,
which are disposed at equal intervals in both vertical and
horizontal directions, as shown in Figure 2. ∆ is the predefined
interval between two adjacent grid points, in vertical and
horizontal directions. The value of ∆ is assumed to be having
minimum accuracy on the detected event location. The left-
bottom coordination point is (Bx,By).

Suppose there are users U = {uk}, k = 1, .., Nu pointing
their smartphones towards an event. For each user uk, his/her
location and eye’s-view direction are defined as Lk and Vk,
respectively. We introduce the eye’s-view triangle represented
as RUk for a user Uk. RUk is calculated from the origin point
Lk and two lines from Lk whose angles are V R1

k and V R2
k,

respectively, where V R1
k=Vk-α and V R2

k=Vk+α, α is a pre-
defined parameter. The length of the two lines are fixed as
H .
C. Method

For a given TUk, we calculate the number of overlapped
users, DUi,j for each grid point Pi,j as follows: DUi,j =
|U ′

i,j |, whereU
′

i,j = {ul|Pi,j ∈ RUl, ul ∈ U}. We define
the detected event region/location as E and the minimum
number of overlapped users for event detection as MU . Then,
the detected event region E is obtained as the following:
E = {Pi,j |DUi,j ≥ MU}. The detected grid points of E are
sorted with the value of DUi,j in descending order. Figure 2
shows an example of eye’s-view triangles and an event-location
region detected from the triangles. In this example, only two
users found an event. This Figure has two eye’s-view triangles.
The intersection of the two regions is represented as a set of
grid points, as shown in Figure 2. In our proposed method,
we calculate the number of users whose eye’s-view triangles
overlap, rather than calculating a time-consuming intersection.

�
�

�
�

��
�
�

�
�

��
�
�

��
�

��
�
�

�
�

��
�
�

��
�

�

�

Figure 2. SQUED event detection method

D. Problems of SQUED method
SQUED method has following problems: expansion of

event detection range and detection of multiple events.
First, suppose that, we set ∆ as 10 meters and the values

of nx and ny as 1000. In this case, the number of grid points
is 10000. For each of the grid points, SQUED calculate the
number of overlapped users. As the number of users or nx×ny

becomes large numbers, order of calculation will be larger.
Therefore, it is difficult to expand the detection range.

Next, we assume that 10 events occur in a range of 5 km
× 5 km at random. If the system can only search the range
of 500 m × 500 m due to the above-mentioned problem, it is
difficult to detect multiple events. In the case of expanding the
event detection range, this problem becomes more serious.

Therefore, it is necessary to reduce the computational cost
for event detection.

III. PROPOSED EVENT DETECTION METHOD

A. Basic concept
Figure 3 and Figure 4 show the rough processing phase,

Figure 5 shows the concrete processing phase.
In the rough processing phase, it counts intersections

between a rough grid dividing a detection range and a smallest
rectangle surrounding the user triangle. In this example, the
detection range is divided by four rough grids. Figure 3
shows the intersection detection in the left upper rough grid.
Intersections in each rough grid are shown in Figure 4. Here,
the rough grid which should detect in detail becomes only the
left upper grid when the threshold is set to 2. Therefore, the
concrete processing phase applies only to the left upper rough
grid.

The concrete processing phase uses SQUED method which
is mentioned above. In Figure 5, the part indicated as the
red circle (the white circle in the gray scale) becomes the
event detection point when the threshold is set to 2. Using this
method, it can reduce the calculation cost.
B. Algorithms

Algorithm 1. EventDetection

1 EventDetection{
2 // RoughGridSize, ConcreteGridSize,
3 // DetectionRange, threshold are pre-defined.
4 // N-Interval, the number of concrete-phase
5 // processings in one rough-phase processing,
6 // is preseted.
7

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-452-7

MMEDIA 2016 : The Eighth International Conferences on Advances in Multimedia

Figure 3. Rough processing phase

�

� �

�

Figure 4. Rough processing phase 2 Figure 5. Concrete processing phase

8 //Initialization
9 RoughGrid <- CreateGrid(RoughGridSize,

10 DetectionRange)
11 ConcreteGrid <- CreateGrid(ConcreteGridSize,
12 DetectionRange)
13 //Main event detection process
14 While(){
15 If (Stop-condition is met) {Stop}
16 Obtain all USER data from Database and
17 set them to User.
18 // An element of User is a set of three
19 // locations forming a triangle.
20 If (Counter exceeds N-Interval) {
21 DetectedRoughInfo <- RoughEventDetection
22 (RoughGrid, User)
23 GridPointInfoUser <- GetConcreteGridPoint
24 (ConcreteGrid, DetectedRoughInfo)
25 Counter <- 0
26 }
27 DetectedResult <- ConcreteEventDetection
28 (GridPointInfoUser)
29 Counter++
30 ShowEventsDetected(DetectedResult)
31 }
32 }

