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Abstract - Bandwidth of a digital communication channel is a 

valuable natural resource. Therefore it is important that the 

usage of this resource is minimized by carefully designing the 

digital modems. In this paper a new modulation scheme, called 

function modulation, is discussed that satisfies the Shannon’s 

model and therefore can help to save bandwidth by creating a 

green modem. It is also shown that all existing modulation 

methods based on sinusoidal functions do not meet the 

requirements of Shannon’s model and therefore have lower 

capacity for a given bandwidth.  

In addition, the paper shows that Shannon’s capacity is 

also not the limit. This capacity was derived under the 

assumption that the symbol duration is infinity. By relaxing 

this infinite time requirement much higher capacity is 

achieved. In order to derive this new capacity result a powerful 

and very well known mathematical concept, the infinite 

dimensionality of function space is used. It is shown that this 

concept can be the foundation of the digital communication as 

well as digital signal processing engineering. 

 
Keywords - information rates; sampling methods; orthogonal 

functions; communication; modulation. 

 

 

I. INTRODUCTION 

 

This paper is the extended version of [1]. Here all the 

relevant research work is integrated to present in details the 

function modulation (fm) concept and its capacity. 

In the derivation of capacity theorem Shannon used 

general functions as digital communication symbols. It is 

shown in [1] that if sinusoidal functions are used then 

Shannon’s conditions cannot be satisfied and therefore it 

will not be possible to achieve the capacity results derived 

in Shannon’s paper [2]. The fm method uses this general 

class of functions and it is shown that this method can 

achieve the Shannon’s capacity result. 

Another very important assumption in the derivation of 

the original capacity theorem was that all symbols must be 

of infinite time durations. This infinite time for symbols is 

not feasible in engineering. By relaxing this condition it is 

shown that even higher capacity can be achieved, under the 

same channel bandwidth requirement, giving an opportunity 

to design a green modem. 

Thus two major changes are introduced. First, the 

sinusoidal functions are replaced by the general class of 

functions to create the fm modems. This fm model is called 

the Shannon’s model, because we show that his geometric 

proof is based on this general class of functions. Second, the 

infinite time assumption is replaced by the finite time 

assumption to derive a new high rate sampling theorem. The 

above two ideas are integrated in the fm system using a 

Software Radio (SWR) approach. This fm design is the 

green modem. This system gives a method for 

implementing Shannon’s capacity theorem, which was 

missing from the communication literature. 

A detailed discussion of a very well known 

mathematical theory of infinite dimensionality of function 

space is presented. Then this concept is used to derive the 

new sampling theorem. This theorem shows that [3] for 

finite duration signals more we sample more information we 

get from the signal, thus theoretically validating the 

common engineering practice. Like in the original paper [2], 

this new sampling theorem is used to derive the new 

capacity theorem. The new theorem shows that the capacity 

depends on the sample rate, and therefore can be much 

higher, theoretically unbounded, but practically bounded by 

the technology.  

Shannon’s original theory was derived using a 

geometric concept of n-dimensional Cartesian space where 

n approaches infinity. In this paper we use an apparently 

different geometric approach using infinite dimensional 

function space. We say it apparently, because on the face of 

it they are completely different, but their underlying 

concepts are linked together. We use our geometric 

approach to first derive the original result over finite time 

and then extend it to new result, also over finite time.  

The paper is organized in several sections and their 

subsections.  The major sections are Fundamentals, 

Sampling Theorem, Function Modulation, and Capacity 

Theorem. In the Fundamentals section we put the original 

thoughts that triggered this research. These thoughts were 

provided by various reviewers. The Sampling Theorem 

section answers – how many samples we need to describe a 

finite duration signal. The Function Modulation section 

describes the transmitter and the receiver. The Capacity 

Theorem section shows that the Shannon’s theorem can be 

extended if we use finite duration symbols. 

 

II. FUNDAMENTALS 

 

In this section we collect all the fundamental ideas that will 

be used in the rest of the paper. They are related to infinite 

time assumption of classical theories, infinite 

dimensionality of function space, finite duration sampling 

needs, and the software radio concepts that are considered 
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crucial to the understanding of the thoughts that integrate all 

the research work presented in this paper. 
 

A. Infinite Time Assumption 
 

In this section we show that the assumption of infinite 

time duration for signals is not practical and is not necessary 

for our theories. In real life and in all our engineering 

systems we use signals of finite time durations only. 

Intuitively this finite duration concept may not be quite 

obvious though. Ordinarily we know that all our 

engineering systems run continuously for days, months, and 

years. Traffic light signaling systems, Global Positioning 

Systems (GPS) satellite transmitters, long distance airplane 

flights etc. are some common examples of systems of 

infinite time durations. Then why do we talk about finite 

duration signals? The confusions will be cleared when we 

think little bit and examine the internal design principles, 

the architecture of our technology, and the theory behind 

our algorithms. Originally we never thought that this 

question will be asked, but it was, and therefore we look 

here, at the implementations, for an explanation. 

The computer based embedded engineering 

applications run under basically two kinds of Operating 

Systems (OS). One of these OS uses periodic approaches. In 

these systems the OS has only one interrupt that is produced 

at a fixed rate by a timer counter. Here the same application 

runs periodically, at the rate of this interrupt, and executes a 

fixed algorithm over and over again on input signals of 

fixed and finite time duration. As an example, in digital 

communication engineering, these signals are usually the 

symbols of same fixed duration representing the digital data 

and the algorithm is the bit recovery process. Every time a 

an analog symbol comes, the algorithm recovers the bits 

from the symbol and then goes back to process the next 

arriving symbol.  

Many core devices of an airplane, carrying passengers, 

are called flight critical systems. Similarly there are life 

critical systems, like pacemaker implanted inside human 

body. It is a very strict requirement that all flight critical and 

life critical systems have only one interrupt. This 

requirement is mainly used to keep the software simple and 

very deterministic. They all, as explained before, repeat the 

same periodic process of finite duration, but run practically 

for infinite time. 

The other kind of applications is based on the Real 

Time multi-tasking Operating Systems (RTOS). This OS is 

required for systems with more than one interrupts which 

normally appear at asynchronous and non-periodic rate. 

When you have more than one interrupts, you need to 

decide which one to process first. This leads to the concept 

of priority or assignment of some kind of importance to 

each interrupt and an algorithm to select them. The software 

that does this work is nothing but the RTOS. Thus RTOS is 

essentially an efficient interrupt handling algorithm. Thus 

RTOS is not unique and can be designed in your way. 

These RTOS based embedded applications are designed 

as a finite state machine. We are not going to present a 

theory of RTOS here. So to avoid confusions we do not try 

to distinguish among threads, tasks, processes, memory 

management, and states etc. We refer to all of these 

concepts as tasks, that is, we ignore all the details below the 

level of tasks, in this paper. These tasks are executed 

according to the arrival of interrupts and the design of the 

application software. The total application algorithm is still 

fixed and finite but the work load is distributed among these 

finite numbers of tasks. The execution time of each task is 

finite also. These tasks process the incoming signals of 

finite time and produce the required output of finite size.  

An example will illustrate it better. A digital 

communication receiver can be designed to have many tasks 

– signal processing task, bit recovery task, error correcting 

task etc. They can be interconnected by data buffers, 

operating system calls, and application functions. All these 

tasks together, implement a finite state machine, execute a 

finite duration algorithm, and process a finite size data 

buffer. These data buffers are originated from the samples 

of the finite duration signals representing the symbols. The 

transmitter of a digital communication system can also be 

implemented using similar principles. 

We should point out that it is possible to design 

application systems which are combinations or variants of 

these two basic concepts. Most commercial RTOS provide 

many or all of these capabilities. Thus although all of the 

engineering systems run continuously for all time, all of 

them are run under the above two basic OS environment. Or 

in other words for all practical engineering designs the 

signal availability windows, the measurement windows, and 

the processing windows are all of finite time. For more 

details of real time embedded system design principles see 

many standard text books, for example [4, pp. 73-88]. 

