
82

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Graph Partitioning Approach

for Efficient Dependency Analysis using a Graph Database System

Kazuma Kusu
Graduate School of Culture
and Information Science,

Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe,

Kyoto 610-0394, Japan
Email: kusu@ilab.doshisha.ac.jp

Izuru Kume
Graduate School of Information Science,

Nara Institute of Science and Technology
8916-5 Takayama, Ikoma,

Nara 630-0192, Japan
Email: kume@is.naist.jp

Kenji Hatano
Faculty of Culture and Information Science,

Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe,

Kyoto 610-0394, Japan
Email: khatano@mail.doshisha.ac.jp

Abstract—Program execution traces, which include data/control
dependency information, are indispensable for new types of
debugging such as back-in-time techniques. In this study, we
implement a dependency environment for the Java programming
language focusing on tracing the relationships in dependency
analyses, using the graph database (Neo4j) optimized for tracing
graph edges. In the dependency analysis environment, we propose
an efficient approach for handling the traces on a graph database
system by evaluating memory usage and analysis time. Traces of
practical programs are prone to have vast complex data, making
it difficult to develop practical back-in-time debuggers. To address
this challenge, our dependency environment enables an efficient
analysis of the traces. The trace in our dependency analysis
environment has a graph structure whose nodes denote executed
Java bytecode instructions, and edge that represent data/control
dependencies between the nodes. By a simple implementation of
our dependency analysis environment, we confirm the existence
of bottlenecks through evaluation experiments, which are then
remedied in order to improve the performance of the technique’s
memory usage and analysis time. As a result, our environment
enabled efficient process dependency analysis, reducing memory
usage by 43.1% and analysis time by 4.3%.

Keywords–Dependency Analysis; Back-in-time Debugger; De-
bugging Support; Graph Database; Graph Search; Java.

I. INTRODUCTION

The examination of runtime states and their dependencies
are indispensable to program debugging [2] [3]. Debuggers
that are currently in use allow maintainers to suspend program
execution at specified break points and examine the runtime
states at these points. However, such debuggers do not have
a provision for maintainers to examine states prior to the
designated points for the suspension of execution. Therefore,
they cannot trace backwards to detect causes of erroneous
states by following the dependency of statements [4].

In the last decade, so-called back-in-time debuggers have
emerged as a new kind of debugging support tools. These
debuggers use traces containing dependency information [5]
[6] [7]. Such debuggers analyze dependencies to determine
the operation that assigns value to a referenced variable [5],
to examine the reasons why a given statement is or is not
executed [6], and what happens during the execution of a
method that has already been successfully invoked [7]. This
kind of dependency analysis is useful for the examination of
a particular instruction.

The scalability of process traces containing dependency
information has been discussed in the literature [4]. We believe
that the recent, rapid developments in hardware and software
technologies have made it possible to process the traces of
a certain scale of software products. In previous work [8],
we demonstrated two kinds of dependency analysis that detect
symptoms of a malfunction caused by defects in the application
of the Java framework application [9].

Although our previous study raised the prospect of a
solution to the scalability problem, the implementation of our
dependency analysis remained inefficient. The main cause of
this was the richness of the data in the model of our traces.
The design of our trace proposed here aims not only at the
requirements of symptom detection [8], but also at the analysis
of other aspects of program execution. Therefore, our trace
design incorporates the richness of data to enable various kinds
of dependency analysis instead of reducing the amount of data,
such as in the approach proposed by Wang et al. [10].

In addition to back-in-time Debuggers [5] [6] [7], which
aim at a microscopic perspective for the dependency analysis
of a specific statement, our previous study [8] dealt with all-
state updates via persistent variables and their value depen-
dency across the entire trace. A persistent variable is either a
class variable, an instance variable, or an array component. It
implements a state that persists after the invocation of a method
is completed [11]. This macroscopic nature of our dependency
analysis renders it inefficient, although the algorithm works in
practice. In order to solve this problem, an approach is needed
to support the efficient analysis of dependency in a large trace.

In this paper, we implement an efficient dependency anal-
ysis environment to perform out the trace studies as done
previously [8]. Moreover, we clarify the inefficiency factor in
our dependency analysis environment, and suggest an approach
to address this factor. Furthermore, we evaluate our approach
for improving the processing of analysis results after applying
our approach. According to this, we clarify bottlenecks in our
dependency analysis environment that need to be resolved.
Previously, we identified the factors affecting efficiency in
our dependency analysis environment and expanded a trace-
partitioning approach for use in our study [1]. Moreover,
we proposed an extension of a previous approach [12] for
partitioning trace. We reduced memory consumption in a
dependency analysis, but did not reduce the processing time.

83

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Therefore, we propose an approach for efficiently traversing
our trace in this paper. Finally, we conduct an experiment
characterizing the effectiveness of our approach.

We introduce concepts related to dependency analysis, and
describe demands for dependency analysis environments in
Section II. Then, in Section III, we illustrate our implemen-
tation of a dependency analysis environment that consists of
trace generation and a trace processing parts using a graph
database system (GDB). In Section IV, we propose a naı̈ve
trace-partitioning approach based on the characteristics of
the GDB for efficient dependency analysis. We conduct a
preliminary experiment for evaluating dependency analysis
performance on our environment in Section V. In Section VI,
we reconsider a trace-partitioning approach guided by an anal-
ysis of the bottleneck in our dependency analysis environment
clarified during the preliminary experiment. In Section VII, we
conduct an evaluation of the efficiency and scalability of our
expanded approach. Finally, in Section VIII, we consider our
contribution for efficient dependency analysis as indicated by
the experiment.

