
152

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design and Implementation of Verification Based OpenFlow Hypervisor

for Multi-Tenant Virtualized Network

Shun Higuchi

Graduate School of Computer and Information Science
Hosei University

Tokyo, Japan
Email: shun.higuchi.6j@stu.hosei.ac.jp

Toshio Hirotsu

Faculty of Computer and Information Science
Hosei University

Tokyo, Japan
Email: hirotsu@hosei.ac.jp

Abstract—Cloud services that virtualize existing IT infrastruc-
tures in data centers are widely used by governments, universities,
and companies. Multi-tenancy is an indispensable feature for
data centers to provide a large number of isolated networks
to different organizations. OpenFlow is a core technology of
software defined networking (SDN) and is useful for centrally
managing and controlling these networks; however, SDN is used
only at the management level. It is desirable to make the
flexible features of SDN/OpenFlow available to users’ virtual
networks. FlowVisor provides virtualized multi-tenant OpenFlow
networks by coordinating multiple controllers, but it is unable
to prevent conflicts among the control rules of individual virtual
networks. Administrators of each tenant thus need to design the
specifications of each virtual network carefully. In this paper,
we propose a verification-based scheme for coordinating multiple
tenants’ OpenFlow networks. The scheme enables administrators
to design their own virtual networks without considering conflicts
with other tenants. A flow space manager manages overlaps of the
address spaces and resolves conflicts between rules of different
tenants; in so doing, isolation is preserved transparently for each
tenant.

Keywords–OpenFlow; Virtualization; Multi-tenant Network.

I. INTRODUCTION

With the development of server virtualization technology,
cloud computing services, such as Infrastructure as a Service
(IaaS), have become popular. Here, an organization’s IT in-
frastructure is consolidated in a data center by using server
virtualization and is provided through the Internet. In multi-
tenant networks, one physical network is divided into many
virtual tenant networks. The traffic in each virtual network
needs to be isolated from the traffic in other networks. Virtual
LAN (VLAN) is a popular isolation technology. IaaS providers
define many virtual layer 2 tenant networks by assigning
VLAN-IDs to each tenant; the tenants ’administrators then
construct their own layer 3 networks by using the VLANs. On
an IaaS cloud using VLAN technology, the IaaS administrator
needs to change the configuration of the VLAN on all related
network devices in order to modify the virtual tenant networks.
However, in such environments, demand is growing for an
efficient means of changing, i.e., creating, modifying and
destroying, virtual networks; what is required is a more flexible
virtual network construction and management method.

OpenFlow [3], which is a core technology of software-
defined networking (SDN) [2], enables flexible routing control
and centralized management of networks by separating the

control plane from the data transfer plane. A controller defines
the routing of packet forwarding, and the data plane switches
transfer packets in accordance with the instructions of the con-
troller. Since this technology has the ability to recognize and
rewrite the VLAN-ID of each packet, IaaS providers can ag-
gregate VLAN management functionalities into one controller.
The OpenFlow based network architecture enables flexible
virtual network management for IaaS providers; however, a
tenant network is not allowed to use OpenFlow functionalities
to avoid confusion with cloud management level controls.
This means administrators of tenant networks can not gain
the benefits of OpenFlow even if the provider uses OpenFlow
technology to manage its IaaS platform. In contrast, effectively
coordinating multiple OpenFlow networks would enable all
tenants to manage their own virtual tenant networks by using
OpenFlow on a physical network.