The signals may exist theoretically or mathematically 

for infinite time but in this paper none of our theories, 

derivations, and assumptions will use that infinite time 

interval assumption. However, interestingly enough, to deal 

with the finite duration problem we have to use the well 

known mathematical concept of infinite dimensionality of 

function space. Thus somehow infinity appears to be 

inescapable. In the next subsection we explain this infinite 

dimensionality idea in details. 
 

B. Infinite Dimensionality 
 

We will use the following basic notations and 

definitions in our paper. Consider the class of all real valued 

measurable functions in L2[a,b], defined over the finite time 

interval [a,b]. We assume that the following Lebesgue 

integral (1) is bounded, i.e. 
 � |�(�)|� 	� < ∞ ,   ∀� ∈ ��[�, �]��                       (1)        

 

Then we define the L2 norm as in (2): 
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��� = �� |�(�)|��� 	���/� , ∀� ∈ ��[�, �]        (2)           

  

Then the following (3) definition can be used for metric d  
 	(�, �) = �� − �� = �� |�(�) − �(�)|��� 	���/�

               (3)   

 

In addition (4) defines the inner product as 

 ��, �� = � �(�)�(�)	�    ∀�, � ∈ ��[�, �]��                         (4) 

            

Under the above conditions the function space, L2 [a,b], 

is a Hilbert space. One very important property of the 

Hilbert space [5, pp. 31-32], related to the communication 

theory, is that it contains a countable set of orthonormal 

basis functions. Let  !" , # = 1,2, . . ' be such a set of basis 

functions. Then the following (5) holds: 
 �!( , !)� = *() = +0   -� - ≠ /1   -� - = /0                      (5)

             

And for any � ∈ ��[�, �] the Fourier series (6) can be 

written using (5) as: 

 �(�) = ∑ �(!((�),   ∀� ∈ [�, �]2(3�                                      (6)    

 

The expression (6) really means that for any given ε > 0 

there exists an N such that 

 ��(�) − ∑ �(!((�)"(3� � < 4, ∀# > 6                      (7) 

 

Since the functions in (5) are orthogonal, the Fourier series 

coefficients in (6) can be obtained using the Lebesgue 

integral (8) as shown below:  
 �( = � �(�)!((�)	��� , - = 1,2, …                                   (8) 

 

We should point out to avoid any confusion that the 

Fourier series (6) in this paper is assumed to be defined over 

finite time duration. Although, a can be -∞ and b can be +∞.  

Also, the functions φn(t) are general functions and not 

necessarily sinusoidal harmonic functions. The expression 

(6) may be called as the generalized Fourier series. 

In this paper we will consider only continuous functions 

and their Riemann integrability. We note that the continuous 

functions are measurable functions and the Riemann 

integrable functions are also Lebesgue integrable. Thus the 

Hilbert space theory (1-8) and the associated concepts will 

still remain applicable to our problems. Actually, the 

Lebesgue integrable functions form an equivalent class, in 

the sense that there exists a continuous function whose 

Lebegaue integral is same as the Lebesgue integral of any 

one of the measurable functions in that equivalent class. By 

the way, the Riemann integral is the one we study in our 

high school calculus course. 

We observe from (6) that to represent a function 

accurately over any interval we need two sets of data: (A) 

An infinite set of basis functions, not necessarily orthogonal 

and (B) An infinite set of coefficients in the infinite series 

expression for the function, similar to (6). That is, these two 

sets completely define the information content in a 

mathematical function. Thus the information is not a 

superficial concept; it has a very meaningful, practical, and 

mathematical definition as mentioned in this paragraph. 

Equality (6) happens only for infinite number of terms. 

Otherwise, the Fourier representation in (7) is only 

approximate for any finite number of terms. In this paper ε 
in (7) will be called as the measure of approximation or the 

accuracy estimate in representing a continuous function. 

The Hilbert space theory (1-8) ensures the existence of N in 

(7) for a given ε. The existence of such a countably infinite 

number of orthonormal basis functions (5) proves that the 

function space is an infinite dimensional vector space. This 

dimensionality does not depend on the length of the interval 

[a,b]. Even for a very small interval, like symbol time, or an 

infinite interval, a function is always an infinite dimensional 

vector. However, the context in which this vector is defined 

is also very important, which is, the entire function space in 

this case. 

It is not necessary to have orthonormal basis functions 

for demonstrating that the function space is infinite 

dimensional. The collection of all polynomial functions  �", # = 1,2, . . ' is linearly independent over the interval 

[a,b] and their number is also countable infinity. These 

polynomials can be used to represent any analytic function, 

i.e. a function that has all derivatives. Using Taylor’s series 

(9) we can express such a f(t) at t as: 

 �(�) = ∑ 8(9)(:)"!2"3<  (� − =)"                       (9) 

 

around the neighborhood of any point c. Thus the above 

polynomial set is also a basis set for the function space. 

Therefore using the infinite Taylor series expression (9), we 

prove again that a function is an infinite dimensional vector 

over a finite interval. Here the information is defined by the 

derivative coefficients and the polynomial functions. 

It can be shown that a band limited function is also 

infinite dimensional and therefore carries infinite amount of 

information. Consider a band limited function f(t), with 

bandwidth [-W,+W]. Then f(t) is given by the following 

(10) inverse Fourier Transform (FT) [2]: 

 �(�) = ��> � ?(@)A(BC	@D2E2                   (10) = ��> � ?(@)A(BC	@D�>FE�>F                      (11) 

           

In (11) t is defined for all time in (–∞, +∞), but the 

frequency w is defined only over [–W,+W], and it can take 

any value: integer, rational, or irrational frequencies, within 

that frequency range. 
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The expression (11) shows that the band limited 

function f(t) has uncountably infinite number of frequencies. 

Therefore f(t) is an infinite dimensional vector. This is true 

even when we consider a small interval of time for the 

function f(t). In that small interval the function still has all 

the infinite frequency components corresponding to the 

points in [–W,+W]. This is another way of showing that a 

band limited function is an infinite dimensional vector over 

a finite measurement window.  

It should be pointed out here that a constant function 

f(t) = C, as an element of function space, is also an infinite 

dimensional vector. The only difference is that all sample 

values are same. In terms of Taylor series the coefficients 

for a constant function are {C,0,0,….}, which is an infinite 

dimensional vector. In the next subsection we discuss an all 

software approach for the design of digital communication 

systems. In the next subsection we prove infinite 

dimensionality in another way. 
 

C. Finite Duration Sampling 
 

The following is a very common way of expressing 

functions in mathematics. Let f(t) be a continuous function 

defined over L2[a,b]. Assume that we divide the finite time 

interval [a,b] into n > 1 equal parts using equally spaced 

points  ��, ��, … , �", �"D�' where t1=a  and tn+1=b. Use the 

following (12) notations to represent the t-subintervals 

 ∆�( = H [CI,CIJK),[C9,C9JK],     (3�,�,..,"E�        (3"                    0        (12) 

 

Define the characteristic functions (13) as: 
 L((�) = H�,<,     C∈∆CIC∉∆CI 0    - = 1,2, . . , #        (13)                   

 

In this case, the characteristic functions, )t(
i

Χ  are 

orthogonal over the interval [a,b] with respect to the inner 

product on L2 [a,b]. Because (14) given below holds. 

 L((�)L)(�) = 0, - ≠ /, ∀� ∈ [�, �]                    (14) 

 

Also define the simple functions (15) as 

 �"(�) = ∑ �(�()L((�)    ∀� ∈ [�, �]"(3�                    (15) 

 

Here f(ti) is the sampled value of the function f(t) at t   =  ti . 

It is easy to visualize that fn(t) is a sequence of discrete step 

functions over n. Expression (15) is an approximate Fourier 

series representation of f(t) over [a,b]. This representation 

uses the samples of the function f(t) at equal intervals, fn(t) 

uses n number of samples. We show that this approximate 

representation (15) improves and approaches f(t) as we 

increase the number of samples, the value of n towards 

infinity. 