II. RELATED WORK

Debuggers widely used in software development projects
support a common feature to suspend program execution at a
specified break point and show the runtime state at that point.
They do not record the execution and, thus, have the common
drawback that there is no way to examine the execution of
a method whose invocation has been already completed. This
is a serious problem because defects and infections are often
found in methods that have been completed before the program
fails [7]. A defect is an error in program code while an
infection, in software engineering, is a runtime error caused
by the execution of a defect [2].

Maintainers using a debugger must repeat a task to specify
a breakpoint, as it is usually very difficult to find a suitable
breakpoint in the program code, and re-execute the program to
examine the executions of methods that have been completed.
Such a debugging style, forced by the common limitation
in current of existing debuggers, leads to inefficient debug-
ging [4].

Using traces for debugging support is a natural idea
to overcome the above limitation in existing debuggers [5]
[6] [13]. An omniscient debugger [5] examined assignment
operations with set values referenced from variables. If a
maintainer wanted to determine why a statement has or has
not been executed, Whyline [6] analyzed related dependencies
and generated the results of the analysis using sophisticated
Graphical User Interfaces (GUI).

Dynamic Object Flow Analysis [13] aims to understand
program execution from the aspect of object references. Its area
of application ranges from dependency analysis of methods for
software testing [14] to performance engineering for a back-
in-time debugger [7].

To the best of our knowledge, no existing dependency
analysis approaches to debugging support are aimed at macro-
scopic dependency analysis except for our previous pro-
posal [8]. An omniscient debugger deals with only the cor-
respondence between the value of a variable and the assign-
ment operation that has set this value. Whyline navigated

Figure 1. Our dependency analysis environment

a maintainer to the dependencies among statements to the
extent of his/her manual examination. Dynamic object flow
analysis performs macroscopic analysis but only deals with
object references.

The above approaches to microscopic dependency anal-
ysis provide useful debugging aids. However, understanding
a program from a macroscopic viewpoint is necessary for
debugging [15]; therefore, maintainers have to spend time and
effort to obtain this perspective through manual dependency
analysis.

We studied several kinds of macroscopic dependency anal-
ysis in this context in our last study [8]. Of these, outdated-
state analysis aims to identify symptoms to suggest possible
infections incurred by the accidental use of an old value of a
field or array component along with its updated value.

III. IMPLEMENTATION OF DEPENDENCY ANALYSIS
ENVIRONMENT

Debugging a program requires various analyses of state-
ment dependencies. Therefore, we developed two kinds of
techniques for analyzing the relevant symptoms in our previous
study [8]. The proposed trace was designed to execute such
dependency analyses. For this reason, our trace tended to be
large and complex, and to be usually led to inefficient process-
ing of dependency analysis. In order to conduct an efficient
dependency analysis, an analysis environment is needed that
enable to handle our trace efficiently.

Figure 1 illustrates the entire process, which involves
the execution of a Java program under instrumentation and
several sub-processes of symptom analysis in our dependency
analysis environment. In the trace generation portion, our
system generates a trace using Java byte-code instrumentation
technologies. The trace processing portion, on the other hand,
stores the generated trace in a GDB and supports its efficient
processing of various kinds of dependency analysis.

A. Trace Data Model

Dependency analysis approaches from various aspects of
execution are necessary for practical debugging support. In
previous work, we developed two kinds of dependency analysis
algorithms to detect symptoms that indicate infections in a
failed execution [8].

Both of the proposed algorithms process control data
dependency across the entire extent of an execution. One

84

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Property graph model

algorithm checks a complex condition that specifies data flow
to associate operations in a class instance caused by the
invocation of a certain kind of method. The other algorithm
keeps track of side effects via fields and array components.
We propose a new kind of dependency analysis that aims to
abstract the effects of methods and operations on objects based
on inputs by the debugger users.

In order to satisfy the above requirements, we defined
our trace model as the following basic elements of program
executions:

• Method execution

• Execution of abstracted byte code instructions to rep-
resent statements.

• Creation and reference of values by instructions.

• Values to be created or referenced.

Some abstracted instructions represent “control statements,”
such as conditional statements, method invocations, and throw
and catch. Abstracted instructions contain assignment oper-
ations on local variables, fields, and array components. The
instruction set also contains constants, instance creations, and
array creations, as well as various calculation operations.
Values created, calculated, and assigned are referenced by the
instructions that use them.

For each instruction in an execution, its trace records the
control instruction under which it is executed. If the instruction
references a value, the trace records from the instruction
from which the value originates. In this way, we can obtain
control and data dependency information among instructions,
including a method invocation structure.

A trace generated by our approach enables to first be
represented using the property graph model shown in Fig-
ure 2. This is a data model defined in the TinkerPop project
in Apache [16]. This data model features good descriptive
capability, and hence can represent various kinds of data.

Our trace model allows programs to check data/control
dependency for a large number of instructions in order to ex-
amine state changes on some objects or to find the cause of an

infection. Algorithms to check such dependencies, represented
by links among graph nodes, should be efficient.

B. Trace Processing

The requirements stated in Section III-A make it difficult
to reduce trace size. Traces are needed not for a particular
dependency analysis, but for various kinds of analysis dealing
with the conditions of such program elements as classes,
fields, and methods related to the four elements described in
Section III-A. Therefore, rich data is required for the proposed
trace model for such additional information.

For dependency analysis purposes, the instructions be-
tween, which the analysis is performed cannot be predicted.
Therefore, for a failed execution, the trace of the entire extent
of execution is first needed. Our algorithms then search for
instructions that are the targets of dependency analysis.

Dependency analysis usually requires checking of complex
conditions for the above four kinds of elements one by one
along with their dependency relationships. Furthermore, the
results of past condition checks must be stored for reference.

