
Mobile Agent for Nomadic Devices 

 

Charif Mahmoudi, Fabrice Mourlin and Guy-Lahlou Djiken 

Laboratoire d'Algorithmique, Complexité et Logique 

University Paris-Est 

Creteil, France 

{charif.mahmoudi, fabrice.mourlin, guy-lahlou.djiken}@u-pec.fr

 

 

 
Abstract— Today, mobile devices are used as personal objects, 

which contain own data about our activities, our personal life, 

etc. Also, these data are essential for the user and it is not 

acceptable to exchange these data on the network. Then, 

computing on these data can be done by importing 

applications. We present our work about moving applications 

from server to client host. We use mobile agent technology 

with the difficulties of heterogeneous platforms. Importing 

agent has to respect features of the device (version, technical 

interface, business interface, etc.). A first negotiation is settled 

to ensure that a set of useful agents are selected towards an 

embedded device. By the end of a scenario, features are 

recorded to improve negotiation algorithm for the future 

exchange. So, each exchanged agent is not only used for a 

mission but also for the next ones. We use our framework for 

collecting data from nomadic devices. The mobile agents bring 

back these data to server where they will be treated. 

Keywords-mobile OSGi; agent; nomadic device; REST 

services; transcoding. 

I.  INTRODUCTION 

Mobility is a common word, which has different meaning 
depending on the working context. Mobile feature is often 
used for device like smart phone, tablet. In that case, mobile 
aspect highlights that user and device have the ability to 
move during runtime application. Distributed systems use 
mobility for actions. Mobile agents are often used for 
adapting an application to its environment. In that case, it 
means that the code of a part of an application can move 
from one node of the network to another one [1]. 

Two meanings of one word for two distinct contexts 
seem ambiguous and we should speak about nomadic user 
but it is too late for changing a so common feature of phone 
for instance. In our working context both aspects are used to 
build a distributed application where mobile devices are http 
client of distributed application. 

Development of mobile applications is an activity 
domain which focuses a lot of designers and programmers. 
The number of libraries encourages new kinds of 
interconnection. Several protocols are used depending on the 
scope of exchanges. Bluetooth [2] and IrdA [3] are exploited 
for local exchanges, like file transfers with a laptop. A WIFI 
scanner allows users to connect all WIFI networks. This 
increases the scope of applications. For example, a client can 
register a broadcast receiver to perform the scan for new 

networks and improve its knowledge about environment [4]. 
Another application context is the developments of Binder 
framework for inter process communication [5]. It is 
designed to provide a rich high-level abstraction on top of 
traditional operating system services 

Traditional software architectures use network as input or 
output data flows. Routes are defined between clients and 
servers and these are used to exchange information. These 
routes can be configured dynamically. But when a client is 
mobile, it enters into an infinite process to adapt current 
configuration. Also, this update costs time and energy. 
Another approach could be to update configuration only 
before communication. But, these events are not always 
predictable and some of the updates might be useless. 

We describe our approach in the next sections of this 
document. First, we explain in detail our software 
architecture. Then, we focus to agent server and how agents 
are exposed over http protocol. Next section is about agent 
host and the lifecycle of the incoming piece of code. Finally, 
we describe one of our case studies based on a data 
collection which gives information to the server about end 
user activity. 

II.  RELATED WORK 

The Android platform covers a large software solution 
for mobile devices from an operating system to a set of 
mobile applications [6]. The two competing:   Windows 
Mobile and Apple’s iPhone allows simplified development 
environment built on proprietary operating systems that 
restrict interactions between applications and native data. 
Android offers an open source development environment 
built on a Linux kernel [7]. Android offers also a standard 
API to access to the device hardware; this API allows the 
application to interact Wi-Fi, Bluetooth, and other hardware 
components.  

The Open Gateway Services interfaces (OSGi) platform 
[8] defines a standardized, components-oriented computing 
approach for services. This approach is the foundation of a 
Service-Oriented Architecture (SOA) based system. The 
OSGi specifications were created to cover the exposition of 
residential internet gateways for home automation software 
[9, 10]. However, the extensible features of OSGi technology 
contribute to impose it as key solutions. Several devices 
vendors, like Nokia and Motorola, have choice OSGi 
standard as a base framework for their smart phones. This 

59Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



choice is due to the features provided secure support for 
developing and deploying java service component 
applications packaged in a standard Java Archive (JAR) file 
called bundles. A bundle contains a manifest file that 
describe bundle’s configuration on the OSGi container. 
Figure 1 illustrates the OSGi framework, applied to our 
approach, which provides a shared runtime environment 
capable of dynamic and hot lifecycle management 
operations: installs, updates, and uninstalls bundles. No need 
to restarting the system after a management operation.  

Fig. 1.  Agent runtime environment architecture.  

 
Other research works in literature have been focused in 

the use of agent-based technology on nomadic devices; 
examples include JADE [11], JaCa-Android [12], 
AgentFactory [13], and 3APL [14]. Differently from these 
related works, our approach do not consider the issue of 
porting agent technologies on limited capability devices, but 
we focus on the autonomous agent mobility issues, we focus 
also on the advantages brought by the adoption of an agent-
based solution for the development of mobile agents that 
have decide when and where to move in a complex mobile 
system. 