    

Theorem 1: �"(�) → �(�)  �O  # → ∞, ∀� ∈ [�, �] 

To prove the theorem, define (16) as the error expression 

 PQ" = maxC|�(�) − �"(�)|, ∀� ∈ [�, �]                   (16)       
 

It is clear that { ny∆ } is a monotonically decreasing 

sequence of n. Therefore, given any 0>ε  we can find an 

N such that )ab(/ny −≤ ε∆   for all n > N.  

 

Starting with (17) derive the difference in norm: 

 �� − �"� = �� |�(�) − �"(�)|�	��� ��/�
      (17)          = �� |�(�) − ∑ �(�()L((�)"(3� |��� 	���/�
                     (18) = �� |∑ �(�)L((�) − ∑ �(�()L((�)"(3�"(3� |��� 	���/�

       (19) = �� U∑ V�(�) − �(�()WL((�)"(3� X�	��� ��/�
                     (20) 

 

Now performing the squaring operation, noting that 

equation (14) holds, expression (21) helps to further 

simplify the expression (20): 

 = �� [∑ [�(�) − �(�()]�L(�(�)"(3� ]	��� ��/�
          (21)       ≤ �� [∑ [∆Q"]�L(�(�)"(3� ]	��� ��/�

                     (22)         = �∆Q"� � (∑ L(�"(3� (�))	��� ��/�
                     (23) = [∆Q"�(� − �)]�/� = Z(� − �)∆Q" ≤ 4      (24) 

 

Thus from (17) we see that (25) holds, ∀# ≥ 6  

 ��(�) − ∑ �(�("(3� )L((�)� ≤ \, ∀� ∈ [�, �]                      (25) 

 

Which essentially means (26): 

 �(�) = ∑ �(�()L((�) , ∀� ∈ [�, �]2(3�                              (26) 

 

This concludes the proof of Theorem 1.  

Theorem 1 proves that infinite sample rate is necessary 

to represent a continuous function correctly over a finite 

time interval. Theorem 1 is similar to the one described for 

measurable functions in [6, pp. 185-187]. However the 

coefficients are not sampled values in that theorem.  

Another proof can be found in [7, pp. 247-257] where the 

Bernstein polynomial has been used instead of the 

characteristic function.  

The above theorem confirms a very well known 

engineering practice. In all engineering applications, our 

engineers always sample a signal at more than two to four 

times the Nyquist rate. Theorem 1 only mathematically 

justifies that well known practice. We will show that this 

theorem also provides the analytical foundation for our new 

capacity theorem. Thus Theorem 1, although very simple 

and obvious, has a profound implication in both digital 
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signal processing and communication theories. Note that 

Theorem 1 does not depend on the bandwidth of the 

function f(t). However ε and N, as used in (25), are 

dependent on the bandwidth. 

Again from Theorem 1 we conclude that the function 

space is infinite dimensional and the information content 

can be represented by its infinite number of samples. This 

result is very important because these samples are generated 

by the Analog to Digital Converter (ADC) in our 

technology today. Thus the ADC actually produces the 

information content of a function. 
 

D. Software RadioApproach 
 

The foundation of the existing digital communication 

schemes is based on modulating the three parameters, 

amplitude A, frequency f, and phase φ of the sinusoidal 

function (27): 
 O(�) = ] sin(2a�� + !)        (27) 

 

Most of the existing methods vary, in discrete steps, one or 

more of the above three parameters to represent the digital 

data. These methods are known as Amplitude Shift Keying 

(ASK), Frequency Shift Keying (FSK), and Phase Shift 

Keying (PSK). Collectively we call them as Shift Keying 

(SHK) methods in this paper. 

In this paper we present a modulation method for 

digital communication that does not use sinusoidal 

functions, does not use any one of the keying methods 

mentioned, and does not use any kind of discrete variations 

during the symbol intervals as well as at the inter-symbol 

interfaces. We show that the entire symbol stream, after 

concatenation, remains analytic i.e. smooth and continuous. 

In the proposed method we modulate the complete 

function s(t) or the sin function itself. Since we are 

modulating the functional structure of the expression s(t), 

we call it a function modulation (fm) method. Also, since 

our method does not use any discrete changes in the 

waveform or the function representing the symbol we call it 

an analog approach.  

Our design approach is based on the concept of 

Software Radio (SWR), where we use batch data-in and 

batch data-out processing method as opposed to more 

conventional sample-in and sample-out type real time 

method. Of course we do this only for one symbol time 

which is usually millisecond or microsecond long. This 

SWR approach allows us to see the past, the present, and 

therefore the entire history of the data simultaneously, and 

to help extract information more effectively at the receiver. 

Observe that the symbol duration does not always indicate 

capacity or bit rate. Same symbol duration can be used for 

transmitting 10 bits or 20 bits of data as explained in our 

function modulation section. It is the number of symbols 

that dictates data rate or capacity. From our theory you will 

be able to find out that nanosecond is quite meaningful also 

and with our present day technology. 

In this SWR method, since we are not using sinusoidal 

functions, we do not need to use Voltage Controlled 

Oscillators (VCO), Phase Lock Loops (PLL), up down 

converters etc., which are dependent on the concept of 

sinusoidal functions. We also do not need to use any linear 

feedback control system type concepts in this batch data 

processing method. Thus we avoid all the instability 

problems related to linear feedback theory. 

This SWR design can be implemented entirely on 

standard off-the-shelf Digital Signal Processors (DSP) using 

programming concepts of time domain approaches. The 

advent of modern high speed DSPs enables us to take this 

approach. We will see that this time domain approach is 

more reliable and have meaningful theoretical foundation as 

opposed to Laplace transform or Fourier Transform (FT) 

based concepts that require linearity and infinite time 

assumptions. It should be understood that custom 

Application Specific Integrated Circuits (ASIC) instead of 

an off-the-shelf DSP can be more powerful for mass 

production.  

Thus in our software radio approach we do not 

implement electronic hardware concepts using software 

languages. This approach allows us to implement our 

thought process using software languages. The thought 

process should not depend on the technology. The modern 

DSPs, high speed Analog to Digital Converters (ADC), and 

Digital to Analog Converters (DAC) allow us to implement 

our thoughts the way we think. An example of our thought 

process can be like this: “We want to send hundreds of 

symbols and our receiver should be able to detect them.” 

We show that we have just implemented the above thought 

using our DSP concept. 

Thus this SWR approach is not just moving the sampler 

near the antenna, and then implementing hardware logic 

using programming languages; it is all about rethinking the 

entire concepts using DSP, it is a paradigm shift. We do not 

treat things using moment by moment, like in sample by 

sample approaches. We treat the entire life history together, 

using batch data process, along with global system level, 

and simultaneous concept, as described later to implement 

our SWR. This kind of time domain approach has many 

advantages over conventional transform domain approaches. 

We know that the transform methods make infinite time and 

linearity assumptions. Both assumptions are not realistic in 

engineering problems and therefore will provide suboptimal 

solutions. Our approach will allow us to use mathematical 

techniques that we have never used before in real time, like 

integral equations, least square etc. 

There is another very important common feature of all 

the existing digital communication schemes - bits of the data 

stream do not play any role, in the following sense, in the 

design of communication systems. For example, in an m-bit 

data stream we consider M=2
m
 data packets. The internal bit 

pattern of each packet is not important. Only the number M 

is important. Existing methods select M waveforms to 

represent each one of these M packets. Any one of the 
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waveforms can be used to represent any one of the M data 

packets. Thus the link is very artificial. We could even send 

names of M authors, or titles of M books using these M 

waveforms. In the proposed method, the bits are directly 

embedded in the symbol i.e. there is a direct physical link 

between the bit pattern and the wave shape of the symbol. 