A situation sometimes arises where the Java virtual ma-
chine is quite inefficient, or even runs out of memory when
applying dependency analysis to the execution of a software.
Hence, data engineering approaches are needed to build a
framework that enables efficient access to and processing of
massive traces.

In this study, we develop a dependency analysis envi-
ronment on the GDB to improve analysis performance. This
paper uses a GDB called Neo4j following the property graph
model [17] because it is suitable for storing traces with
complex data structures. Moreover, Neo4j have considered the
best for handling graph data for existing GDBs [18] [19].

In order to handle our trace, our dependency analysis
environment was implemented using the native Java Applica-
tion Program Interface(API) of Neo4j and its query language
named Cypher.

IV. A TRACE-PARTITIONING APPROACH FOR EFFICIENT
DEPENDENCY ANALYSIS

In Section III, we described how to store and process our
trace on our dependency analysis environment using Neo4j.
Our trace is expressed as graph data, which consists of nodes
and edges. Therefore, the nodes and the edges unrelated to the
graph data trace are not loaded into main memory when the
dependency analysis is conducted. In short, memory efficiency
of our dependency analysis environment is high. However, the
size of the properties of a node or an edge that is loaded in
main memory is large, this may likely to become a bottleneck
of our dependency analysis environment. Especially, it goes
double for becoming the bottleneck if the attribute is not
related to dependency analysis. Therefore, we propose an
approach for fixing this bottleneck.

A. Characteristics of Graph Database System

Initially, Neo4j manages graph data on hard disk drives
until a query is issued. Once, a query is issued, Neo4j accesses
the hard disk drive to load nodes and edges related to the query,

85

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

into the main memory. Usually, nodes and edges not related
to the query are not loaded.

If the nodes and the edges are loaded into main mem-
ory, their properties are also automatically loaded. Therefore,
loading the properties into main memory is not efficient if
the property is not related to an issued query. Moreover, this
problem becomes a factor to produce useless disk access.

B. A Naı̈ve Trace-partitioning Approach for Memory Reduc-
tion

As we described in Section IV-A, loading properties unre-
lated to an issued query leads to the potential for memory
inefficiency of GDB. Nodes and properties, which are not
the target of dependency analysis, will not be loaded in
the main memory while conducting the analysis. This is the
characteristic of GDB, which is supported by the native graph
engine.

We deal with this bottleneck by simply storing an extra
node in GDB. The extra node is to store properties of node,
which is the target of the dependency analysis. In this way,
it is possible to load only nodes and its properties, which are
targets of dependency analysis, and eliminate the unnecessary
ones from the dependency analysis. We believe that this is the
best way as it is more frequent to distinguish the kind of a
node than to acquire properties of nodes.

We illustrate our proposed approach in Figure 3. At first,
it is necessary to create a node and an edge. A node plays
the role of storing properties of node (node ID is 5, 6, 7, 8
in Figure 3.), which is trace elements (node ID is 1, 2, 3, 4
in shown Figure 3.) An edge plays the role of distinguishing
certain node, which is an extra node for storing properties.
We describe this node as a property-node, and this edge as
a property-edge in this paper. Therefore, a change of the
following graph structure occurs.

1) The number of nodes stored in a graph database
system doubles.

2) One edge connecting with each nodes of the trace
increases.

We assume that the time required for import processing of
our trace increases by 1. However, graph traversal performance
is influenced by the increase of the nodes, such as 1), intended
only for the node where the graph traversal is connected
to a certain node on the native GDB such as Neo4j [20]
[21]. Then, instead of being able to reduce the loading of
the properties of a node that is unnecessary for dependency
analysis, one property-edge comes to is loaded with change 2).
The specifications of Neo4j have a bigger fixed-length data
size of the edge than the node on the disk [20] [21]. However,
we assume that a data size of edges loaded in the memory
is low, because the number of edges such as references and
dependencies is less than that of nodes. In addition, the time
for confirming edges with the need to follow in the graph
traversal by 2) increases once in all nodes and we predict that
it makes the performance of graph traversal inefficient. Since
our approach has a factor that can promote and not promote
efficiency of dependency analysis as described above.

Figure 3. Graph partitioning approach for proposed trace.

V. PRELIMINARY EXPERIMENT

We propose a trace-partitioning approach for efficient de-
pendency analysis in Section IV. In this section, we conduct
a preliminary experiment for confirming the change of the
analysis performance for an approximate application of our
approach. We conduct this preliminary experiment on a kernel-
based virtual machine with 64 GB RAM and the Cent OS 7
operating system.

A. Unified Modeling Language Editor “GEFDemo”

We used our trace for the execution of the demonstration
program on the Graph Editing Framework (GEFDemo) [9]
for dependency analysis in Section V-B. GEFDemo is a
simple Unified Modeling Language (UML) editor program that
uses the application framework as shown in Figure 4(a). A
flaw, such as in Figure 4(b), is known to occur during the
delete operation, a ternary association, which is a defect in
implementation of the GEFDemo.

Accurate inspection of the analysis program was possible
because the cause of the defect shown in Figure 4 was manu-
ally confirmed. The trace used in this experiment recorded the
execution process of GEFDemo that intentionally produced an
exception, as shown in Figure 4 in the following procedure:

1) Creating three classes on the editor.
2) Creating an association for other classes from one

class.
3) Creating an association for another association from

the class that does not create an association.
4) A diamond object expressing the occurrence of a

ternary connection occurs.
5) Deleting the diamond object.

The number of nodes in this trace was 510,370 and the
number of relationships 4,437,367. Moreover, the trace into
the GEFDemo contained 45 kinds of labels for nodes and 22
kinds of relationships. Furthermore, the amount of this trace
was 292.63 MB.