We propose a new approach based on mobile agents [15] 
that run into an Android embedded OSGi runtime 
environment. Our work changes software architecture into a 
new scheme. When an agent incomes onto a device; it has 
knowledge about network configuration. This agent collects 
business data and by the end of its mission, it can return to a 
server or other clients.  

III. MOBILE SOFTWARE ARCHITECTURE 

The software architecture of distributed application is a 
picture of the system that aids in the understanding of how 
the system will behave. Such an architecture is depicted by a 
component graph where each node is a software component. 
A first observation enhances three main types of 
components: agent server, agent host, and mobile agent. 

The role of agent server is to receive the requests from 
clients then it records the demands and creates or selects 
mobile agents. Finally, it exports agent to agent hosts. The 
role of agent host is to send its demand to a server and then 
listen to the answer of the server. When the reception occurs, 

it engages the mobile agent into a state where it is able to 
execute its own mission. To sum up, a mobile agent is a 
piece of code which travels over the network. Initially, it is 
configured by the server for navigating through a set of agent 
hosts. Its aim is to be as autonomous as possible even if it 
has to use local resources of host client. Security concerns 
have to be set first on all the devices which will participate to 
a case study. A more common definition of mobile agent can 
be found in Bernichi [16]. 

A more precise observation stresses technical 
requirements about network exchange and also message 
structure between the components. Thereby, a client 
communicates though the use of REST Web Services [17]. 
This involves that the underlying protocol is http. However, 
type of message is considered as a byte stream from the hosts 
to the mobile agent and vice versa. 

A. A first level observation 

First of all, we provide a deployment diagram where 
main nodes of architecture are drawn. All connection mobile 
software support http as the transport protocol, making each 
compatible for use with the server through a solution on 
Android devices. No security constraints are applied in the 
first version of the prototype, but our security approach is 
developed in subsection III.C. 

Server is accessible through WIFI card and it may 
connect to any standard WIFI router, which is configured as 
an Access Point (AP), and then, sends the data to other 
devices in the same network such as basic phones and smart 
phones. Figure 2 represents the main items: a server which 
supports an agent server; mobile devices support mobile 
nodes and agent hosts. WIFI access is provided by antenna 
or access point. The structure of the graph can be 
permanently evolved. Of course, other items can be added 
for example Bluetooth devices. 

Once associated with the Access Point, the nodes may 
ask for an IP address by using the DHCP protocol or use a 
preconfigured static IP. The Access Point connection can be 
encrypted, in this case, we have to specify also the pass-
phrase or key to the WIFI module: 

Nodes may also connect to a standard WIFI router with 
DSL or cable connectivity and send the information to a web 
server located on the Internet. Then, users are able to get this 
information from the Cloud when a static configuration is 
used. 

Fig. 2.  Deployment diagram of our following case study.  

B. A second level observation 

After a first physical description, we provide a more 
synthetic architecture description where components are 

 

 

60Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



isolated. In this context, a component is a modular unit that 
is replaceable within its environment. Its internals are hidden 
but it has well defined provided interfaces. Three main 
components are designed with their dependencies. 

The main component is called Agent Server on the server 
station. It provides two interfaces. One is used for registering 
the demands of the hosts. Another interface allows mobile 
agents to exchange data with Agent Server. This interface is 
particularly important for the end of mobile agent activity. 

Fig. 3.  Component diagram :software architecture.  

 
As illustrated in Figure 3, on each mobile device, a 

component called Agent Host is installed. It sends demands 
on mobile services by the use of IRegistration interface. This 
component implements an interface called IVisitable. It 
allows mobile agent to come into the context of agent host. 

The component called Mobile Agent, is created and 
configured of the server station, then it uses IVisitable 
interface of agent hosts for the exportation. It provides an 
interface called IAgent, which is used by the host to launch 
the runtime of mobile agent on the nomadic device. 

The interface IRegistration and IVisitable are remote but 
IAgent is a local interface. All remote accesses are mapped 
on http protocol methods. The technology REpresentation 
State Transfer (REST) [18] is chosen. A resource-oriented 
approach is well adapted to the interaction scheduling. A 
resource is a mobile agent for the agent server or an agent 
host. Or a resource can be an agent host for a mobile agent. It 
means anything of potential interest that is serializable in 
some form. The acronym REST refers to the transfer of some 
bit of information or mobile agent state, as a representation, 
from a server to a host or back again. 

But, another technical constraint appears: the kind of byte 
code is not the same between the server station and the 
mobile device. Also, an agent which is built by the agent 
server on the server has to be transcoded before moving to an 
agent host. The transcoding means to know the technical 
features of all agent hosts. Also, we decided to encode 
mobile agent into an intermediate representation and each 
local host will adapt the representation though the use of an 
agent loader. This strategy is close to class loading but the 
algorithm is not only about loading the byte code of the 
agent but also on the permissions that are assigned to the 
agent. 

C. security approach  

When agent have to access to a resource exposed by current 

agent host, the agent use URI to address and get the 

resource. Android SDK 1.0 introduced a security 

mechanism to manage URI based security. An agent can 

specify resource URI identifying an XML file. If the agent 

doesn’t have read permission to the agent host containing 

the XML file, the agent can use its own URI permission 

instead. In this case, the agent uses a read flag that grants 

the agent host access to the resource. URI permissions are 

essentially capabilities for agent execution. This mechanism 

allows a least privilege access to the agent host. The 

tractability of policy is preserved truth the agent host. 
In the next section, each component is described to 

illustrate the mechanisms of code mobility and monitoring 
the collection of information. The structure of the API allows 
readers to understand the case study presented is the 
following example. 