Thus we are sending bits also and not just symbols. 

Therefore Bit Error Rate (BER) is directly meaningful.  

We introduce an intermediate space, called bit function 

space, between the data space and the symbol space. The 

dimension of the bit function space is m, the number of bits 

in the data packets. We show that fm receiver does not need 

to search in the symbol space; instead we can search in this 

newly defined bit function space. This bit function space 

approach reduces the number of searches. We show that, for 

the orthogonal bit function case, we need to search over 

only m bit functions instead of 2
m
 symbols as required by 

Shannon’s capacity model. This is a significant reduction in 

the complexity of the fm receiver design and has the 

potentiality of providing high capacity systems.  

Thus our software radio approach is dramatically 

different from the existing digital communication 

engineering. We have taken a new look to communication 

engineering from a global perspective and integrated the 

power of hardware, software, algorithm, and system level 

technologies. Next we extend the sampling theorem. 

 

III. SAMPLING THEOREM 

 

We show that when the signals are defined over finite time 

interval then the Nyquist rate is not enough for signal 

reconstruction. We must sample as fast as we can or as 

much the technology permits. 

A. Finite Duration Case 
 

Consider the sinusoidal function (28): 
 

s(t) = A sin (2 π f t + θ)                     (28) 
 

We can see from the above expression that a sinusoidal 

function can be completely specified by three parameters A, 

f, and θ. So we can use (29) to express a sine function as a 

three dimensional vector: 
 

s = [A, f, θ]                      (29) 
 

However (29) is very misleading. There is a major hidden 

assumption; that the parameters of (29) are related by the 

sine function. Therefore (30) can be used to give a more 

precise representation of (29): 
 

s = [A, f, θ, “sine”]                     (30) 
 

The word sine in (30) means the Taylor’s series, which has 

an infinite number of coefficients. Therefore when we say 

(29) we really mean (30) and that the sine function (28), as 

usual, is really an infinite dimensional vector. 

Now assume, without loss of generality, that (28) is 

defined over one period. That is, we have collected the 

signal from the display of a digital oscilloscope. We can 

then use the following three equations (31) to solve for the 

three unknown parameters, A, f, and θ: 
 

s1 = A sin (2 π f t1 + θ) 
s2 = A sin (2 π f t2 + θ)                     (31) 

s3 = A sin (2 π f t3 + θ) 
 

where t1 , t2 , t3  are sample times and s1 , s2 , s3 are 

corresponding three sample values. Again (32) gives a more 

meaningful representation in terms of samples: 
 

s = [(s1,t1), (s2,t2), (s3,t3), “sine”]       (32) 
 

Hence with the sinusoidal assumption, a sine function can 

be completely specified by only three samples. The above 

analysis gives a simple proof of the original sampling 

theorem. For band limited functions we can consider this 

sinusoid as the highest frequency sine wave in the signal.  

We can now state the well known result: 
 

Theorem 2: A sinusoidal function, with sinusoidal 

assumption, can be completely specified by three non-zero 

samples of the function taken at any three points in its 

period. 
 

From (31) we see that if we assume sinusoidality then 

more than three samples, or higher than Nyquist rate, will 

give redundant information. However without sinsoidality 

assumptions more sample we take more information we get, 

as is done in common engineering practice. It should be 

pointed out that Shannon’s sampling theorem assumes 

sinusoidality. Because it is derived using the concept of 

bandwidth, which is defined using Fourier series or 

transform, which in turn uses sinusoidal functions.  

Theorem 2 says that the sampling theorem should be 

stated as fs > 2fm instead of fs ≥ 2fm that is, the equality 

should be replaced by strict inequality. Here, fm is the signal 

bandwidth, and fs is the sampling frequency. There are some 

engineering books [8, p. 63] that mention strict inequality.  

Shannon writes about his sampling theorem [2, p. 448] 

in the following way: “If a function f(t) contains no 

frequencies higher than W cps, it is completely determined 

by giving its ordinates at a series of points spaced 1/2 W 

seconds apart.”  The proof [2] is very simple and runs along 

the following lines. See also [9, p. 271]. A band limited 

function f(t) can be written as in (26). Substituting t = 

n/(2W) in (26) we get the following expression (33): 
 � c "�Fd = ��> � ?(@)A(B 9efD�>FE�>F 	@                      (33) 

 

Then the paper [2] makes the following comments: “On the 

left are the values of f(t) at the sampling points. The integral 

on the right will be recognized as essentially the nth 

coefficient in a Fourier-series expansion of the function 
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F(w), taking the interval –W to +W as a fundamental period. 

This means that the values of the samples f(n/2W) 

determine the Fourier coefficients in the series expansion of 

F(W).” It then continues “Thus they determine F(w), since 

F(w) is zero for frequencies greater than W, and for lower 

frequencies F(w) is determined if its Fourier coefficients are 

determined.”   

Thus the idea behind his proof is that from the samples 

of f(t) we reconstruct the unknown F(w) using (33). Then 

from this known F(w) we can find f(t) using (10) for all time 

t. One important feature of the above proof is that it requires 

that the function needs to exist for infinite time, because 

only then you get all infinite samples from (33). We show 

that his proof can be extended to define functions over any 

finite interval with any degree of accuracy by increasing the 

sample rate. The idea is similar, we construct F(w) from the 

samples of f(t). 

We use the principles behind the numerical inversion of 

Laplace transform method as described in [10, p. 359]. Let 

F(w) be the unknown band limited Fourier transform, 

defined over [-W,+W]. Let the measurement window for the 

function f(t) be [0,T], where T is finite and not necessarily a 

large number.  Divide the frequency interval 2W into K 

smaller equal sub-intervals of width ∆w with equally spaced 

points {wj} and assume that {F(wj)} is constant but 

unknown over that i-th interval. Then we can express the 

integration in (33) approximately by (34): 

 �(�) ≈ ��> (∆@) ∑ A(CBhi)3� ?(@))                    (34) 

 

The right hand side of (34) is a linear equation in {F(wj)}, 

which is unknown. Now we can also divide the interval 

[0,T] into K equal parts with equally spaced points {tj} and 

let the corresponding known sample values be {f(tj)}. Then 

if we repeat the expression (34) for each sample point tj we 

get K simultaneous equations in the K unknown variables 

{F(wj)} as shown below by (35): 

 

j�(��)�(��)⋮�(�i)l = ∆B�> j A(CKBK    A(CKBe … A(CKBmA(CeBK    A(CeBe … A(CeBm⋮A(CmBK    A(CmBe … A(CmBm
l j?(@�)?(@�)⋮?(@i)l          (35) 

 

These equations are independent because exponential 

functions in (34) are independent. Therefore we can solve 

them for {F(wj)}.  Theorem 1 ensures that the sets {F(wj)} 

and {f(tj)} can be selected to achieve any level of accuracy 

requirements in (34) for either f(t) or F(w). 

For convenience we assume that the number of terms K 

in (34) is equal to Tkfs which is equal to 2kWT. Here fs is 

the Nyquist sample rate and k > 1. We state the following 

new sampling theorem. 

 

Theorem 3:  Let f(t) be a band limited function with 

bandwidth restricted to [-W,+W] and available over the 

finite measurement window [0,T]. Then given any accuracy 

estimate ε >0, there exists a constant k>1 such that 2kWT 

equally spaced samples of f(t) over [0,T] will completely 

specify the Fourier transform F(w) of f(t) with the given 

accuracy ε. This F(w) can then be used to find f(t) for all 

time t. 

 

In a sense Shannon’s sampling theorem gives a 

sufficient condition. That is, if we sample at twice the 

bandwidth rate and collect all the infinite number of samples 

then we can recover the function. We point out that this is 

not a necessary condition. That is, his theorem does not say 

that if T is finite then we cannot recover the function 

accurately by sampling it. We have confirmed this idea in 

the above proof of Theorem 3.  