Algorithm 2. Rough & Concrete EventDetection

1 RoughEventDetection(RoughGrid, User) {
2 DetectedRoughInfo <- {}
3 For each grid in RoughGrid {
4 For each user in User {
5 MBR <- GetMinBoundingRect(user)
6 // user’s MinimumBoundingRectangle is
7 // calculated.
8 If (CheckIntersect(grid, MBR) is TRUE {
9 // it is checked if the MBR intersects

10 // the grid or not.
11 Add (grid, user) to DetectedRoughInfo
12 }
13 }
14 }
15 Return(DetectedRoughInfo)
16 }
17 ConcreteEventDetection(GridPointInfoUser) {
18 DetectedResult <- {}
19 For each grid point as gridPoint
20 in GridPointInfoUser {
21 // UCounter is a counter to count the number
22 // of users is included in the gridPoint.
23 UCounter <- 0
24 For each user in GridPointInfoUser {
25 If (CheckInclusion(gridPoint, user)) is TRUE {
26 // it is checked if the user is included
27 // the gridPoint or not.
28 UCounter++
29 }

30 }
31 If(UCounter >= threshold) {
32 Add gridPoint to DetectedResult
33 }
34 }
35 Return(DetectedResult)
36 }

In the Algorithm 1, the main process, called EventDetec-
tion, is described.

Each user has the positional information of the three points
forming a triangle. Three points consists of the location of the
user and two points making up the eye’s view is described
in the previous section. A grid is a square composed of four
coordinate grid points.

In EventDetection, first, two types of grid information are
generated using RoughGrid and ConcreteGrid. CreateGrid is a
function to create grids dividing from the DetectionRange at
pre-defined size such as RoughGridSize. Then, RoughEvent-
Detection, GetConcreteGridPoint and ConcreteEventDetection
are iterated until the given stop condition is met, while
RoughEventDetection and GetConcreteGridPoint are executed
per preset N-interval. RoughEventDetection is a function to
detect possible rough grids and users belonging to rough grids
where a certain event may occur. GetConcreteGridPoint is a
function to create a GridPointInfoUser, which is composed
of a set of grid points and the users extracted for the grid
point. The grid points are obtained by RoughEventDetection.
The users for each grid point are extracted from all users by
checking of intersection with each of grids and each of users.
If a user intersects a grid, the user is extracted as belonging to
the grid points, which are included in the grid. ConcreteEvent-
Detection is a function to detect event concretely by using
concrete grid points associated with users generated from the
result of GetConcreteGridPoint. At the end of the loop, the
function called ShowEventsDetected is executed to show the
DetectedResult. In the ShowEventsDetected, detected result
processed by the two functions of RoughEventDetection and
ConcreteEventDetection. DetectedResult is composed of a set
of grid points are presented to RT-SQUED system’s users.

Algorithm 2 shows the details of our two phase event
detection procedures.

RoughEventDetection is a function to perform in the first
rough phase. In the RoughEventDetection, DetectedRough-
Info is first initialized to store the return value. Then, for
each grid and each user the intersection between the grid
and the user region is iteratively checked. In this check,

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-452-7

MMEDIA 2016 : The Eighth International Conferences on Advances in Multimedia

MinimumBoundingRectangle is created from the user triangle
instead of the use of the user triangle due to rough check-
ing. GetMinBoundingRect is a function to create a smallest
rectangle, called MBR, surrounding the user triangle, which is
described in the previous section. An MBR is created from
the minimum and maximum values among three triangle-
endpoints for each coordinate. After that, checking whether
MBR intersected grid using CheckIntersect. CheckIntersect
is a function to check if a MBR is intersected with a grid
or not. This function uses the two coordinates of MBR and
grid to check the intersection. If MBR is intersected with a
grid, information on the corresponding the grid and the user
is added to DetectedRoughInfo. Finally, RoughEventDetection
return the DetectedRoughInfo.

ConcreteEventDetection is a function to perform the sec-
ond concrete phase. In the ConcreteEventDetection, Detect-
edResult is first initialized to store the return value. Then,
for each gridPoint and each user, it is checked whether the
gridPoint is included in the user triangle, by using Check-
Inclusion. CheckInclusion is a function to check if the user
triangle includes the gridPoint or not. This function uses the
cross product vector for each of the sides of the user triangle. If
a user triangle includes a gridPoint, UCounter is incremented.
If the UCounter value is more than the given threshold, the
corresponding gridPoints are added to DetectedResult. Finally,
ConcreteEventDetection returns the DetectedResult.