IV. AGENT EXPOSITION 

The role of each component is crucial in defining this 
new software architecture. Also in this section, we will focus 
on the structure of each and how is implemented software 
mobility. 

A. Agent Server component  

The AgentServer component manages the demands of 
agent hosts and the pool of mobile agents. Its first role is to 
receive queries from agent hosts and treat them. To do this, it 
is necessary to detail the structure of a query. It provides two 
main records: the need for intervention, a reference for the 
visit. The intervention of a mobile agent means a remote 
activity is requested by an agent host. This expression is 
made by the demand of a technical interface, which is 
associated to permissions for access to local resources. As 
part of this work, we have not installed directory services 
where these interfaces have been reported. This should be 
done in a real environment. 

1) Design constraints 
We show in section C the structure of a mobile agent. We 

have decided that all mobile agents can provide only one 
business interface for the purpose of simplification and 
optimization. In fact, offering one business interface allows 
the server to configure a mobile agent that travels to several 
agent hosts. Each agent host has provided its reference in its 
request. Then, a mobile agent manages a list of references to 
agent hosts. 

An agent server not only has the role to create mobile 
agents as well as receiving mobile agents by the end of their 
mission. This means having traveled all agent hosts; a 
mobile agent ends at the agent server. Both activities are 
dependent and yet receiving mobile agents must take 
precedence over creation because the pool of agents waiting 
mission is to be reused for future requests. To implement this 
constraint, we have defined an agent server as composed of 
two main threads. The first is to the end of mission, the 
second for the creation of agents. This thread is of lower 
priority to the first interrupt by creating a return. 

 

61Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



When returning mobile agents to the server, it is 
responsible for the extraction of data and their backup in the 
local system of persistence. In our case study, it is a database 
server. These data are then used by other applications so that 
future interventions will be planned. For example, when 
collecting data for monitoring Web server, the messages on 
anomaly deployment involve the creation of new demands of 
mobile agent. So, a mobile agent will be exported onto the 
host where the deployment fails. This update will involve 
new messages during the next data collection and so on. 

In our prototype, all agent hosts are treated equally by the 
agent server. However, the result of the activity of mobile 
agent cannot be validated by agent host itself. Also, this 
could be the role of other mobile agents into a control 
activity. The goal at the server level is to ensure that any 
received request by the server is handled by a mobile agent. 
In another work context, it would be possible to keep track of 
a set of requests to consider exporting mobile groups of 
agents in a single export. 

We did not secure the exchange of data between the 
server and mobile agents in the context of this work. We 
considered that the data collected by mobile agents were 
visible to all components of the distributed system. This 
simplification allows us to reach a rapid prototype supporting 
our functional tests, but also our load tests. 

2) Component architecture 

Fig. 4.  Class diagram of agent server component 
 

Figure 4 gives a first structure of the classes which 
belong to the AgentServer component. New interfaces are 
present such as Registry, RegistryObserver. These interfaces 
are not exposed by the AgentServer component, but are 
useful as local interfaces within the component itself. Thus, 
RegistryObserver interface is implemented by all classes that 
are prone to react to requests from a host. Implementation 
classes are the pool of mobile agents and the class of mobile 
agent factory. 

The class diagram above highlights some design patterns. 
The data structure that records the host requests is an 
observable subject by all observers who treat them. The 

factory of mobile agents is an observer but also the pool of 
mobile agents ready to be configured for a new mission. The 
uniqueness of some essential items in the AgentServer 
component is implemented by the use of Singleton pattern. 
This is the case for LocateRegistry class has only one 
instance for recording all requests from the host. 

Technical classes are not present on the diagram in 
Figure 4 for clarity. For example, management of tasks 
requested by the host is missing from the figure. In addition, 
the agent server uses a task set to inject during the 
configuration of mobile agents. This means the injection of 
code into an agent, which is already created, but also initiates 
an initial context for the task performed by the agent. 

B. Agent Host component 

By definition, the host agent is installed on the nomadic 
device such as tablets and smartphones. In our current 
prototype, we have chosen to implement an agent host per 
device. Thus, the host can be seen in the distribution as 
representative of the software device that supports system. 
This component manages the identifiers among other 
material information. 

1) Analysis requirements 
A host of agents exhibits a single remote interface to be 

visited by requested mobile agents. The advantage of this 
approach is better interactivity. Thus, the interface is 
published in the directory of the host interface (Registry) 
only when the request from the host has been accepted by the 
server. In addition, this interface will be removed as soon as 
the mobile agent has visited the host. 

The expression of the need for intervention is difficult 
because it is necessary that the host is aware of the types of 
jobs available on the server. As part of this prototype, we 
made the choice to have a set of interfaces known agent 
hosts and agent server. It is clear that this global knowledge 
is not desirable because it all tipsy scalability tasks. More 
particularly, this approach prohibits the dynamic task 
creation. This concept will be addressed in the next 
increment of our prototype. 