FlowVisor [4] is one idea for handling requests from
multiple OpenFlow controllers. In FlowVisor, a proxy is placed
between the OpenFlow controller and the switches, and it
exchanges and manages each tenant’s control messages sent
between the controllers and switches. OpenFlow switches
on physical networks work properly under the control of
FlowVisor, which coordinates multiple tenant controllers. In
FlowVisor, each isolated virtual network space is expressed
as a flow space. The administrator of a flow space needs to
regulate the OpenFlow controller to write flow entries under
the restrictions of the allocated flow space definition. This
mechanism can be used to construct a plurality of virtual
OpenFlow networks, and it enables each tenant controller to
control their virtual tenant networks individually; however,
FlowVisor does not avoid overlaps between flow spaces. When
using FlowVisor to isolate multiple OpenFlow tenant networks,
each tenant network is expected to obey the flow space def-
inition provided by the IaaS provider. This problem becomes
more complicated because the flow specifications used in the
networks are not always exclusive. In the case of monitoring
one tenant’s network from another management network, the
flow specifications allocated to each network’s flow space must
overlap. The IaaS provider needs to define them very carefully
so as not to cause unintended traffic control.

In this research, we propose a verification-based OpenFlow
network virtualization based on OpenFlow hypervisor that
enables the network to be freely designed by each tenant.
To guarantee isolation of tenant networks, we introduce a

153

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conflict management system that uses verification of flow space
definitions. When a conflict occurs, the management system
detects it and resolves the conflict by rewriting a flow entry.
Our approach verifies and manages overlapping parts of the
flow spaces defined by individual tenants, detects conflicts
between flow spaces and flow entries, and rewrites the entries
to avoid conflicts in the FlowVisor. This paper describes the
method of flow space verification and its implementation based
on our proposed mechanisms [1]. Section II is an overview of
OpenFlow/SDN technology. Section III explains the mecha-
nism and problems of FlowVisor. Section IV outlines the pro-
posed virtualization method based on flow entry verification,
and Section V describes the method for avoiding flow entry
conflicts in more detail. Section VI describes our prototype
implementation and its performance evaluation. Section VII
discusses our method in relation with other research. Section
VIII is a conclusion that mentions future work.

II. OPENFLOW/SDN
OpenFlow is a representative architecture of software-

defined networking, and it is currently being standardized. It
is a next-generation network technology for cloud computing
environments. An OpenFlow network consists of an OpenFlow
controller responsible for routing control and an OpenFlow
switch for transferring packets according to flow entries written
by the controller. Hence, it is a centralized control architecture
that enables centralized management of networks by separating
the traditional network system into a control plane and data
plane.

The controller is software, and a pair of matching fields,
such as a MAC address, an IP address, a transport number, a
VLAN-ID, and the actions to be performed on a packet are
defined as a flow entry. Flexible routing control is enabled by
transferring packets according to flow entries in the switch.
If the switch has to be reconfigured in response to a change
in the network configuration, the change is applied to all
the switches by describing the change settings as new flow
entries in the controller. This improves the manageability of
the network. The controller and switch are connected by an
OpenFlow channel, which is a control network using TCP/IP
that is constructed separately from the data network, and
they exchange control messages called OpenFlow messages
through it. Through OpenFlow messages, the controller con-
trols switches such as for writing the flow entry. In OpenFlow,
since the controller controls all the switches and knows the
network topology, it is possible for it to control routing flexibly
such as through source routing and multi-path forwarding.
Virtualizing a physical network by using OpenFlow makes it
possible not only to improve the manageability of VLAN-IDs
but also to ensure logical division of the network by using the
packet headers of layers 1 to 4 that can be specified as a match
field. OpenFlow enables its users to create a number of virtual
networks beyond the usual limits of VLAN-IDs by dividing
up the used address space in advance.

However, the conventional OpenFlow technology has some
problems when it comes to virtualizing and controlling the
OpenFlow network itself. For example, it is not possible to
control each switch individually from multiple controllers in
one OpenFlow network. Moreover, there is no mechanism to
logically divide one OpenFlow network into multiple virtual
OpenFlow networks. These problems make it impossible for

Figure 1. FlowVisor

a tenant to construct and control each controller or devise a
virtual OpenFlow network in a multi-tenant data center that
provides IaaS.