86

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Creating three Classes and a Ternary Association.

(b) Deleting a Ternary Association.

Figure 4. Operating the GEFDemo Program

B. Outdated-state Analysis

As described in Section V-A, a defect of the GEFDemo
was caused by changes in the process of execution of the
program during the collection state, which is an object of Java.
We used an outdated-state analysis, which is the approach of
dependency analysis proposed by Kume et al. [8]. It can detect
instructions that use different states of a specified object.

We executed the outdated-state analysis in a dependency
analysis environment as described below:

1) Investigating method called in execution order one by
one.

2) Investigating dependencies with state of objects with
many instructions occurring in each method.

3) When analyzing an instrument concerning the change
in the state of the object, a node was created to record
the frequency of change of the object for a GDB.

4) Investigating instructions dependence on the combi-
nation of a new state and old states of the same object
from nodes that we created by Procedure 3).

In Procedure 1), the outdated-state analysis consumed a
large amount of memory because it was necessary to analyze
instruments and values in a trace. Moreover, outdated-state
analysis is a two-step process: (1) analyzing the trace, (2) cre-
ating the nodes and edges to record the status of objects (data
generated during dependency analysis) on GDB in Procedure
1). Finally, it analyzes data generated in Procedure 3).

C. Measurement of Effects on Entire Dependency Analysis

In this section, we measured the method’s time and mem-
ory consumption in order to evaluate the effectiveness of
our approach for efficient dependency analysis in Section IV.
Memory consumptions per second were recorded using vmstat,
which is a UNIX command that can report information related
to memory, paging, CPU activity, and so on, and can calculate
the basic statistics of memory consumption. We conducted
dependency analysis ten times as we described above.

Figure 5 shows the results of two trace formats as the
following:

NON: a non-transformational trace
ALL: a trace partitioned properties of each node in our

trace using IV

Figures 5(a) and Figure 8(b) show the average of memory
consumption in the dependency analysis. In these figures, NON
represents our previously approach proposed in literature [8].
ALL refers to the naı̈ve approach proposed in Section IV and
literature [12].

We conduct an independent t-test in order to confirm
whether there are significant differences between average of
the time consumption and average of the memory consump-
tion. We calculate a t-value by Formula (1):

t =
x̄NON − x̄ALL

s
√

1
n1

+ 1
n2

(1)

where xNON denotes ten values of time consumption or
memory consumption in a case of NON, x̄NON denotes the
mean of xNON , xALL denotes ten values of time consumption
or memory consumption in a case of ALL, x̄ALL denotes the
mean of xALL, nNON and nALL are sample size of xNON

and xALL, and s is pooled variance with xNON and xALL.

The two p-values in Figure 5 indicated that ALL could
not reduce time consumption and memory consumption for
dependency analysis compared with those of NON. On the
contrary, our naı̈ve approach worsen this performance.

D. Inefficient Processing in our Approach

We assume that the time required for importing a trace
increases due to the above sorting 1). However, graph traversal
performance is not influenced by the increase in the number of
nodes; it is intended only for the node where graph traversal
is connected to a certain node in Neo4j. On the other hand,
instead of preventing the loading of property of a node that
is unnecessary for analysis, a property-relationship is loaded
with sorting 2). The fixed-length data size of edge on the Neo4j
is larger than that of the node. However, we can assume that
the data size of edges loaded in the memory is small because
the size of a property of the edges, such as references and
dependencies, is less than that of the nodes. The time needed
to confirm the edges needed to traverse the graph traversal by
sorting 2) increases in all nodes, and we predict that it leads
to inefficient graph traversal performance.

Moreover, if it is necessary to access a property, the
property-relationship is traversed during dependency analysis.
Since traversing property-relationship is not necessary in the

87

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Analysis time.

(b) Memory consumption.

Figure 5. Dependency analysis performance.

case of an original trace, as the number of processes increases,
efficiency worsens.

Furthermore, there are difference instructions referred same
object, same variable, and same element of array in runtime
program. In this case, the trace has many pair of nodes; one
is different two node implied instructions, other is same node
implied object. Then, it is inefficient to traverse same node
many times during dependency analysis.

VI. IMPROVING AND EXTENDING OUR APPROACH

The loading nodes, the edges, and their properties used for
dependency analysis are very important for the efficient use of
the main memory. Neo4j supported on-disk-database, which
loads the properties of node and edge when the nodes and
edges are loaded. However, not all of the loaded properties
are used for all dependency analyses. Therefore, we focused
on the selection of loading properties.

In the previous study [12], we proposed an approach for
partitioning our trace that can load properties as needed.
However, this did not help improve the dependency analysis
performance. Therefore, we formulate a rule in this section
to determine whether a given property should be loaded for a
given trace in literature [1].

Moreover, we extend our approach to enable rapid access
to a node, which is accessed once during dependency analysis.

Require: Nnode, Nattr, Ntrav

for each l ∈ L do
{Not applying proposed approach to all labels of the
node.}
{Initializing f of the dictionary type.}
{The key of f is l ∈ L, and let the value be false.}
f [l]← false

end for
for each l ∈ L do
before← Sattr(f , Nattr, Nnode)
f [l]← true {Applying our approach to l.}
after ← Sattr(f , Nattr, Nnode)
traversal← Strav(f , Ntrav, Nnode)
if before > after and traversal = 0 then

continue
else

f [l]← false {Not applying our approach to l.}
end if

end for
return f

Figure 6. Optimization algorithm for the proposed approach.