The structure of an agent host has the particularity to 
execute a business process but also to involve a mobile 
agent. This would happen following a request from the host. 
It is important at this stage to focus on the principle of 
mobility that we have implemented. A strong constraint is 
the byte code differences between the platform server and 
nomadic devices. A host agent cannot execute code from a 
mobile agent created on the server. It is necessary to 
transcode this code to adapt to the device from which the 
request comes. The technical risk was initially important in 
our project and encouraged us to assign our increment to it. 
This conversion is done on the server. When the agent host 
receives the byte code of the class of the mobile agent, it 
must load it via a local agent loader and configure from the 
state of the serialized (with its class) agent. 

Then, the mobile agent is executed in accordance with 
the life cycle of the host agents. This means that a thread is 
dedicated to the mobile agent and activity. The priority of 
this thread is normal to let the opportunity to agent host to 
launch higher-priority threads. Finally, specific permissions 

 

62Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



are assigned to AgentHost component in order to perform 
network communications and access to some useful sensors 
for the business job. 

2) Design patterns 
The main structure of an agent host is based on the 

Command design pattern. Figure 5 shows that design choice. 
When a mobile agent invokes IVisitable interface to enter the 
host, the client of this pattern is the VisitableService service. 
It creates a concrete MobileAgent instance from input byte 
data and sets its receiver. 

The class called, AgentLoader promotes the byte code 
array into a class which can be used by agent host. The agent 
thus received is added to the instance of WaitingRoom class 
is the data structure that are placed all mobile agents received 
awaiting use. This instance acts as an Invoker. It asks the 
concrete mobile agent to carry out the activity. MobileAgent 
abstract class declares an interface for executing the task. 
CollectorAgent and MonitorAgent define a binding between 
a Host object and a task. It implements methods of public 
interface IAgent. We use the concrete command 
CollectorAgent into the next case study. Its role is to invoke 
the corresponding operation on host. In the next example 
(section V), the data are extracted from data files. The Host 
class knows how to perform the operations associated with 
carrying out a request. This class serves as a receiver for all 
the concrete commands. 

Fig. 5.  Class diagram of agent host component 
A Host object represents a mobile location (any possible 

place) where a mobile agent may run. Thus it is represented 
as a physical resource with computing capabilities. An 
instance of this class is always bound with the corresponding 
native host. Several local information are stored by the host 
in order to be recognized as unique in the wireless network 
without using information specific to the protocol itself. 

The Context class (Figure 5) shows the data structure 
used by mobile agents as they pass on the host. Two scopes 
of data are useful. First data host range: they are resident data 
that the mobile agent can take starting from the agent host. 
These data are useful for its current activity and the 
realization of its mission on this host. Mobile scope data are 
those that can move with the mobile agent during its travel 
from host to host. Usually, these data are the overall mission 
must make the mobile agent. By the end of the mission, the 
extraction results come from scope mobile data. They allow 
an external application to validate the success or not of the 
mission of the mobile agent. 

C. Mobile Agent component 

The concept of mobile code we use; is a mobility on 
demand, because it is controlled by the applicants. In our 
case, the server and the hosts are the assets of our distributed 
system. Hosts request and the server provides services. But 
in our case the product is not a set of raw data, it is a code 
that intelligence can make a mobile service. By configuring 
the server, the agent knows the references hosts and thus 
moves from host to host in order to apply the only task that 
knows. Of course, this task can use specific host data or 
specific mobile data. 

1) Mobility on demand. 
This expression is often associated to electric vehicle in a 

city. But, in our working context, this represents use of 
mobile agent in a distributed system. To be useful the mobile 
agent needs the host offers an agent loader. Then, its 
statement is managed by the lifecycle of the host. Thus, it is 
the host that will decide the launch of its task or its 
interruption, etc. 

The end of normal task of an agent is reached the stop() 
method is executed. In order to comply with a protocol of the 
easiest possible use, we decided to adopt a balanced 
approach than the arrival of the mobile agent on a host. Thus, 
the execution of the stop() method is followed by the data 
backup (local to the host or mobile), and then moving the 
agent to its next destination. The last destination will be the 
agent server. Once the migration is done, the code of the 
agent is discharged. And two successive interventions of an 
agent of the same type will be considered as two different 
interventions. 

When looking for the next host, the mobile agent 
performs a search of the reference that it has received from 
the server during configuration step. There can be only one 
registry per host. In our case, each host has permissions to 
manage its own registry but can only lookup into abroad 
registry. Also, the search is performed by a multi cast on all 
of these registries to find out the reference of the next 
destination host. 

In the context that such a reference is not found then the 
mobile agent fails to migrate to the next destination. If this 
reference is last then he will go on the server that originally 
configured. The final extraction of the data is made by the 
server. It calls the IAccessor interface that is managed by the 
component MobileAgent. We designed this refund so that all 
the data is aggregated results in a data structure which only 
read access is possible through the use of IAccessor 

 

63Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



interface. At its next configuration, the contents of these 
results will be deleted from the memory of the mobile agent 
as for all mobile data scope. 

On the server, the management of mobile agent in done 
by the data structure called ReusableAgentPool which is an 
iterable structure. We have not developed a technique to 
eliminate redundant in the waiting pool agents. Another 
strategy recommended in the work of load balancing is to let 
the agent on the last host who asked. The underlying idea 
concerns the fact that an agent is more useful from a client to 
a server. 