III. FLOWVISOR

A FlowVisor is placed in the controller and switches, as
shown in Figure 1. It operates as a proxy that transfers the
OpenFlow messages necessary to control the switch from
the controller. The administrator of FlowVisor defines the
available network space to each tenant as a flow space and
presents a flow space definition to each tenant user in some
way. Tenant users create their own controllers that write flow
entries in accordance with the network topologies and flow
space definitions of the tenants’ OpenFlow networks presented
to them by the FlowVisor administrator. A tenant user can
control the tenant network by connecting his/her controller to
FlowVisor.

A. Flow Space
The administrator of FlowVisor defines a network space

called a ”flow space” that expresses the ranges of network
parameters allowed to each tenant beforehand. Table I shows
an example of a flow space. The flow space definition holds a
slice name indicating the name of the tenant network, a DPID
that indicates the OpenFlow switch ID, and a MAC address,
IP address, transport number, etc., as an available match field
from layer 1 to 4 in a flow entry and priority. In addition, each
flow space is based on the premise that the defined network
space is independent and has no overlaps. Therefore, there is
no mechanism in FlowVisor for checking whether flow space
conflicts exist; hence, the administrator needs to define each
flow space carefully.

154

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. EXAMPLES OF FLOW SPACE

Slice DPID Priority VLAN Src MAC Dst MAC Src IP Dst IP Src TCP Dst TCP
Tenant A 1 100 50 * * * * 80, 22 *
Tenant B 1 100 50 * * 10.0.1.0/24 * 80 *
Tenant C 1 100 50 * * 10.0.2.0/24 * 80 *

B. FlowVisor Mechanism
FlowVisor functions as a proxy on the OpenFlow channel

and controls the transfer of OpenFlow messages between mul-
tiple controllers and switches. This function differs between the
case of transferring messages from the switch to the controller,
such as when sending Packet-In and Port-Status messages, and
the case of forwarding messages from the controller to the
switch, such as when sending the Flow-Mod message.

First, we describe the messages that are transferred from
the switch to the controller. In this case, it is necessary to
specify the controller to which the message pertains before
transferring the message to it. As an example, a Port-Status
message notifying that the physical port state of the switch
has changed will affect all the tenant controllers using that
port. Accordingly, FlowVisor searches for all target controllers
from the topology information of each tenant network and
transfers the Port-Status message to all of them. In the case
of a Packet-In message, FlowVisor searches the flow space
definition to specify which tenant network the packet belongs
to and forwards the message to the tenant controller of the
corresponding flow space.

Next, we describe the messages that are transferred from
the controller to the switch. In this case, FlowVisor refers to
the topology information of all the tenant networks; then it
transfers the message to the target switch; it performs the same
operation on every message. If a tenant user tries to send a
message to a switch that does not belong to its own tenant
network, the send operation fails and a message transfer error
is returned to the controller.

C. FlowVisor Problem
FlowVisor is based on the premises that the flow spaces

allocated to each tenant network are independent and the tenant
controller sets flow entries within the allocated flow space. If
a FlowVisor administrator defines an unintended or incorrect
flow space content, an unexpected network control will be
executed. This problem can be discussed from a different
viewpoint that the IaaS provider forces each tenant to restrict
his/her network design, as shown in Figure 2(a). In contrast, if
IaaS providers want to enable each tenant user to freely design
their own tenant network, as shown in Figure 2(b), each tenant
user should be able to define their flow space freely. This,
however, leads to a problem that unintended traffic control can
occur when a flow entry is written that conflicts with the flow
space of another tenant. Hence, it is necessary to implement
a mechanism that can check for conflicts in flow spaces and
flow entries in a multi-tenant network.

Table I shows an example of conflicting flow entries,
wherein tenant user A tries to write a flow entry that prohibits
the SSH session such as by sending“Src TCP = 22, action =
DROP“ to the switch with DPID = 1. In the table, the match
fields of tenant A are defined as wildcard values “ * “ with
the exception of Src TCP; thus, tenant user A can freely use

(a) FlowVisor

(b) Ideal for IaaS

Figure 2. Network Design Policy

this value. However, if a flow entry such as what is mentioned
above is written, it will be applied to all packets transferred
through this switch with the source TCP port number 22. Since
all the packets are dropped, all SSH connections are closed,
even in the other tenant networks. In this case, the packet was
dropped unintentionally, however, it is possible to rewrite the
packet header as a specified action and transfer it in OpenFlow.
It is also possible to act in dubious or illegal ways, such
as eavesdropping by transferring traffic of other tenants that
are not permitted to use a server on their tenant network. In
particular, it is possible to transfer the traffic of other tenants
to a server on one’s own tenant network for the purpose of
sniffing packets.