Shannon proves his sampling theorem [2] in another 

way. Any continuous function can be expressed using the 

Hilbert space based Fourier expression (6). Shannon has 

used the above expression for a band limited function f(t), 

defined over infinite time interval. He has shown that if we 

use (36) 

 !"(�) = n(" >8o[CE("/8o)]'>8o[CE("/8o)]                        (36) 

 

Then (37) will give the coefficients of (6): 

 

an = f(n/fs)                      (37)  

 

Thus (38) can be used to express f(t) [11, p. 58]: 

 �(�) = ∑ �(#/�n) n(" >8o[CE("/8o)]'>8o[CE("/8o)]2"3E2                       (38) 

 

Here fs ≥ 2W, where W is the finite bandwidth of the 

function f(t). The set {φn } in (36) is orthogonal only over (-

∞,+∞).    

 

We make the following observations about (38): 

 

• The representation (38) is exact only when infinite time 

interval and infinite terms are considered. 

 

• If we truncate to finite time interval then the functions 

φn in (36) will no longer be orthogonal, and therefore 

will not form a basis set, and consequently will not be 

able to represent the function f(t) correctly. 

 

• If in addition we consider only finite number of terms 

of the series in (38) then more errors will be created 

because we are not considering all the basis functions. 

We will only be considering a subspace of the entire 

function space. 

 

We prove again that, by increasing the sample rate we can 

get any desired approximation of f(t), over any finite time 
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interval [0,T], using the same sinc functions of (36). From 

calculus we know that the following (39) limit holds: 

 limq→2 rst qq = 0                      (39) 

 

Assume that fs is the Nyquist sampling frequency, i.e. fs = 

2W.  Let us sample the signal at k times the Nyquist rate. 

Here k>1 is any real number. Then using (39), we can show 

that given any T and a small δ > 0, there exists an N such 

that (40) as given below holds: 

 un("(>v8oC)>v8oC u < *, ∀w > 6, ∀� ≥ x                   (40) 

 

Thus these orthogonal functions (36) substantially go to 

zero outside any finite interval [0,T] for large enough 

sampling rate and still maintain their orthogonality property, 

substantially, over [0,T]. Thus by increasing the sample rate 

we squeeze many of these functions within this finite 

interval. The tails of these functions become substantially 

zero outside this interval as seen from (39). The squeezing 

situation is also shown in Fig. 1. Therefore for a given band 

limited function f(t), with signal capture time limited to the 

finite window [0,T], we can always find a high enough 

sample rate, kfs so that given any ε>0 the expression (41) 

will be true: 

 y�(�) − ∑ �( "v8o) n(" >v8o[CE("/v8o)]'>v8o[CE("/v8o)]i"3< y < 4                   (41) ∀w > 6, ∀� ∈ [0, x] 
 

Observe that from the infinite duration Fourier series 

(38) we have derived a finite duration Fourier series (41) 

merely by increasing the sample rate. Our finite duration 

analysis is not just about recovering the signal, but finding 

how many samples are necessary to correctly represent the 

signal. Thus our focus is different from signal reconstruction 

theories, which is so well known in the literature. 

The number of functions in the above series (41) is now 

K, which is equal to the number of samples over the period 

[0,T]. Thus K= kfsT = 2kWT. As k increases the number of 

sinc functions increases and the distance between the 

consecutive sinc functions reduces thus giving higher 

sample rate. The original proof, [12, pp. 87-88] for (36-38), 

which is independent of sample rate, still remains valid as 

we increase the sample rate. That is, the sinc functions in 

(36) still remain orthogonal. It can be shown using the 

original method that the coefficients in (37) remain valid 

and represent the sample values. Thus the system still 

satisfies the Hilbert Space theory, making the expression 

(41) justified over [0,T]. Thus we can state the following 

new sampling theorem. 

 

Theorem 4:  Let f(t) be a band limited function with 

bandwidth restricted to [-W,+W] and available over the 

finite measurement window [0,T]. Then given any accuracy 

estimate ε there exists k>1 such that 2kWT equally spaced 

samples of f(t) over [0,T] along with their sinc functions, 

will completely specify the function f(t) for all t in [0,T] at 

the given accuracy.  

 

Theorems 1 and 4 are identical, because the sinc 

function is the FT of the characteristic function. These 

theorems suggest that the Nyquist rate is not enough for 

finite duration signals. That is, we must sample as fast as we 

can depending on our technology and more we sample more 

information we get about the function. The expression (41) 

shows that the information content is in the samples and in 

the sinc functions. We mention again that our paper is not 

about signal reconstruction, it is about how many samples 

are required for a finite duration signal. 

 The paper [13] gives a good summary of the 

developments around sampling theorem during the first 

thirty years after the publication of [2]. Interestingly [13] 

talks briefly about finite duration time functions, but the 

sampling theorem is presented for the frequency samples, 

that is, over Fourier domain which is of infinite duration on 

the frequency axis.  

In the following subsection we give a numerical 

example to show how higher rate samples actually improves 

the function reconstruction. 
 

B. Numerical Example 
 

We illustrate the effect of sample rate on the 

reconstruction of functions. Since every function can be 

considered as a Fourier series of sinusoidal harmonics, we 

take one sine wave and analyze it. This sine function may be 

considered as the highest frequency component of the 

original band limited signal. The Nyquist rate would be 

twice the bandwidth, that is, in this case twice the frequency 

of the sine wave. We are considering only one period, and 

therefore the Nyquist rate will give only two samples of the 

signal during the finite interval of its period. We are also 

assuming that we do not know or cannot use the analytical 

expression of the sine wave that we are trying to reconstruct. 

Fig. 1 shows all the graphs of this numerical result. The 

figure will not be very readable on a printed paper. It is 

quite congested also. However it will be clear if enlarged on 

your computer. The horizontal axis represents the time in 

seconds. The full scale value is 0.001 seconds, that is, one 

millisecond. The vertical axis is normalized to unit value of 

amplitude. We thought it would not be a very good idea to 

break it down to seven new figures. 

This figure has three groups 1a, 1b, and 1c represent the 

group for two samples case. Similarly 2a, 2b, and 2c 

represent another group for three samples reconstruction 

process. The last group consists of 3a, 3b, and 3c and shows 

the six samples results. In each group of Fig. 1 we show 

respectively, the sinc functions, reconstructed sine wave, the 

error between the actual sine wave and the reconstructed 

graph. The graphs show that the error decreases as we 
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increase the sample rate. The middle set of graphs, 1b, 2b, 

and 3b, shows clearly how the signal reconstruction 

improves as we increase the number of samples. We have 

used formula (41) to reconstruct the sine waves from the 

sample values. A better method may give better result but 

our point is to show that more you sample better will be the 

recovery no matter what algorithm you use. 

 
IV. FUNCTION MODULATION 

 

A new modulation method called function modulation (fm) 

is discussed. We use the lower case letters fm to denote 

function modulation and reserve the upper case FM to 

represent Frequency Modulation method. We describe both 

transmitters and receivers of this fm scheme. The results of 

a practical implementation are discussed. 
 

A. The fm Transmitter 
 

Fig. 2 describes the design of a transmitter based on the 

function modulation (fm) method for digital communication 

system [14]. The left-hand-side vertical box represents a 

four bit data, as an element of data space, to be transmitted 

using one symbol s(t). In Fig. 2 we have assumed, the 

number of bits, m, to be transmitted is four, as an example, 

without any loss of generality.  

Let d = {di , i=1..m, di ε {0,1}}, be a column vector, and 

represent a data element in the data space. Here di represents 

the i-th bit of d with 0 or 1 as its value. Let G(t) = {gi (t), 

i=1..m, t ε [0,T]}, also a column vector, represent a set of 

analytic and independent functions defined over the symbol 

interval [0,T]. We assign the i-th function gi(t) to the i-th bit 

location. In Fig. 2 the arrows from the bit locations to the bit 

function boxes define these one-to-one assignments. These 

functions are referred to as bit functions. The set G(t) 

defines the bit function space.  