A. Optimization Algorithm for our Approach

The purpose of this approach is to reduce the memory
consumed by the properties of the nodes to improve the effi-
ciency of graph traversal. However, our previous approach [12]
has been unable to improve the effectiveness of traversing the
proposed trace because we had not considered the situation
where the properties of each node are loaded into the main
memory. As a result, the previous approach made additional
traversals to analyze property-relationships. The traversal of
property-relationships does not occur in the original structure
of the trace; hence, we propose an algorithm to automatically
determine the node needed for the approach in order to avoid
creating properties over and above those that are required. If
a minimum number of such properties can be loaded into the
main memory, the effectiveness of the proposed approach will
improve.

To automatically determine the node in this approach, the
analytical algorithm of our dependency analysis environment
needs to be recognized. That is to say, one needs to understand
that the algorithm traverses nodes and loads their properties
in the trace using our approach. In this case, our approach
requires knowing the number of properties loaded from all
nodes, with each node labeled as Ntrav . At the same time,
it also requires knowing the number of properties denoted by
Nattr.

However, we cannot correctly estimate Ntrav because the
dependency analysis is dynamically executed depending on the
value of the property in the trace. Hence, we assume that all
nodes of the trace can be traversed, and the maximum number
of loading properties of nodes is Ntrav . In short, we decide to
partition the properties of node into extra node when a loading
property has the potential to obtain the property of node.

We developed an algorithm for the automatic application
of our approach, as stated above. This algorithm is shown in
Figure 6. Given a set of labels of nodes as L, every node is
labelled l ∈ L as Nnode(l) in Figure 6, and every property

88

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is labelled as Nattr. We also represent the frequency of the
properties of loading nodes with label m ∈ L when reaching
label l ∈ L of a node. Note that we take into account the
identification of these labels (l = m).

We now introduce criteria for applying the proposed ap-
proach. Sattr is the sum of the number of loading properties
while conducting dependency analysis, and Strav is the sum
of the number of traversing property-relationships. We can
estimate these criteria using Nnode, Nattr and Ntrav , respec-
tively. Sattr(L) and Strav(L) can be calculated as Formula
(2)，Formula (3):

Sattr(L) =
∑
l∈L

sattr(l,f [l]) (2)

where :

sattr(l,f [l]) ={
Nattr(l) ·Nnode(l) if f [l] = false
0 otherwise

Strav(L) =
∑
l∈L

strav(l,f) (3)

where :

strav(l,f) ={ ∑
m∈L Ntrav(l,m) ·Nnode(m) if f [m] = true

0 otherwise

In Formula (2), sattr(l,f [l]) is calculated to multiply the
number of loading properties of nodes labeled l by the number
of nodes labeled l in GDB. In Formula (3), we also calculate
strav(l,f) to multiply the number of traversing property-
relationships connected with nodes labeled m when reaching
nodes labeled l. Note that the value of sattr(l,f [l]) is zero if
the label l is applied because it does not obtain the traversal
of a property-relationship.

Finally, our algorithm produces f , which is a combination
of whether the proposed approach is applied. This f allows for
dependency analysis without traversing property-relationships
and minimizes the sum of loading properties Sattr.

B. A Method for Reducing to Traverse Same Node

In a trace, there are many instructions, which refer to the
same variables and objects. As described above, a trace have
many-to-one relationships between instructions and object.
For example, instructions 1 and 2 refer and use same object
in Figure 7. Our dependency analysis environment traverses
nodes and relationships one by one as we described in Sec-
tion III-B. Thus, our environment loads the same node many
times during dependency analysis when traversing many-to-
one relationships. We have to solve this inefficiency of our
environment as a way to keep loading nodes, which have
many-to-one relationships when the node are loading to main
memory in the first time.

In this paper, therefore, we solve the problem as described
above by loading a pair of nodes, which have many-to-one
relationship if traversed in the algorithm of dependency analy-
sis. For example, our environment keep loading combination of
instruction and object such as instruction 1 to object a, 2 to a, 3

Figure 7. Target combinations of instruction and object in this approach

to d, 4 to d, and 5 to d, to main memory in the case of Figure 7.
However, if many-to-one relationships are not traversed in
algorithm of dependency analysis, our environment does not
load it to the main memory.

VII. EXPERIMENTAL EVALUATIONS

As described in Section IV-B, we proposed an approach for
solving the bottleneck in memory consumption in dependency
analysis environments. In this section, we report an experiment
to verify the effectiveness of our approach. For the assessment
of macroscopic dependency analysis, not only is it necessary
that memory consumption be evaluated, the time consumed
for it is also a crucial factor to bear in mind. We assessed
the improvement in analysis performance using the proposed
approach by measuring the memory consumption and analysis
time needed for dependency analysis.

We compared the experimental results with the following
trace conditions:

NON: a non-transformational trace
ALL: a trace partitioned properties of each node in our

trace using our previous approach as we described
in Section IV

OPT: a trace employed partitioning approach for a few
nodes selected by the rule as we described in
Section VI-A.

We conducted experimental evaluations on same machine in
Section V.

A. Comparing our Approach with our Previous Approach

We conducted same experimental evaluation with NON,
ALL, and OPT in Section VII-A.

As a result, our approach employed proposed rules in
Section VI-A labeled OPT worsen the memory efficiency
compared with naı̈ve approach for partitioning property of all
nodes labeled ALL as suspected. However, OPT enables to
massively reduce 43.1% of memory consumption compared
with original trace format as NON . The six p-values in
Figure 8 indicated that OPT could reduce time consumption
and memory consumption of dependency analysis compared
with those of ALL; however, we could not find any difference
in traversal times for dependency analysis. In short, OPT
can conduct dependency analysis with the same efficiency

89

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Analysis time.

(b) Memory consumption.