If a FlowVisor administrator allows each tenant user to
freely design their tenant network and flow space definition, a
flow space that has overlaps will cause unintended behaviors
because the flow entries conflict. This is due to OpenFlow’s
ability to flexibly set values such as wildcards about the L1-L4
headers in the match field. In the example mentioned above,
since the tenant user can write a flow entry with wildcards
other than the source TCP port number to the switch, s/he can
control the traffic in unassigned flow spaces.

155

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. VIRTUALIZATION BASED ON FLOW ENTRY
VERIFICATION

We propose a new scheme to manage the virtualization
of an OpenFlow network that allows each tenant to freely
design his/her own network. It coordinates the controllers of
the tenants’ networks to make their designs work properly on
a physical OpenFlow network (Figure 2(b)). The core tasks
of the coordination are verification and conflict resolution.
The management system verifies duplications of flow spaces
assigned to each tenant, then resolves the conflict by rewriting
the flow entries received from the tenant controllers. Figure
3 shows the verification process in OpenFlow Hypervisor.
First, this system verifies and manages the overlapping address
spaces in the owned flow space. A tenant administrator defines
the combination of address spaces that is used in each tenant
network as a “flow space“. In addition, when a flow entry in a
flow space includes address spaces overlapping those of other
flow spaces, it checks for conflicts in the flow entries and
rewrites the match field to guarantee separation of traffic of
each tenant network. This minimizes the amount of rewriting
of flow entries by applying verification and management to the
flow space in advance.

The flow space of our system has a different definition
from that of FlowVisor. Our definition of a flow space is
a set of specific elements of OpenFlow match fields. In the
existing work, there is no mechanism to check for violations
of the flow space definition; thus, each tenant network is able
to set arbitrary values for all match field elements. In this
case, a tenant user controller may cause unintended traffic
controls, such as using wildcards. On the other hand, our
method restricts tenants to using only the range of match fields’
values that each tenant defined as a flow space previously. If
the tenant controller tries to set erroneous match fields in the
flow entry, our system verifies and rewrites them to fit to the
flow space definition. Our system also resolves the conflict
ranges of the match fields by rewriting and writing back the
values of the match fields.

A. Flow Space Definition

This flow space is different from the definition of FlowVi-
sor in Section III-A. In previous work, a flow space was defined
for each switch that the tenant can control; however, here, a
new flow space is defined as a combination of address spaces
that the tenant can use for one tenant network. A flow space is
composed of multiple rules, where each rule consists of rule
IDs, flow space names, and a matching field that is available
to the tenant, as shown in Table II. In the matching field, it
is possible to set five kinds of header information of L2 to
L4, i.e., VLAN ID, Src/Dst IP address, and Src/Dst TCP port,
which are necessary for network operations. These definitions
are described in JSON format, as shown in Figure 4. Each flow
space has a flow space name and a set of flow definitions. A
flow definition is described for each element of a match field,
and it is defined as a conjunction of fields. Since one flow
space is represented by one or more flow definitions, multiple
flow definitions are defined as disjunctions to allow flow entries
that match any one. Each tenant uses only the combination of
address spaces specified in this flow space. Definition example
2 in Table II, which summarizes the examples of Figure 4,
shows the following address space:

• VLAN ID = 100, Src IP = 192.168.64.0/20,
Dst IP = 192.168.64.0/20, Src TCP = 80

• VLAN ID = 101, Src IP = 192.168.64.0/20,
Dst IP = 192.168.64.0/20, Src TCP = 80

The tenant assigned this flow space can control the network
by using these two different combinations as a match field of
the flow entry. The top row of Table II shows the available
address space as the match field, but the upper limit of the
VLAN ID is half the original limit of 4096. This is due to
securing independent address space as management space for
managing duplications of flow spaces and resolving conflicts
in advance. VLAN-IDs are allocated from this management
space to the flow space when necessary.