2) Design and change. 
The mobile agent design is simple as it is important that 

the agent is small so it can be easily encoded and decoded. 
By construction, a mobile agent is a running activity in the 
context of remote work. All types of work are not present on 
the charts but simply Task interface. 

To be independent, a mobile agent must be configured. It 
comes from the server contains a list of steps that are the 
mission of this agent. A step is the application of a task on a 
host. By the end of the application of a task is achieved and 
added to the result list (class called ResultManagement). 

Fig. 6.  Class diagram of mobile agent component 
 
Thus, by the end of the mission, the list of steps is empty 

while the list of results is full. Each of the support structures 
of an iterator that enables an enumeration of the data 
structure in the same order as that of the host list. 

The strategy of migration is achieved by the move() 
method. This is a step algorithm which is realized by the use 
of Template design pattern. These steps are implemented 
using abstract methods. Subclasses change the abstract 

methods to implement the real actions. Thus the general 
algorithm is saved in the class called MobileAgent but the 
concrete steps may be changed by the subclasses. The 
refined implementation is done in RESTMobileAgent class, 
where all the steps are implemented as REST web services 
(Figure 6). 

The REST approach is oriented around resources. The 
resources support often access though get, post, put or delete 
actions. We built a whole REST prototype, but our design 
could support other kinds of remote access if necessary. 

Next section is about how mobile agent activities are 
inserted into the life cycle of agent hosts. 

V. AGENT HOST LIFECYCLE 

Deploying the set of components, they are started at 
installation. And any agent host is ready to receive a mobile 
agent after an initial setup phase. Management of mobile 
agents or constraints specific to each host and belong to the 
configuration of the host. This is done through the use of 
XML descriptor. 

A. Component descriptor 

The Mobile Component Descriptor (MCD) describes the 
properties of agent host. The MCD contains following 
required information such that the technical name of the 
component, the version and a description of the component. 
Specific features are added such that component type 
(Server, Host, Mobile), runtime environment, etc. Next, the 
behavior of the component is described as phases of an 
automaton. The way to specify them is extremely simple and 
is divided into 4 parts: parameter, transport receiver, 
transport sender, phase order. These parts are included into 

<agentHost/> tag. 

1) Parameter 
A parameter is a name-value pair which is used by the 

component. Each and every top level parameter is 
transformed into properties in Configuration instance of 
component. The correct way of defining a parameter is as 
follows: 
<parameter name="identifier" value="HostD1"/> 

2) Transport Receiver 
Depending on the underlying transport on which agent 

hosts are going to run, different transport receivers are 
defined as follows: 
<transportReceiver name="http" 

class="fr.upec.lacl.device.host.ReceiveController"> 

    <parameter name="protocol" value="http"/> 

    <parameter name="port" value="8888"/> 

    <parameter name="version" value="HTTP/1.0"/> 

</transportReceiver> 

The "name" attribute of the <transportReceiver/> 
element identifies the type of the transport receiver. It can be 
HTTP, TCP, etc. But, because we use Android device, 
HTTPf is selected. 

When the host starts up the "class" attribute is for 
specifying the actual java class that will implement the 
required interfaces for the transport. Any transport can have 
zero or more parameters, and any parameters given can be 
accessed via the corresponding transport receiver. 

 

64Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



3) Transport Sender 
Like the previous section, Transport senders are registred 

in the configuration of the host. And later at the runtime, the 
exportation of mobile agent will follow this feature, we 
defined HTTP as transport. 
<transportSender name="http" 

 class="fr.upec.lacl.device.host.SendController"> 

    <parameter name="protocol" value="http"/> 

    <parameter name="port" value="8890"/> 

    <parameter name="version" value="HTTP/1.0"/> 

</transportReceiver> 

The sender can have zero or more parameters. In the frame 
above, the port is defined and also the schema of the 
transport protocol. 
We have chosen the same protocol in both cases, but we 
think about protocol adapter between nomadic devices. For 
instance, we think about protocol adapter between nomadic 
devices and the use of Bluetooth protocol as transport 
protocol and OBEX serialization. 

4) Phase Order 
Specifying the order of phases of an agent host in the 

execution chain is essential to know when mobile agent can 
interrupt the host. 
<phaseOrder name="lifecycle"  

         package="fr.upec.lacl.device.host"> 

 <phase name="init" type="start" class="Init"/> 

 <phase name="business" type="loop"> 

  <handler name="observer" class="Display"/> 

  <step name="step1" type="exec" class="Wave1"/> 

  <step name="step2" type="import" class="Import"/> 

  <step name="step3" type="exec" class="Wave2"/> 

  <step name="step4" type="export" class="Export"/> 

 </phase> 

 <phase name="end" type="stop" class="Close"/> 

</phaseOrder 

Each phase can have a handler, which observes or 
displays details about the phase. In the example above, the 
class Display has a method called handle(), which does the 
observation.  