A set of functions G(t) is called dependent if there 

exists constants  =( , - = 1. . z', not all zero, such that the 

expression given by (42) holds: 
 ��(�)=� + ��(�)=� + ⋯ + �|(�)=| = 0      (42) 

 

for all t ϵ [0,T]. If not then it is independent [15, pp. 177-

181]. The above expression is a linear combination of 

functions. Here the coefficients  =( , - = 1. . z'  are all real 

numbers.  

A real valued function is analytic if all derivatives are 

uniformly bounded [16, p. 238]. Analytic functions are band 

limited [12, p. 87]. An analytic function does not have any 

discrete jumps; it is a smooth and continuous function. In 

this paper the terms analog and analytic functions are used 

interchangeably. 

The m bit functions are combined inside the algorithm 

box to produce one symbol function s(t). The collection of 

all symbols is called the symbol space.  The Fig. 2 shows 

how we have introduced the concept of a bit function space 

in between the data space and the symbol space. 

The algorithm is selected in such a way, so as to 

produce a symbol that is also an analytic function. For every 

bit pattern in the data space the algorithm produces one 

unique symbol in the symbol space using only m bit 

functions from the bit function space. The algorithm is an 

one-to-one and onto transformation, from the data space to 

the symbol space, ensuring that for every symbol it 

produces, there exists one unique bit pattern.  
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Figure 1. Signal reconstruction from samples 
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In general the algorithm in Fig. 2 can be represented by 

the following expression (43): 
 O(�) = ][}(�), 	]                  (43) 

 

In (43) A is an arbitrary algorithm, operator, or 

transformation, which can be algebraic or dynamic, as well 

as, linear or non-linear. The operator A is a mapping from 

the product of the bit function space and the data space to 

the symbol space. A simple example of the operator A can 

be given by the expression (44): 

 O(�) = }~(�)	          =  ��(�)	� + ��(�)	� + ⋯ + �|(�)	|                (44) 

 

The notation ' indicates the transpose of the column vector 

G(t). Equation (44) is not a linear combination in the strict 

sense. The coefficients in (44) are not real numbers; they are 

only 0-1 integers. We will call this algorithm as a 0-1 

addition algorithm. In this paper (44) will define the fm 

transmitter. 

When all bits are zeros, expression (44) does not 

produce a meaningful symbol. To circumvent this problem 

we use a special, predefined analytic function, consistent 

with the technology presented here, to represent the symbol 

when all bits are zeros. The receiver will first test for the 

presence or absence of this special function, to detect the 

transmitted data corresponding to all zero bits, before using 

the standard algorithm discussed later. 

We see that excepting the zero bits case the bit values 

are directly used to create the symbols in our fm method. In 

fm method the expression (44) or the general algorithm (43) 

physically imbeds the bit values in the symbol function. The 

bits directly modify the symbols as the processor creates the 

symbol one bit after another by adding the corresponding bit 

functions to the partially generated symbol. We do not 

arbitrarily assign the symbols to bit patterns generated by 

the bits in the data packets. However, these arbitrary 

assignments are also perfectly feasible and meaningful 

operation in fm case. All we are doing is that we are using 

analytic functions to bit patterns. We are choosing these 

analytic functions in such a way, as shown later, that the 

symbols remain analytic even at the inter-symbol interfaces. 

On a side note, we observe that this 0-1 addition 

process has a very interesting mathematical consequence. 

This fm approach can be used to invert the algebraic 

addition process. That is, if we add two numbers, say 2 and 

3 to produce 5, then given 5 we can find out which two 

numbers were added. Representing the integers 0 through 9 

by 10 different continuous functions we can do this. Zero 

may be represented by zero function. This concept can 

generate interesting consequences in mathematical Group 

theory. 

The fm transmitter concept may appear similar to the 

Orthogonal Frequency Division Multiplexing (OFDM) 

concept [17]. But there are some major differences. OFDM 

uses one or more of the three basic modulation methods 

(ASK, FSK, and PSK) from the existing technology, fm 

does not. OFDM method configures the spectrum 

bandwidth into disjoint regions but fm does not. In fm every 

bit function spans the entire bandwidth of the channel. 

OFDM uses only harmonically related sinusoidal orthogonal 

functions; fm does not need to use any orthogonal function. 

fm can use non-sinusoidal orthogonal functions as well as 

non-orthogonal functions, OFDM cannot. However, under 

certain restrictive conditions OFDM is considered as a 

special case of fm technique. If we select only sinusoidal 

and harmonically related orthogonal bit functions, use only 

amplitude modulation with zero or full signal variation, and 

use 0-1 addition algorithm, then fm is same as OFDM. 
 

B. The fm Receiver 
 

At the receiver we will receive the symbol function s(t) 

as generated in Fig. 2, corrupted by the noise and/or the 

nonlinearities of the communication channel. Our objective 

at the receiver will be to find out which bit functions from 

the bit function space G(t) were used to generate the 

received symbol. That is, we have to decompose the 

received symbol into the component bit functions. The 

presence or absence of a bit function in the received symbol 

will indicate 1 or 0 value, respectively, for the bit at the 

corresponding bit location. 

A set of bit functions G(t) is orthogonal if the following 

integral (45) holds: 
 � �)(�)�((�)	��< = 0, - ≠ /, -, / = 1. . z      (45) 

 

Observe that we have defined orthogonality over finite time 

interval [0,T].  

All sinusoidal functions are orthogonal over infinite 

time interval. Only harmonically related sinusoidal 

functions are orthogonal over a finite time interval. It is easy 

to verify, using the above relation, that the two sinusoidal 

functions with frequencies 1000 Hz and 1100 Hz are not 

orthogonal over the period 1/1000 seconds or 1/1100 

seconds. It is also well known [18] that there are infinitely 

many, band-limited, non-sinusoidal, orthogonal functions 

over a finite time interval. However there are only a finitely 

many band limited sinusoidal orthogonal functions over a 

given finite time interval. 

The 0-1 addition formula gives the expression for the 

received symbol, r(t), as shown below. The following (46) 

is a derived from (44). 
 �(�) = ��(�)�� + ��(�)�� + ⋯ + �|(�)�| + @(�)              (46) 

 

Here, w(t) is an Additive White Gaussian Noise (AWGN) 

process, {xi} are the bit values, unknown to the receiver but 

known to the transmitter and are equal to {di}. Thus xi can 

be 0 or 1 only. If we assume that the bit functions in G(t) are 

orthogonal then we can find xi using the following  simple 

relation (47): 
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�( = � �(�)�((�) 	� +  @(�<  ,    - = 1. . z                   (47)

  

In above wi is the projection of w(t) over gi (t). We can set 

the bit values di using the relation (48) given below: 

 	( = H1, � > 00, ��ℎA�@-OA0          - = 1. . z                    (48)  

 

A fm receiver design [19] that uses orthogonal functions is 

shown in Fig. 3.  

From the above receiver figure we can also see that we 

are really detecting the bits. Every output line gives the 

values of a bit of the entire bit pattern that we have 

transmitted using one symbol. If we fail to detect one of the 

functions in the decomposition process, then we will make 

errors in the detection of that bit. Thus real Bit Error Rate 

(BER) will happen in this fm method. It is not that we are 

converting the symbol detection error into BER using some 

artificial relations. 

Fig. 3 is identical to a standard figure in many 

communication textbooks. However it has a few significant 

differences also. Notice that it has only m parallel paths as 

opposed to 2
m
 parallel paths found [20, p. 135] in the 

existing methods. The output from each correlator is the bit 

value of the corresponding bit location, which is not the case 

in conventional methods. In conventional methods only one 

of the boxes produces an output indicating a symbol match 

in the corresponding path. You can also find a similar figure 

in textbooks that use orthogonal functions [20, p. 135] and 

that has m parallel paths. In that figure the output of each 

path is a real number. In Fig. 3 the outputs are only 0 or 1 

integers representing the actual bit values.  