B. Duplicate Flow Space Verification and Flow Entry
Now let us explain the overlap verification between flow

spaces and conflicts of flow entries on the basis of the
definition in the previous section. Table III lists examples of
flow spaces defined for three tenants A, B, and C. Since the
flow space definition of tenant A on the top row completely
includes the flow spaces of tenants B and C, the flow space
of A overlaps those of B and C and is not independent. On
the other hand, in the flow spaces of tenants B and C are
independent in Table II, and independent values are specified
for any of the match fields, such as Src IP address. Since
only a combination of the address spaces is used as a match
field in our flow space definition, we can detect duplications
by verifying the inclusion relation for each combination of
address spaces.

If the flow spaces have a complete inclusion relation, one
must detect and avoid conflicts of flow entries after managing
any flow space duplication. In flow spaces such as in Table III,
the flow entry at the top of the Table IV written from tenant A’s
controller will collide with the flow entries of other tenants.
Table IV shows two examples, i.e., one that conflicts with other
flow space definitions and another that does not conflict with
any other. In the example flow entry on the upper row, the value
of Src IP is 192.168.64.0/20, and it is based on the flow space
of tenant A. Since it includes the range of the flow spaces of the
other tenants B and C, it conflicts with their flow entries, and
their traffic is also controlled by this conflicting flow entry.
On the other hand, in the example flow entry on the lower
row, VLAN-ID = 101, which is an independent value from
the flow space of the other tenants, is set in the match field.
This flow entry does not cause a conflict. As mentioned above,
we must verify the inclusion relation of the value specified in
the match field for each flow space. If the value includes other
tenant’s flow spaces, it is possible to verify and avoid conflict
by allocating a new value from the free independent address
space and setting it in the conflicting flow entry.

V. CONFLICT VERIFICATION OF FLOW ENTRY

To avoid conflicts between flow entries, we propose a
two-step conflict resolution method. The first step involves
checking the consistency between the address space defined in
the match field of the flow entry and its own flow space. In the
second step, the OpenFlow hypervisor rewrites the match field
of the conflicting flow entries that overlap with the address
spaces in another tenant’s flow space. Only switches under
the common topology of the tenants’ network are targets of
this operation. Part of the match field of the flow entry is

156

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Proposed Architecture

TABLE II. FLOW SPACE LIMIT AND DEFINITION EXAMPLES

Rule ID Space Name VLAN Src IP Dst IP Src TCP Dst TCP
1 Maximum usage 0∼2047 0.0.0.0∼255.255.255.255 0.0.0.0∼255.255.255.255 0∼65535 0∼65535
2 Example 1 0∼50 192.168.0.0/22 192.168.4.0/22 1024∼65535 0∼1023
3 Example 2 0∼50 192.168.4.0/22 192.168.0.0/22 0∼1023 1024∼65535
4 Example 3 100, 101 192.168.64.0/20 192.168.64.0/20 80 *

TABLE III. EXAMPLES OF DUPLICATE FLOW SPACES

Rule ID Space Name VLAN Src IP Dst IP Src TCP Dst TCP
1 Tenant A 100, 101 192.168.64.0/20 192.168.64.0/20 80, 22 *
2 Tenant B 100 192.168.64.0/24 192.168.64.0/24 80 *
3 Tenant C 100 192.168.65.0/24 192.168.65.0/24 80 *

TABLE IV. EXAMPLES OF FLOW ENTRIES IN TABLE III

Entry Match Field Action
Conflicting VLAN ID = 100
Flow Entry Src IP = 192.168.64.0/24 Output: port 2

Dst IP = 192.168.64.0/24
Src TCP = 80

Non-Conflicting VLAN ID = 101
Flow Entry Src IP = 192.168.64.0/24 Output: port 2

Dst IP = 192.168.64.0/24
Src TCP = 80

converted into an independent value by using an address space
not used by other tenants. At this time, the rewriting method

will vary depending on the type of overlap in the topology. As
a result, conflicts due to flow entries are automatically detected
and avoided, while at the same time, different flow entries are
prohibited in the defined flow space. These measures guarantee
that the traffic of different tenant networks stays separated.