IV. EVALUATION & DISCUSSIONS

We conducted an experiment to compare the accuracy and
processing time with SQUED method and RT-SQUED. The
data set that we used is one of the data set which we used in
the case of the experiment of the previous paper.

TABLE I. SQUED method v.s. RT-SQUED

Method Accuracy (F-measure) Processing time (sec)
SQUED method 28.6% 31.67

RT-SQUED 28.6% 3.07

We set N-interval as 1 in this experiment. Table 1 shows the
result of the experiment. The processing time of RT-SQUED
became a one-tenth than that of SQUED method. In addition,
the deterioration of the accuracy was not observed.

In our RT-SQUED, the proposed two phases, RoughEvent-
Detection and ConcreteEventDetection, are concurrently exe-
cuted. Through the experiment, we confirmed that the compu-
tational cost could be reduced and that event detection speed
became faster. Moreover, the size of the detection range can
be increased more. Therefore it can detect multiple events
occurred simultaneously compared with SQUED method.

Furthermore, in RT-SQUED, N-interval in the first rough
phase, the frequency of the RoughEventDetection execution,
can be changed. This makes it possible to appropriately adjust
the detection speed and detection accuracy, depending on the
situation. With the ability of adjusting the frequency according
to the event search range, real-time event detection can be
realized.

V. RELATED WORK

Wentao et al. proposed iSee, a detection system using
the smartphone [4]. iSee uses two sensors, a GPS and a

geomagnetic sensor. A user needs to swipe his/her smartphone
screen toward the event location. iSee then acquires the user’s
location and the device direction to estimate the actual event
direction using the swipe direction. Although the idea is similar
to our SQUED, users need to swipe their smartphone screen.
A SQUED user only needs to point his/her smartphone toward
an event location. Moreover, the swipe direction contains much
more noise than geomagnetic sensor data does.

Tran et al. proposed an algorithm that could recognize
actions such as walking and running from videos [5]. It can
detect events in a crowded video scene. In this approach,
the point of intersection of the characteristic point of the
object between each frame is extracted in order to recognize
a movement trace. Wang et al. proposed an algorithm that
could recognize other types of events, such as a parade and
rock-climbing, from videos [6]. In their method, the local
characteristic of the frame is replaced with a letter to detect
an event more efficiently.

Tong Qin et al. proposed an crowdsourcing based event
reporting system using smartphones with accurate localization
and photo tamper detection [7]. In their system, it can identify
the event summary and the event location by using event pho-
tographs, event descriptions and sensor data by smartphones
of system users. Their system also supports the accuracy
degradation due to tampering with photographs.

VI. CONCLUDION

In this paper, we proposed a Real-Time Smart and Quick
Unexpected-Event Detect (RT-SQUED) method to detect and
localize unexpected events in real-time, assuming crowd sourc-
ing with smartphone devices. We described how RT-SQUED
solves SQUED’s problem by using the proposed two-phase
processing for the real-time event detection.

In the future, we will improve the detection method further
and build a new system using RT-SQUED in order to perform
the event detection in real-time.

ACKNOWLEDGMENT

This work was partially supported by JSPS 24300039.

REFERENCES
[1] A. Harma, M. McKinney, and J. Skowronek, “Automatic surveillance of

the acoustic activity in our living environment,” in IEEE ICME 2005,
July 2005, pp. 4 pp.6–8.

[2] A. F. Smeaton and M. McHugh, “Towards event detection in an audio-
based sensor network,” in ACM, ser. VSSN ’05, 2005, pp. 87–94.

[3] T. Yamamoto, K. Oku, H.-H. Huang, and K. Kawagoe, “Squed: A novel
crowd-sourced system for detection and localization of unexpected events
from smartphone-sensor data,” in IEEE/ACIS ICIS 2015, June 2015, pp.
383–386.

[4] R. W. Ouyang et al., “If you see something, swipe towards it: Crowd-
sourced event localization using smartphones,” in ACM, ser. UbiComp
’13, 2013, pp. 23–32.

[5] D. Tran, J. Yuan, and D. Forsyth, “Video event detection: From sub-
volume localization to spatiotemporal path search,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 36, no. 2, 2014, pp.
404–416.

[6] F. Wang, Z. Sun, Y.-G. Jiang, and C.-W. Ngo, “Video event detection
using motion relativity and feature selection,” Multimedia, IEEE Trans-
actions on, vol. 16, no. 5, 2014, pp. 1303–1315.

[7] T. Qin, H. Ma, D. Zhao, T. Li, and J. Chen, “Crowdsourcing based
event reporting system using smartphones with accurate localization and
photo tamper detection,” in Big Data Computing and Communications,
ser. Lecture Notes in Computer Science, 2015, vol. 9196, pp. 141–151.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-452-7

MMEDIA 2016 : The Eighth International Conferences on Advances in Multimedia