Fig. 3 and equation (46) show that for the fm method, 

based on orthogonal functions, we need to search over only 

m functions in the bit function space as opposed to 2
m
 

symbols in the symbol space. Thus the orthogonal fm 

method can significantly reduce the complexity of the 

receiver design. The introduction of the bit function space in 

between the symbol space and the data space helps us to 

achieve this interesting result. This concept indicates that 

the fm method has very high capacity. The dimension of the 

bit function space is m, because this space has m 

independent functions. On the other hand the dimension of 

the symbol space is 2
m
 because it is defined by the 2

m
 

number of independent symbols. 

The receiver design for the non-orthogonal case is quite 

complicated and involved. The design is not unique also. In 

the remaining part of this section we describe one numerical 

algorithm or approach for the design of a fm receiver that 

uses 0-1 addition algorithm and non-orthogonal set G(t). All 

the bit functions, {gi(t)}, are in this case analytic and 

independent only. The set G(t) is known to both the receiver 

and the transmitter. Given the information in (46) our 

problem at the receiver is, again, to solve (46) for 0-1 

integer values for the unknown variables {xi}. 

Note that, in this formulation, the problem (46) is not 

really a classical 0-1 Integer Programming Problem (IPP). 

There is no optimization function associated with the 

equality expression (46). There is a random noise variable in 

(46) which is also not found in the standard IPP. Also the 

coefficients in (46) are not real numbers but functions of 

time. 

There are various methods available in the scientific 

and engineering literature for solving the above receiver 

problem. In this paper we discuss only one of them. We 

convert the problem (46) to a least square solution problem 

by sampling, at fixed intervals, all the signals n times over 

the symbol period [0,T], where n is an integer greater than 

or equal to m. Thus (46) can be expressed by the set of 

simultaneous equations (49): 

 

j�(��)�(��)⋮�(�")l = j��(��)  ��(��) … �|(��)��(��) ��(��) … �|(��)⋮             ⋮                  ⋮��(�") ��(�") … �|(�")l j ����⋮�|
l + j@(��)@(��)⋮@(�")l             (49) 

 

Here, {t1, t2, ... tn} are equally spaced sample points 

inside the time interval [0,T]. We will assume n is larger 

than m giving us more equations than the number of 

unknown variables m. Using the matrix notation the 

problem defined by (49) can then be rewritten as in (50). 

 � = ]� + @                      (50)

     

Since G(t) is a set of functions with analytical 

expressions they can be sampled any number of times. This 

is assured by the sampling Theorem 1. The length of the 

vector r can also be increased by interpolation between real 

samples obtained from Analog to Digital Converters (ADC). 

Thus the number of samples need not depend on the sample 

rate of the ADC or on other electronics in the receiver. This 

is one of the advantages of using the software radio 

approach discussed before. We can always get more number 

of equations than the number of unknowns giving us a better 

least square solution for (50).  

In (50) r and w are n-column vectors with components 

consisting of n samples of the functions r(t) and the AWGN 

process w(t), respectively. A is a nxm rectangular matrix Figure 3.  fm Receiver with orthogonal functions 

r(t) 

� (•)	��
<  

 

> 0 ⇒ �| = 1 ≤ 0 ⇒ �| = 0 

�|(�) 

� (•)	��
<  

 

> 0 ⇒ �( = 1 ≤ 0 ⇒ �( = 0 

�((�) 

� (•)	��
<  

 

> 0 ⇒ �� = 1 ≤ 0 ⇒ �� = 0 

��(�) 
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with elements defined by (51), and x is the unknown 0-1 

column vector [x1, x2,… xm ]' taken from {xi }. 

 �() = �)(�(), - = 1. . #, / = 1. . z, �( ∈ [0, x], # > z                 (51) 

 

Since the functions in the set {gi (t)} are independent 

the matrix A with elements defined by (51) is a full rank 

matrix. Therefore A'A is non-singular and the real valued 

solution of (50) can be expressed using the pseudo inverse P 

of A [21] as given by (52): 

 � = �� = (]′])E�]~�, @ℎA�A � = (]′])E�]~     (52) 

 

The bit values {di} can then be obtained by the decision 

logic (53): 

 	( = +1, �( > �0, ��ℎA�@-OA0       - = 1. . z          (53) 

 

The threshold value β is a given constant representing the 

channel characteristics. 

The pseudo inverse gives a least square error solution of 

the simultaneous linear equation (50). It essentially curve 

fits the received symbol function r(t) using the bit functions 

of the set G(t). Note that the matrix P is constant for a given 

fm system, that is, when G(t) is given.  Therefore it is 

known to the receiver and can be precomputed and stored in 

memory. The accuracy of the fm system can be controlled 

by controlling the number of samples, n, for each function. 

The number of samples does not have to be the real samples 

from the ADC device. We can create an analytic function to 

interpolate the ADC samples and then derive as many 

samples as we want from the analytic expression. More 

details of the fm receiver with non-orthogonal functions can 

be found in [13]. 

 

C. Fourier Series and the fm Concept 

 

The fm system can be considered as an implementation 

of the Fourier series. This interpretation will reveal many 

features of fm system. As we have mentioned before any 

continuous function defined over finite time interval can be 

expressed [5] by the Fourier series (54): 

 �(�) = ∑ �(!((�),   ∀� ∈ [0, x]2(3�                     (54) 

 

Where {φi(t)} satisfying (55) 
 
 �!( , !)� = *() = +0   -� - ≠ /1   -� - = /0       (55) 

 

are orthonormal functions and defined over [0,T]. From (54) 

a finite term Fourier series (56) can be expressed as: 
  �(�) = ∑ �(!((�),   ∀� ∈ [0, x]|(3�                     (56) 

We also know that given the orthonormal functions {φi(t)} 

and the function f(t) we can find the real valued coefficients 

{ai} of (56) using the following equation (57) 

 �( = � �(�)!((�)	��<  ,   - = 1. . z      (57) 

 

If we now assume that {φi(t)} in (56) are the given 

orthonormal bit functions of the fm method, and {ai} are the 

0-1 bit values of the data pattern, then using (56) we can 

generate the function f(t), which can be considered as a 

symbol for the bits {ai}. Thus we see that the fm transmitter 

of Fig. 2 actually implements a finite term Fourier series 

given by (56). Also we can see from (56) that there is no 

limit on how many bits we can transmit using orthogonal fm 

transmitter. Again, this explanation shows that the fm 

method has very high capacity. 

The limit in (56) is defined by the number of band 

limited orthonormal functions that can be found. The paper 

by Slepian [18] assures that there are infinite numbers of 

such functions. In the later sections we show that the 

capacity of a digital communication channel is indeed 

unbounded and limited only by our technology of the 

receiver. 

       In this context we also point out that it is not necessary 

to use orthonormal functions in the Fourier series expression 

(56). The series (56) can be valid even if we use 

independent functions, 0-1 coefficients, and finite number of 

terms. We will still be able to extract the bits as shown 

before. Thus we have proven that the very general class of 

functions can be used for digital communication. Now we 

show how we have implemented the fm system in real life 

using real hardware. 
 

D. A Real Life Implementation 
 

The fm system has been tested [13] in a real 

engineering environment. In this section we briefly describe 

the hardware board, experimental setup, and the results of 

this practical real life test. We also discuss our global or 

system level approach to signal processing. 

The block diagram of this off-the-shelf hardware boards 

that we found is described by Fig. 4.  These are two 

identical TMS320C5402 DSP boards [22] from Texas 

Instruments (TI). Each board has a telephone line interface 

with a Data Access Arrangements (DAA) Integrated Circuit 

(IC). This DAA takes care of the voltage conditions and 

protection of the telephone line. The TLC320AD50 is an IC 

codec and contains both an Analog to Digital Converter 

(ADC) and a Digital to Analog Converter (DAC). This IC is 

the interface between the DSP and the analog world. 