A. Consistency Check with Flow Spaces
When the OpenFlow hypervisor receives a Flow-Mod

message from a tenant controller, it check whether the match
field included in the message deviates from the tenant’s flow
space definition. To do so, it simply checks the range of the
address space for values other than wildcards in the match
field to see if they go beyond the range defined in the flow
space. If a flow entry with a value beyond that of the flow

157

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. JSON Format for Flow Space

space definition is written, the OpenFlow hypervisor discards
the Flow-Mod message and sends an error for the message to
the tenant controller.

Subsequently, for flow entries that have passed the con-
sistency check, the possibility of conflicting flow entries is
checked by using the flow space management information.
If the flow entry has no conflicts, the Flow-Mod message is
simply transferred to the OpenFlow switch. By contrast, when
flow entries conflict, our OpenFlow hypervisor rewrites the
flow entry according to the rules discussed in the next section
and forwards the rewritten Flow-Mod message.

B. Rewriting Flow Entries
If two tenants have common areas in their network topolo-

gies and address spaces in the flow definitions of their flow
spaces, the flow entries may conflict on the switches in the
common topology. In this case, it is necessary to rewrite
a tenant’s flow entry and to inject a flow entry to convert
the packet header into one that resolves the conflict. When
rewriting the flow entries so as not to conflict with other
tenants’ flow spaces, the hypervisor needs to determine an
address space without the conflict. Two rewriting methods can
be used; the choice is based on the size of the common area

of the topology with other tenants. Below, we explain these
methods using the flow spaces of Tables III and the topology
of Figure 5 as an example.

1) Partial Case: If the common area covers only part of
the topology, we resolve the conflict by using NAT (Network
Address Translation) with unused IPv4 address blocks. First,
NAT flow entries with unused IPv4 address blocks are set at the
edge switch of the common part of the tenant network. These
NAT entries convert the collision addresses of all packets in
the tenant network temporarily into different address blocks at
the edge of the common area. All of the original flow entries
from the tenant controller need to be modified to fit the NAT
address blocks before they are transferred to the switches.

In Figure 5, SW2 is located in the common area of the
topologies of tenant A and tenant B. When the controller of
tenant B tries to write a flow entry that conflicts with tenant
A to SW2, the OpenFlow hypervisor sets the NAT flow entry
to SW3 and SW6 in advance. An example of a NAT flow
entry installed in the switches is shown in Table V(a). In this
example, the IPv4 address block of tenant B collides with the
one of tenant A and is converted into an unused IPv4 address
block. In this example, for the packet header of tenant B,
the IPv4 address described in the flow space of Table III is
rewritten to an unused address 10.168.64.0/24. In SW3 and
SW6, this flow entry and a flow entry to convert back to
the original packet header are set to each. The match fields
of all subsequent OpenFlow messages for the switches in the
tenant network are rewritten in order to use the VLAN-ID to
determine the tenant’s traffic.

2) Overall Case: If the topology of a tenant network
is fully included in one of another network, the OpenFlow
hypervisor rewrites the flow entry which uses the VLAN-ID
reserved for the management address space, as explained in
Section IV-A. First, the flow entry for assigning or converting
the VLAN-ID is installed in the switches in the common area.
This flow entry assures that a different VLAN-ID is assigned
to each tenant on the basis of the ingress physical port number.
Subsequently, we rewrite the VLAN-ID of the match field for
the flow entry that the tenant writes and forward it to the
switch.