A phase is defined by a name and a type which 
corresponds to an event in the behavior of the agent host and 
an implementation class. For instance, the phase named init 
has a type called start. It means that the startActivity() 
method of Host class (Figure 5), triggers its behavior defined 
in class called Init, and its doWork() method. All the phases 
are defined in the same manner. Thus, the phase named 
business represents the core of the agent host. Its type 
implies that this is an infinite loop which is subdivided into a 
sequence of four steps. The first one, called step1, is defined 
by a class called Wave1. This is triggered by the execute() 
method of Host class. The following step allows host to 
import a mobile agent. This step is leaded by the Import 
class. The third step corresponds to the end of the business 
activity of the agent host. This is defined by the Wave2 class. 
Finally, the fourth step allows host to export agent if its 
mission is ended. Otherwise, this step is blocking until the 
end of the behavior of the mobile agent. 

The end of that loop is achieved by the use of 
interruption from execute() method. Then, the phase named 
end is achieved. As before the type called stop is bound to 
stopActivity() of Host class. So, it triggers the behavior coded 
into the class called Close and its method doWork(). This 

brings a set of technical classes which are not on the figure 5, 
but they represent a State design pattern where each state of 
the state chart is defined by a class and polymorphic 
methods. Two steps are dedicated to mobile agents: import 
and export. Between those events the mobile agent is used by 
the host. 

B. Mobile agent as activity resource 

During the execution of a mobile agent, we can consider 
it as a thread. As all threads on the nomadic device, it has 
access to resources, which are internal or external, depending 
on the permissions it possesses. Because it is not possible to 
add permissions avec the agent is arrived, it is important to 
prepare its arrival. This step is called negotiation between the 
mobile agent and the agent host. 

From the side of the agent host, it needs to receive an 
agent able to do a technical interface. On the side of the 
mobile agent, it needs to have access to resource which 
belongs to the device. If the mobile agent comes onto the 
host and discovers that it cannot do its job, time is wasted 
and computing resource are used for nothing. Also, mobile 
agent has a description of the resource, it needs to read or 
write. As an example, we give below the resource 
description of the collector agent (Figure 5). 
<resources agent="ca1" class="CollectorAgent" 

    package="fr.upec.lacl.device.mobile"> 

 <resource name="contacts" mode="read" 

    uri="content://contacts/people/"/> 
</resources> 

The resource list contains only one resource which is 
used as a reader. This resource is defined by an URI which is 
parsed by the host to know whether it is possible to read. 
When the condition is validated then the migration can 
happen.  

Fig. 7.  Interaction diagram of negotiation protocol 
To sum up our negotiation protocol, we show the 

following interaction diagram which is applied at each 
migration action. After sending its request, the host registers 
its proxy and waits until a mobile agent is ready (Figure 7). 

After configuring a mobile agent, the server injects a task 
and a list of references into the mobile agent. Then, it can 
enter into negotiation with the first host of its reference list. 
The stimulus 7 (Figure 7) tests whether the collector activity 
is possible onto the host. Because all resources are declared 

 

65Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



with uri string, the host parses each of them and decides 
whether its resources are available. 

In Figure 7, the answer of the host is true; also the mobile 
agent can starts the visit (stimulus 11). At that point the 
mobile agent is viewed as a binary resource which is read by 
the read and transformed into a class of agent. This is the 
role of the AgentLoader class which is not design on the 
Figure 7. 

During its runtime, the mobile agent will access to the 
resources, which are declared into its own descriptor. 
Because the previous check is satisfied by the host, it means 
that not only the host provides a way to access to them, but 
also it ensures that the permissions of the host are sufficient 
to realize this resource accesses. At that point the roles are 
opposite, the host can be considered as a resource manager 
for the mobile agent. 

When the task of the agent is finished, it saves its result 
and looks for the next host reference. If the reference exists, 
then the stimuli from 7 to 12 will occur again (Figure 7) with 
this new host, and so on. 

C. Instrumentation 

In order to identify the root cause of bad behavior, 
instrumentation has to be introduced. We are interesting into 
two kinds of anomalies. First kind is about phase tracking. 
Because hosts are defined as automaton, we want to ensure 
that the event traces are precisely what is predicted. Second 
kind is about performance of mobile agents. It is not easy to 
predict the number of mobile agents is necessary for a set of 
tasks. If twenty hosts send the same request, only one mobile 
agent can be sufficient. But, depending on what it has to do, 
the size of this agent can grow and the serialization and 
deserialization will cost more time. Moreover, the work of 
one mobile agent will last more time because, all visit will be 
done sequentially. Also, it could be interesting to create and 
configure a set of mobile agent, but how many mobile 
agents? 

These measures need to use external libraries. For the 
host phase tracking, we use JMX API [19], which is a 
standard for management and monitoring of resources such 
as hosts and mobile agents. During the following case study, 
we observe phases, firing transition, configuration of agents 
and the notification of state changes during the data 
collection. We have defined MXBean classes which are 
managed remotely by the MXBeanServer of the JVM (Java 
Virtual Machine) of the server. The tool jvisualVM 
(Sun/Oracle) is used to display their results and allows users 
to interact with our distributed system. 

The time spend within code fragments of mobile agent is 
interesting to find a limit into the use of mobility. It is 
important to detect the threshold where one mobile agent 
costs more time than two. Again, we can observe the impact 
of the mobile data on the migration action. This can involve 
changes in the management of mobile agents on the server. 
We use JETM [10] Java Execution Time Measure, which 
perfectly fits in this kind of time measure. It can be used 
declaratively and programmatically and collecting data are 
recorded in a flat or nested manner. An advantage is an http 
console on port 40000 which is used to visualize execution 

timings in the form of a dynamic report. We have injected 
EtmPoint instances into the methods of mobile agent and 
task and we follow all the steps of the behavior of a collector 
agent. 