Figure 8. Dependency analysis performance compared with NON, ALL, and
OPT.

as NON but consumes less memory using Figure 6. On the
other hand, ALL could not conduct dependency analysis with
the same efficiency and memory consumption as NON and
OPT. Therefore, it can be concluded that Figure 6 can help
considerably to improve memory consumption for dependency
analysis with the same efficiency as NON.

B. Evaluation for Scalability and Analysis Speed

In this experiment, we evaluate the scalability and analysis
speed of our approach as described in Section VI. We prepare
four programs of Ashes2 [22] as the following list:

BiSort: a program to conduct Bitonic Sort [23]
Em3d: an integrated software application designed to

facilitate the analysis and visualization of electron
microscope tomography data [24]

MST: a program to find Minimum Spanning Tree
TreeAdd: a program to recursively traverse a tree by depth-

first

These programs enable us to set a few options for adjusting
the amount of calculation. We set up options of each program
as shown TABLE I in order to prepare traces in various data
amount. In this experiment, we conduct dependency analysis
with six situations; this is combination of three types trace
format and two cases whether or not our approach is employed.
We label six situations as “NON non-approach”, “NON ap-
proach”, “ALL non-approach”, “ALL approach”, “OPT non-

approach”, and “OPT approach”. We conducted dependency

TABLE I. A LIST OF PROGRAMS IN ASHES2

program options data amount [MB]

BiSort

-s 0025 2.0
-s 0100 12.0
-s 0250 31.0
-s 0400 68.0
-s 0550 141.0
-s 0700 150.0
-s 0850 163.0

Em3d

-n 0050 -d 005 23.0
-n 0100 -d 005 46.0
-n 0150 -d 005 69.0
-n 0200 -d 005 93.0
-n 0250 -d 005 117.0
-n 0300 -d 005 141.0
-n 0350 -d 005 166.0

Mst

-v 0016 7.0
-v 0024 15.0
-v 0032 28.0
-v 0040 44.0
-v 0048 63.0
-v 0064 113.0

TreeAdd

-l 05 0.3
-l 10 7.6
-l 11 16.0
-l 12 33.0
-l 13 69.0
-l 14 142.0

analysis 20 times with these traces in TABLE I.

We show the result of this experiment TABLE II, TA-
BLE III, and TABLE IV. TABLE II shows the averages of
time consumption in the case of a trace formatted NON,
TABLE III shows one in the case of a trace formatted ALL,
and TABLE IV shows one in the case of a trace formatted
OPT.

Moreover, we conducted a paired t-test with the result of
experimental evaluation as shown TABLE II, TABLE III, and
TABLE IV. We calculated a t-value by Formula (4):

t =
d̄− µ

s√
n

(4)

where d̄ denotes the mean of differences among two samples,
µ denotes the population mean value, s denotes variance of d,
and n denotes a sample size, in short, n = 20.

As a result, our approach labeled “OPT approach” enables
reduce nine seconds on average compared with the situation
labeled “NON non-approach”. The sum of time consumptions
in the situation labeled “OPT approach” was 4.3% lower
than the situation labeled “NON non-approach”. Moreover, the
result of paired t-test shows there is significant difference of
time consumption between “NON non-approach” and “OPT
approach” as shown TABLE V. Furthermore, the situation
labeled “OPT approach” has the best performance in all
situations.

Then, we draw two line graphs as shown Figure 9(a) and
Figure 9(b). Figure 9(a) shows the result in the situation labeled
“NON non-approach”, and Figure 9(b) shows the result in the
situation labeled “OPT approach”. As shown Figure 9(a) and
Figure 9(b), we can reduce the time consumed for processing
dependency analysis. However, in every situation, there is
big difference of the time consumption for processing of
dependency analysis even if there is a the difference in the
trace.

90

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. THE AVERAGE OF ANALYSIS TIME WITH NON

trace
NON NON

non-approach approach
mean (± SD) [msec.] mean (± SD) [msec.]

bisort-s0025 0.17 (± 0.03) 0.17 (± 0.03)
bisort-s0250 0.96 (±0.04) 0.93 (± 0.03)
bisort-s0550 3.85 (±0.12) 3.81 (± 0.09)
bisort-s0700 4.03 (±0.12) 3.93 (± 0.11)
bisort-s0850 4.15 (± 0.09) 4.02 (± 0.10)
em3d-n0050d005 0.96 (± 0.03) 0.93 (± 0.04)
em3d-n0100d005 2.17 (± 0.16) 2.05 (± 0.13)
em3d-n0150d005 3.78 (± 0.34) 3.69 (± 0.22)
em3d-n0200d005 6.39 (± 0.55) 5.99 (± 0.47)
em3d-n0250d005 9.59 (± 0.40) 9.22 (± 0.45)
em3d-n0300d005 12.46 (± 0.67) 12.44 (± 0.61)
em3d-n0350d005 16.72 (± 0.59) 16.74 (± 0.80)
mst-v0016 0.48 (± 0.02) 0.45 (± 0.05)
mst-v0024 0.86 (± 0.03) 0.85 (± 0.03)
mst-v0032 1.59 (± 0.09) 1.51 (± 0.05)
mst-v0040 2.65 (± 0.08) 2.56 (± 0.12)
mst-v0048 4.21 (± 0.09) 4.04 (± 0.09)
mst-v0064 9.80 (± 0.37) 9.89 (± 0.26)
treeadd-l05 0.12 (± 0.01) 0.11 (± 0.01)
treeadd-l10 0.47 (± 0.03) 0.39 (± 0.04)
treeadd-l11 0.70 (± 0.02) 0.68 (± 0.03)
treeadd-l12 1.14 (± 0.03) 1.14 (± 0.06)
treeadd-l13 2.14 (± 0.08) 2.15 (± 0.09)
treeadd-l14 4.33 (± 0.21) 4.27 (± 0.12)