In Figure 5, the topology of tenant C is entirely included
in the one of tenant A. In this case, a flow entry for rewriting
the VLAN-ID is installed in SW1 and SW4, that are in the
included tenant network, where the flow entries may conflict.
If the flow space of tenant C, which is the included tenant
network, uses VLAN, the flow entry that converts the value
of the VLAN-ID is installed. If it does not use VLAN, a flow
entry which pushes a VLAN-ID is installed. The first row of
Table V(b) shows the former case, and the second row shows
the latter. The OpenFlow hypervisor converts all OpenFlow
messages received from the controller of tenant C into ones
that use the VLAN-ID assigned for tenant C before transferring
them to SW1 and SW4.

VI. IMPLEMENTATION

We implemented an OpenFlow hypervisor prototype. The
core modules of the system were the flow space manager and
flow translation engine. We measured and evaluated simple
benchmarks individually for each of these prototypes. In this
section, we describe the implementation of each module of the

158

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Rewriting Flow Entry

TABLE V. EXAMPLES OF FLOW ENTRIES FOR REWRITING

(a) NAT Flow Entry
Entry Match Field Action

VLAN-ID = 100
NAT Flow Entry Src IPv4 = 192.168.64.0/24 Set Field: Src IPv4 = 10.168.64.0/24,

Dst IPv4 = 192.168.64.0/24 Dst IPv4 = 10.168.64.0/24
Src TCP = 80

(b) VLAN Flow Entry
Entry Match Field Action

New VLAN Flow Entry In Port = 2 Push VLAN: 2049
In Port = 2

VLAN ID = 100
Change VLAN Flow Entry Src IP = 192.168.65.0/24 Set Field: VLAN-ID: 2049

Dst IP = 192.168.65.0/24
Src TCP = 80

prototype system and the preliminary performance evaluation
for each.

A. Flow Space Manager
The flow space manager holds definitions of the given

flow space and investigates in advance where flow entries can
collide in it. Here, the flow space is defined as shown in Figure
4; the manager analyzes it and holds flow definitions for each
flow space. At this time, in each flow definition, an address
space that has overlapping address blocks with one of the other
flow spaces in all match fields may cause a conflict.

The flow definition is managed using the hash of the source
IP address space with the network address of a 24-bit prefix
as the key. In this case, if the source IP address space of the
flow definition is smaller than /24, the network address of the
/24 network including it is used as the key. If it is larger than
/24, the network addresses of all /24 networks are registered
as multiple entries.

The manager prototype was implemented in Ruby 2.3, and
the overhead of flow registration was measured. In particular,

we measured the overhead of flow registration of 5000 flow
spaces to the manager. Figure 6 shows the results of the
evaluation measured for an Intel Core-i7 3.6GHz with 16GB
memory. The graph with the plus signs (+) shows the case of
5000 flow spaces without any conflicts, while the one with the
cross signs (x) shows that of 5000 flow spaces containing one
conflict for each. Considering that the flow space registration
is relatively infrequent, this result indicates an acceptable level
of performance.

B. Flow Translation Engine
The flow translation engine receives flow entries that tenant

controllers try to write to the OpenFlow switch and rewrites
them to avoid conflicts by using the algorithm described in
Section V-B. In OpenFlow, the controller sends a Flow-Mod
message to an OpenFlow switch for changing the flow entry
on each switch. The flow translation engine parses this Flow-
Mod message and transfers it after rewriting the packet data
such as the match field of the flow entry.

The flow translation engine was implemented in Python 3.6

159

International Journal on Advances in Networks and Services, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
)

number of flow spaces

Flowspace registered overhead

w/o conflict
w conflict

Figure 6. Execution Time of Flow Registration

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000 25000 30000

T
im

e
 (

s
)

Flow-Mod messages

Flow entry translation overhead

VLAN-ID
Src/Dst IPv4

Figure 7. Overhead of Flow Translation

and Ryu SDN Framework 4.16, and the overhead of rewriting
the match field of the flow entries was measured. In particular,
we measured the execution time of translation for two rewriting
patterns with 30000 Flow-Mod messages. The first pattern
worked to evaluate the overhead for rewriting the original
VLAN-ID to a different value, while the second pattern worked
to evaluate rewriting the source and destination IPv4 addresses.
The results, as measured by a computer with an Intel Core-i7
3.6GHz and 16 GB memory are shown in Figure 7. This engine
could rewrite 30000 Flow-Mod messages in about 13 seconds
for both patterns. This means that the average flow translation
overhead was 0.22 ms per Flow-Mod message. This overhead
is required only when a new flow space is added. Therefore,
these results show that this engine has sufficient performance.