VI. CASE STUDY 

Our work has several technical aspects which are 
necessary to validate through a case study. This case study 
has to be understandable even by a non-developer. Also, we 
have chosen to collect data about the personal contacts 
recorded into a smartphone or a tablet. The example has 
several advantages. First, everyone knows the concept of 
contact into a phone book; this is a tuple of string and 
number. The size of a set of contacts can be big enough to 
raise exceptions during the data transfer. 

Secondly, this resource is easily used through the use of 
uri, permissions about it are well known and a whole contact 
is serialized automatically. Finally, it is easy to check 
whether our tests are checked, failed or in an error status. 

A. Synospsis 

An experiment in developing small mobile phone 
application is not new, but in our context the architecture is 
more complex. There are a standard server workstation and 
four nomadic devices. Software is installed on the server to 
deploy Web services in REST technology. It means Apache 
Tomcat and Jersey libraries. 

First, we have defined a test suite composed on four tests; 
each of them managed a different strategy of mobility. The 
first test uses only one mobile agent which travels aver the 
four devices. 

Secondly, we have increased the number of contacts on 
the devices. Again, this test suite contains four tests where 
the size of contacts is higher each time. 

Finally, we have tested anomaly in case of the descriptor 
is not compatible with the host. the descriptor is not 
compatible with the host. 

B. Measure and trace event 

All the time measures are expressed into millisecond 
(ms). Because data set are difficult to read, we present only 
extremes. 

1) First test suite about mobility strategy. 

a) One mobile agent for 4 agent hosts: this array shows 

only the bounds; we can note that the serialization costs 

quite the same time as the task of the mobile agent itself. 

The same remark is true about deserialization. Also, in that 

case, it could be interesting to limit the sequence of actions 

of the mobile agent. A better solution could be to launch in 

parallel several mobile agents. 

b) Two mobile agents per two agent hosts: in that 

context, the measures are more difficult to exploit because 

each mobile agent has its own array of result, also it is 

necessary to aggregate the results and use a global reference 

to the clock of the agent server. If the whole data collection 

spends less time than in the first case, the number of 

serialization are strictly the same but distributed over the 4 

agent hosts. We observe that a global time measure from 

66Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



agent server shows that two mobile agents work faster than 

only one. But, this gain comes from the distributionof 

mobile agents. Now, a whole time measure is not a basic 

sum of all steps. Two partial collects are done in parallel 

and interesting results come quickly with two mobile 

agents. 

Fig. 8.  Data results for one mobile agent 

 

2) Second test suite about volume of data set. 

Now there are four tests where each agent host has the same 

number of contacts. But, for the second test, we have 

doubled the number of contacts per agent host. For the third 

test, we have multiply by three, and so on. All the data 

collections are done by two mobile agents as before. 

a) Each agent host manages 100 contacts: two mobile 

agents collects them. This case corresponds to the last 

experiment (Figure 9).  

b) Each agent host manages 400 contacts: the same 

number of mobile agents collects data. We observe that the 

duration of the task is quite the same in all the test cases but 

the serialization and deserialization steps are more 

expensive. Also in case of the data size is huge, we note that 

it is essential to increase the number of mobile agents. Thus, 

the size of mobile data will be bound and the cost of the 

serialization could be constant. 

Fig. 9.  Data results for two mobile agents 

C. Interaction between agents 

In the previous, tests we developed cases where there is 
only one mobile agent per host. Also, no conflict is possible 
between their activities. But if the data set is too important, 
we can think about test case where more than one mobile 
agent will be received by an agent host. So, the first mobile 
agent could collect a part of the contacts and the second one 
could collect the other part. 

This scenario involves knew ability for agent host and 
mobile agent. First, if several mobile agents are present on an 
agent host, each of them should have to manage its own data 
without any perturbation from the other agents.  In that case, 
the agent host should have to have one agent loader per agent 
host. So, each mobile agent will be separated by 
construction. Secondly, if more than one mobile agent 
realized a task, they have to exchange information or share 
flags about their own activity. For instance, the first agent 
collects the first part of the contacts (from one to hundred) 
and the second collect the next hundred contacts. The cost of 
the serialization becomes predictable, but mobile agents have 
to exchange messages during their execution. 

This concept of message is implemented in Android 
framework through the use of Intent service. But, mobile 
agent comes from an agent server which is not under 
Android. Also, we have to develop a layer of exchange on 
the agent hosts to allow mobile agents to have better 
cohesion. 

VII. CONCLUSION 

In this paper, we have shown that it was possible to use 
mobile agents which are interoperable between a JVM and a 
Dalvik virtual machine. Our work was applied in the context 
of a data collection. This is a famous example useful in a lot 
of cases. We have applied an approach of transcoding to 
adapt byte code from JVM to DVM and vice versa. 
Measures are computed to highlight that it is essential to 
configure precisely the pool of agents. 

Finally, we have stressed that it was useful to have a 
message system local to agent host to allow synchronization 
between mobile agents. The use of a message system global 
to the device seems to be a solution to explore in future 
experiments.  