SD: standard deviation

TABLE III. THE RESULT OF ANALYSIS TIME WITH ALL

trace
ALL ALL

non-approach approach
mean (± SD) [msec.] mean (± SD) [msec.]

bisort-s0025 0.08 (± 0.01) 0.09 (± 0.01)
bisort-s0250 0.97 (± 0.03) 0.95 (± 0.05)
bisort-s0550 4.11 (± 0.17) 4.10 (± 0.10)
bisort-s0700 4.51 (± 0.17) 4.37 (± 0.15)
bisort-s0850 4.69 (± 0.14) 4.68 (± 0.23)
em3d-n0050d005 0.90 (± 0.06) 0.99 (± 0.05)
em3d-n0100d005 2.19 (± 0.13) 2.18 (± 0.15)
em3d-n0150d005 3.90 (± 0.23) 3.84 (± 0.24)
em3d-n0200d005 6.73 (± 0.63) 6.56 (± 0.47)
em3d-n0250d005 9.71 (± 0.60) 9.73 (± 0.52)
em3d-n0300d005 13.41 (± 0.63) 12.91 (± 0.68)
em3d-n0350d005 17.49 (± 0.71) 16.69 (± 0.95)
mst-v0016 0.32 (± 0.01) 0.32 (± 0.01)
mst-v0024 0.76 (± 0.04) 0.74 (± 0.04)
mst-v0032 1.59 (± 0.07) 1.56 (± 0.05)
mst-v0040 2.84 (± 0.14) 2.78 (± 0.17)
mst-v0048 4.53 (± 0.15) 4.39 (± 0.13)
mst-v0064 10.39 (± 0.22) 10.37 (± 0.22)
treeadd-l05 0.02 (± 0.00) 0.02 (± 0.00)
treeadd-l10 0.30 (± 0.01) 0.30 (± 0.02)
treeadd-l11 0.63 (± 0.04) 0.62 (± 0.04)
treeadd-l12 1.23 (± 0.06) 1.17 (± 0.05)
treeadd-l13 2.33 (± 0.09) 2.30 (± 0.08)
treeadd-l14 4.87 (± 0.09) 4.80 (± 0.13)

VIII. CONSIDERATION

In this section, we consider the performance and the scala-
bility of our approach. Our approach labeled “OPT approach”
is the best performance in six situations from the aspect of the
memory consumption and the time consumption for processing
dependency analysis. Our approach in Section VI-A avoids
loading properties of the accessed node, leading to reduced
memory consumption for processing dependency analysis.
However, we cannot reduce time consumption for processing
dependency analysis because it is less time-consuming to
access a property of node. On the other hand, our expanded
approach as described in Section VI-B enables to reduce the
time consumption for processing dependency analysis. The

TABLE IV. THE RESULT OF ANALYSIS TIME WITH OPT

trace
OPT OPT

non-approach approach
mean (± SD) [msec.] mean (± SD) [msec.]

bisort-s0025 0.07 (± 0.00) 0.07 (± 0.01)
bisort-s0250 0.79 (± 0.05) 0.76 (± 0.05)
bisort-s0550 3.88 (± 0.12) 3.81 (± 0.12)
bisort-s0700 4.14 (± 0.13) 3.90 (± 0.18)
bisort-s0850 4.14 (± 0.13) 4.09 (± 0.17)
em3d-n0050d005 0.73 (± 0.06) 0.71 (± 0.06)
em3d-n0100d005 2.06 (± 0.16) 2.02 (± 0.15)
em3d-n0150d005 3.86 (± 0.25) 3.63 (± 0.33)
em3d-n0200d005 6.18 (± 0.51) 6.11 (± 0.45)
em3d-n0250d005 9.85 (± 0.53) 9.48 (± 0.54)
em3d-n0300d005 12.38 (± 0.90) 12.40 (± 0.90)
em3d-n0350d005 16.49 (± 0.81) 16.19 (± 0.64)
mst-v0016 0.29 (± 0.01) 0.28 (± 0.01)
mst-v0024 0.65 (± 0.04) 0.63 (± 0.03)
mst-v0032 1.36 (± 0.05) 1.32 (± 0.05)
mst-v0040 2.52 (± 0.07) 2.53 (± 0.09)
mst-v0048 4.09 (± 0.10) 4.09 (± 0.22)
mst-v0064 9.79 (± 0.22) 9.72 (± 0.23)
treeadd-l05 0.02 (± 0.00) 0.02 (± 0.00)
treeadd-l10 0.27 (± 0.02) 0.26 (± 0.01)
treeadd-l11 0.50 (± 0.01) 0.49 (± 0.03)
treeadd-l12 0.99 (± 0.03) 0.95 (± 0.04)
treeadd-l13 2.11 (± 0.07) 2.09 (± 0.10)
treeadd-l14 4.47 (± 0.10) 4.37 (± 0.09)

TABLE V. THE MEAN OF DIFFERENCE CALCULATED BY PAIRED
T-TEST [SEC.]

2) 3) 4) 5) 6)
1) NON ** 4.41 ** -11.33 * 5.66 -0.74 ** 9.55
non-approach
2) NON – ** -15.73 -5.15 1.25 ** 5.14
approach
3) ALL – – * 10.59 ** 16.99 ** 20.88
non-approach
4) ALL – – – 6.40 10.29
approach
5) OPT – – – – ** 3.89
non-approach
6) OPT – – – – –
approach

*: five percent level of significance
**: one percent level of significance

reason is that accessing to main memory is more efficient than
accessing to GDB after all.