VII. DISCUSSION

We proposed an OpenFlow network virtualization scheme
that allows each tenant to freely use OpenFlow technology
in a multi-tenant network environment. The core module of
our scheme is the verification-based virtualization management
of OpenFlow networks. The proposed OpenFlow hypervisor
manages the flow spaces defined by each tenant beforehand,
detects overlaps of the flow space definitions, resolves conflicts
by rewriting the match fields’ values, and monitors for erro-
neous control messages violating the flow space definitions.

The designers of tenant networks can use it to freely design
their own networks by defining network address ranges such
as the IP address.

FlowVisor expects that the individual flow spaces never
overlap; thus, it does not verify whether conflicts occur be-
tween flow spaces. This means that conflict avoidance among
flow spaces is left to the responsibility of the tenant’s adminis-
trators. From this point of view, it seems reasonable to view it
as a network partitioning technique rather than a virtualization.
Sköldström [5] et al. propose a virtualization method that uses
FlowVisor as a relay network of a wide area network. They
focus on resource management, whereas our research mainly
deals with mapping to lower-layer network separation technol-
ogy such as MPLS. The virtualization method of Yamanaka et
al. [6] works by assigning and tagging a specific MAC address
for each virtual network at the edge of the network. This
method restricts flow definitions to those that can be described
by each tenant.

Our method enables each tenant to define its virtual net-
works freely and guarantees isolation of the tenant networks
automatically. Using our scheme, established TCP/IP networks
can be migrated to a datacenter where flexible controls can
easily be introduced using OpenFlow technology. Even when
the backend of the IT infrastructure of the current organization
is moved to the cloud environment, it will be possible to
provide both flexible network control and ease of design like
that of a conventional network.

VIII. CONCLUSION

We proposed a virtual network management system that
maximizes the ability of OpenFlow virtualization by using
verification of the flow space definition. The method enables
individual tenant networks to be freely designed in a multi-
tenant network environment and ensures isolation among them.
This makes it possible for IaaS providers to provide a flexible
tenant network in which OpenFlow technology is freely used
for and by each tenant user. A preliminary evaluation of a
prototype shows that the proposed flow space management has
sufficient performance.

ACKNOWLEDGMENT

This work was supported by the Japan Society for
the Promotion of Science (JSPS KAKENHI Grant Number
JP15K00138).

REFERENCES
[1] S. Higuchi and T. Hirotsu, ”A Verification Based Flow Space Man-

agement Scheme for Multi-Tenant Virtualized Network,” The Eleventh
International Conference on Digital Society and eGovernments (ICDS),
pp. 24-29, March 2017.

[2] N. McKeown, ”Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30-32, 2009.

[3] N. McKeown et al., ”OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
Issue 2, pp. 69-74, April 2008.

[4] R. Sherwood et al., ”FlowVisor: A Network Virtualization Layer,” Tech.
Rep. OPENFLOW-TR-2009-01, OpenFlow Consortium, October 2009.

[5] P. Sköldström and K. Yedavalli, ”Network Virtualization and Resource
Allocation in OpenFlow-based Wide Area Networks,” IEEE Interna-
tional Conference on Communications (ICC), pp. 6622-6626, June
2012.

[6] H. Yamanaka, S. Ishii, and E. Kawai, ”Realizing Virtual OpenFlow
Networks by Flow Space Virtualization,” IEICE Technical Report,
Network Systems, vol. 112, no. 85, pp. 67-72, June 2012.