REFERENCES 

[1] P. Braun, and W. Rossak, “From client-server to mobile 
agents, mobile agent basic concept, mobility model and the 
Tracy toolkit” Heidelberg university, Germany, Morgan 
Kaufmann Publishers, pp. 419–441, 2005. 

[2] Bluetooth, S. I. G. Specification of the Bluetooth System, 
version 1.1, 2001, http://www. bluetooth. com, Retrived 
October 2013. 

[3] S. Williams, “IrDA: past, present and future”, Personal 
Communications, IEEE, vol. 7, no 1, pp. 11-19, 2000. 

[4] S. Li, “Professional Jini: from programmer to programmer”, 
Wrox Press Publishers, August, 2000, pages.1000. 

[5] T. Schreiber. Jacobs and C. P. Bean, “Android Binder, 
Android inter process communication” Ruhr University, 
thesis Academic, 2011, pages. 154. 

[6] Android Platform Official Site, http://www.android.com, 
Retrived October 2013 . 

[7] J. Chen, P. H. Chen and W. L. LI, “Analysis of Android 
Kernel,” Modern Computer, Vol. 11, 2009.   

[8] OSGi Alliance, OSGi service platform, core specification 
release 4. Draft, July 2005. 

[9] C. Lee, D. Nordstedt and S. Helal, “Enabling smart spaces 
with OSGi”, IEEE Pervasive Computing 2 (3), pp. 89–94, 
2003. 

[10] K. Myoung, J. Heo, W.H. Kwon and D.S. Kim, “Design and 
implementation of home network control protocol on OSGi 

|--------------------------|---|---------|-------|-------|--------| 

|      Measurement Point   | # | Average |  Min  |  Max  | Total  | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::lookup      | 4 |   2,025 | 1.101 | 2.910 |  8.103 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::move        | 4 |   2.886 | 2.131 | 3.982 | 11.546 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::serialize   | 4 |   2.992 | 2.202 | 4.002 | 11.970 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::deserialize | 4 |   3.045 | 2.252 | 4.062 | 12.180 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::start       | 4 |   4.757 | 4.632 | 4.914 | 19.028 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::stop        | 4 |   0.920 | 0.821 | 1.001 |  3.683 | 

|--------------------------|---|---------|-------|-------|--------| 

 

|--------------------------|---|---------|-------|-------|--------| 

|      Measurement Point   | # | Average |  Min  |  Max  | Total  | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::lookup      | 2 |   1,862 | 1.113 | 2.711 |  3.724 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::move        | 2 |   2.901 | 2.811 | 2.991 |  5.802 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::serialize   | 2 |   2.463 | 2.412 | 2.515 |  4.927 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::deserialize | 2 |   2.502 | 2.289 | 2.715 |  5.004 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::start       | 2 |   4.892 | 4.872 | 4.913 |  9.785 | 

|--------------------------|---|---------|-------|-------|--------| 

| MobileAgent::stop        | 2 |   0.825 | 0.823 | 0.828 |  1.651 | 

|--------------------------|---|---------|-------|-------|--------| 

 

67Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users



for home automation”, in: Proceedings of the IEEE 
International Conference on Advanced Communication 
Technology, vol. 2, pp. 1163–1168, July 2005. 

[11] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and M. 
Schlichte. “Porting distributed agent-middleware to small 
mobile devices.” In AAMAS Workshop on Ubiquitous 
Agents on Embedded, Wearable and Mobile Devices . 

[12] S. Andrea, M. Guidi, and A. Ricci. "JaCa-Android: an agent-
based platform for building smart mobile applications." 
Languages, Methodologies, and Development Tools for 
Multi-Agent Systems. Springer Berlin Heidelberg, pp. 95-
114,2011. 

[13] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. 
O’Grady. “Agent factory micro edition” A framework for 
ambient applications. In Int. Conference on Computational 
Science (3) , pp. 727–734, 2006. 

[14] F. Koch, J.-J. C. Meyer, F. Dignum, and I. Rahwan. 
“Programming deliberative agents for mobile services” The 
3apl-m platform. In PROMAS , pp 222–235, 2005. 

[15] F. Mourlin, C. Dumont, "Implementation of a fault-tolerant 
system for solving cases of numerical computation”, ICIBET 
2013, International Conference on Information, Business and 
Education Technology, ISBN: 978-90-78677-56-7. 

[16] M. Bernichi, F. Mourlin, "Two level specification for 
monitoring application", The Fifth International Conference 
on Systems, Proceedings of ICONS 2010 - Menuires, The 
Three Valleys, French Alps, France. 

[17] L. Richardson, “RESTful Web Services,” O’Reilly Media 
Publishers, Book pages 220, May 2007. 

[18] R. Fielding, “Representational state transfer” Architectural 
Styles and the Design of Netowork-based Software 
Architecture, pp. 76-85, 2000 

[19] B. G.Sullins, and M. B. Whipple, “Manning JMX in action,” 
Manning Publications Co. pages 424 April 2002. 

[20] J. Jenkov, “Java Exception Handling,” ProWebSoftware 
Publisher pages 288, March 2001. 

 

 

 

68Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-313-1

MOBILITY 2013 : The Third International Conference on Mobile Services, Resources, and Users