However, our approach was better but by no means great.
Our approach enabled to improve the efficiency of graph
traverse, but our approach did not reduce the number of graph
traversal during dependency analysis. Moreover, our approach
did not account for the difference of characteristic of program.
Therefore, it led to a major difference in time consumed even
if traces are same amount as described in Section . In order to
close the difference among different traces, we have to take in
to account the structure of programs.

IX. CONCLUSION

In this paper, we developed a prototype dependency anal-
ysis environment for efficient dependency analysis of large
traces using complex graph structures. Our analysis environ-
ment is built on a graph database system that can efficiently
traverse large and complex graph data. For efficient depen-
dency analysis, moreover, we proposed trace partitioning based
on the graph structure, and introduced a policy to restrict the
number of loading operations on a node’s properties to the
main memory in order to improve the effect of our approach.

91

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Not our approach with trace formatted NON

(b) Our approach with trace formatted OPT

Figure 9. Dependency analysis performance.

Furthermore, we proposed an approach to reduce loading the
same node to main memory during dependency analysis.

In an experimental evaluation, our approach performed best
in all situations. Our approach reduced time consumption 4.3%
for processing dependency analysis compared to techniques
not employing our approach.

In future work, we will account for the difference of
program characteristics such as the number of each type of
instruction, the number of each type of objects, and program-
ming patterns.

ACKNOWLEDGMENT

This work was partially supported by a MEXT-Supported
Program for the Strategic Research Foundation at Private
Universities (#S1411030), JSPS KAKENHI [Grant-in-Aid for
Challenging Exploratory Research (#15K12009), and Scien-
tific Research (B) (#26280115)], the Artificial Intelligence
Research Promotion Foundation, and the Kayamori Foundation
of Informational Science Advancement.

REFERENCES

[1] K. Kusu, I. Kume, and K. Hatano, “A node access frequency based
graph partitioning technique for efficient dynamic dependency analysis,”
in Proceedings of The Ninth International Conferences on Advances in
Multimedia, 2017, pp. 73 – 78.

[2] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic
Debugging. Morgan Kaufmann, 2009.

[3] M. Weiser, “Program slicing,” in International Conference on Software
Engineering. IEEE, 1981, pp. 439–449.

[4] J. Ressia, A. Bergel, and O. Nierstrasz, “Object-centric debugging,” in
International Conference on Software Engineering. IEEE, 2012, pp.
485–495.

[5] B. Lewis, “Debugging backwards in time,” in Proceedings of the Fifth
International Workshop on Automated Debugging, 2003, pp. 225–235.

[6] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2004,
pp. 151–158.

[7] A. Lienhard, T. Gı̂rba, and O. Nierstrasz, Practical Object-Oriented
Back-in-Time Debugging. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 592–615.

[8] I. Kume, M. Nakamura, N. Nitta, and E. Shibayama, “A Case Study
of Dynamic Analysis to Locate Unexpected Side Effects Inside of
Frameworks,” International Journal of Software Innovation, vol. 3, no. 3,
2015, pp. 26–40.

[9] “gefdemo project,” http://gefdemo.tigris.org/, [retrieved: 1 Mar. 2017].
[10] T. Wang and A. Roychoudhury, “Using compressed bytecode traces

for slicing java programs,” in International Conference on Software
Engineering. IEEE, 2004, pp. 512–521.

[11] J. Hogg, “Islands: Aliasing protection in object-oriented languages,” in
OOPSLA, 1991, pp. 271–285.

[12] ——, “A trace partitioning approach for efficient trace analysis,” in
Proceedings of the 4th International Conference on Applied Computing
& Information Technology, 2016 4th Intl Conf on Applied Computing
and Information Technology / 3rd Intl Conf on Computational Sci-
ence/Intelligence and Applied Informatics / 1st Intl Conf on Big Data,
Cloud Computing, Data Science & Engineering, 2016, pp. 133 – 140.

[13] A. Lienhard, Dynamic Object Flow Analysis. Lulu.com, 2008.
[14] A. Lienhard, T. Gı̂rba, O. Greevy, and O. Nierstrasz, “Exposing side

effects in execution traces,” in International Workshop on Program
Comprehension through Dynamic Analysis, 2007, pp. 11–17.

[15] D. J. Agans, Debugging: the 9 Indispensable Rules for Finding Even
the Most Elusive Software and Hardware Problems. AMACOM, 2002.

[16] “The property graph model,” http://github.com/tinkerpop/blueprints/
wiki/Property-Graph-Model, [retrieved: March 2017].

[17] “Graph database neo4j,” http://neo4j.com/, [retrieved: 1 Mar. 2017].
[18] V. Kolomičenko, M. Svoboda, and I. H. Mlýnková, “Experimental com-

parison of graph databases,” in Proceedings of International Conference
on Information Integration and Web-based Applications & Services,
ser. IIWAS ’13. ACM, 2013, pp. 115:115–115:124.

[19] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph
databases,” in Proceedings of the 2013 International Conference on
Social Computing, ser. SOCIALCOM ’13. IEEE Computer Society,
2013, pp. 708–715.

[20] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly
Media, Inc., 2015.

[21] S. Raj, Neo4J High Performance. Packt Publishing, 2015.
[22] “Benchmark programs named ashes2,” http://www.sable.mcgill.ca/

∼bdufou1/ashes2/, [retrieved: September 2017].
[23] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, Spring Joint Computer Conference, ser.
AFIPS’68. ACM, 1968, pp. 307–314.

[24] “Em3d,” http://em3d.stanford.edu/about.html, [retrieved: September
2017].