The board has a printer parallel port for interfacing with 

the computer. Via this printer port we control the boards 

using the TI Code Composer Studio (CCS) [23] software 

development tools. These boards allow us to perform the 

real time experiment on the Plain Old Telephone System 

(POTS) network.  
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For this experiment we operate the codec for both 

receiver and transmitter at 16 kHz sample rate with 16-bit 

data resolutions. The symbol duration used was one 

millisecond. Only the transmission and reception of symbols 

via the telephone line are performed in real time using the 

hardware boards. The symbol creation and the symbol 

analysis functions are performed off line using Mathematica 

and Matlab software tools. 

The experimental setup is shown in Fig. 5. We 

assemble everything, both transmitter and receiver, in one 

laboratory room with two telephone sockets having two 

different telephone numbers. The two DSP boards are 

connected to the telephone lines and to two computers to 

control them. 

The bit functions shown in Fig. 6 and Fig. 7 are used to 

generate the symbol corresponding to the bit pattern 1011. 

This transmitted symbol is shown in Fig. 8. We transmit this 

symbol using our laboratory setup and capture the received 

signal, shown in Fig. 9, at the receiver end.  

To synchronize the received signal we perform linear 

interpolation and up sampling. These two activities actually 

increase the resolution of the function. Synchronization is 

really very simple in batch data processing approach using a 

digital signal processor. This approach does allow you to do 

what you think and can visualize in your imaginary eyes. If 

you see the symbol on your oscilloscope, and think what 

you want do to it, you can do exactly that in real time on the 

computer memory buffer. Remember that there are no 

clocks and PLL involved here. Using this method we find 

the exact zero crossing points by removing the required 

number of samples from both ends to make the received 

symbol start and end very close to the time axis. Finally we 

use (52) to solve for the least square curve fitting problem 

for 17 samples. The result is the following values for the 

unknown variables {x i}: 

 

{1.8653, 0.45037, 1.03662, 0.851587} 

 

A threshold value of 0.5 for β in (53) gives the bit values for 

correct transmitted data, 1011.  

Even though we encounter severe non-linear distortions 

we are still able to recover the bits correctly using only 17 

samples. The experiment shows that the curve fitting 

method, using the bit functions along with the 0-1 addition 

algorithm, is indeed very robust. Note that it is also the 

availability of the entire data history that played a very 

important role in extracting the information. 

As we can see from the figures the received signal has 

two positive peaks as opposed to three positive peaks in the 

transmitted signal. As if the second trough of the transmitted 

signal got folded up in the received signal. 

It is clear that the conventional signal recovery 

methods, that use local concepts, no matter how many 

samples we take, cannot bring the received signal back to 

the transmitted form. However, a global approach or a 

systems approach, where we use the knowledge of the entire 

system can definitely help. We used the same sine wave 

frequencies of the transmitter, to interpolate the samples at 

the receiver. Here, of course, the high sample rate played an 

Figure 4.  HW board functional block diagram 
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important role in the least square interpolation method. The 

details of the signal processing, is quite involved, and is not 

given here. The large sample rate and the systems approach 

helped us to bring the received signal back to a shape that is 

very close to the transmitted signal, as shown in Fig. 10, 

which allowed us to detect the bits correctly. We can see 

that a total system level or global approach in signal 

processing can perform real miracles. 

It should be mentioned that we performed these 

experiments over long period of time. During this trial and 

error period we developed the algorithm and the software 

discussed in this paper. In these lab experiments a series of 

concatenated symbols were transmitted using many 

different kinds of bit functions. In this paper we presented a 

specific case in a simple form for clear explanation. With a 

better hardware and software the algorithm presented here 

can be easily implemented online. Once the new hardware 

and the embedded environment become available we will 

present the results of real time high speed case. We are 

working on that direction now. Understandably, we are at a 

very early stage in terms of our real life implementation for 

a marketable product. 
 

E. The fm Characteristics 
 

The Power Spectral Density (PSD) of symbol s(t) in 

Fig. 2 and the Bit Error Rate (BER) expressions have been 

derived. The BER has been derived for the case of 

orthogonal functions only. The PSD expression is valid for 

both orthogonal and non-orthogonal functions as bit 

functions.  

The expression (58) generates the complete symbol 

stream s(t) for the 0-1 addition algorithm and for all time t 

of the infinte interval: 

 O(�) = �| ∑ ∑ 	((w)�((� − wx)|(3�2v3E2                    (58)

  

The factor m was introduced to normalize the amplitude 

of the sysmbol. Since each bit function is normalized, the 

addition of m bit functions requires renormalization by m. 

Note that di is the bit value, 0 or 1, and is not the multilevel 

value of the data elelment even though we are considering 

m-bit data. Also note that there is no constant pulse shaping 

signal associated with the symbol stream. The bit functions 

replaced them. It is interesting to observe that the structure 

of the above mathematical expression is similar to that of 

the standard OFDM [17, pp. 5-8].  

Define the bit correlation function by (59) 

 �v�(�, �) = �[	v(�)	�∗(�)]       (59) 

 

and its two sided FT by (60) 

 �v�(�, @) = ∑ ∑ �v�(�, �)AE)�>���AE)�>B��2�3E22�3E2          (60) 

 

Using the above two definitions and substituting G(f) as the 

FT of g(t), the PSD can be represented by (61): 

 �(�) = �|e ∑ ∑ �v�(−�, �)}v∗(�)}�(�)|�3�|v3�                    (61)

  

Although (58) is similar to OFDM, the final expression 

(61) for S is quite different. Here we have reused the symbol 

G with different meaning and we hope that the context helps 

to prevent confusions, if any. The absence of periodic pulses 

in (58) removed all discrete terms from the expression (61). 

As an example of the PSD result, we use the following 

sinusoidal functions as defined by (62), used in Multiple 

Phase Shift Keying (MPSK) systems, as the bit functions in 

fm system: 
 �v(�) = ] cos(2a�:� +  �v) , −x/2 ≤ � ≤ x/2            (62) 
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Substituting the above sine functions in (61) and performing 

some algebraic simplifications, we can arrive at the 

following PSD expression (63) for this case of fm scheme. 

 �8|(�) = c��� d� cz rst >8|�>8|� d�
       (63) 

 

Comparing the above PSD expression with that of the 

MPSK [24] system, given below by (64), 

 ����i(�) = ]�x crst >8�>8� d�
       (64) 

 

we see that the fm spectrum requirement is narrower as m 

increases. The PSD graphs of the two systems are plotted in 

Fig. 11. The graphs for fm system are plotted for four 

different bit data length m. If we use the band-limited 

orthonormal functions as designed in this paper, then the 

bandwidth requirements can be further reduced. It is also 

well known [25] that the band-limited functions do not 

create inter symbol interference. 

We summarize the BER result here for the orthogonal 

case only. Consider one of the parallel paths of the 

orthogonal fm detection method presented in Fig. 3. The 

transmitted symbol s(t) in fm modulation scheme using 

orthogonal functions can be derived from Fig. 2 and 

expressed by (65): 

 O(�) = ∑ �(Z�(  �((�)|(3�           (65) 

 

In the above expression we assume that xi is -1 if the bit is 

zero and +1 if the bit is one, {gi} is the set of m orthonormal 

functions and {Ei} is the energy of the orthonormal signal 

for bit i. Using the above expression we can show that the 

BER probability is given by (66):       

 

 ��I = � � �¡I¢£ ¤          (66) 

The above result shows that the BER for the orthogonal fm 

receiver is same as that of the BPSK scheme. It is well 

known [20] that BPSK gives the lowest possible BER in all 

of the existing communication schemes. 

V. CONSTRAINED GRAM SCHMIDT 

 

It should be realized by now that the function 

modulation method requires a systematic approach for 

generating wave forms suitable for the concepts presented 

here. We use the words waveforms, functions, bit functions, 

and symbols interchangeably. 

One of the major constraints that all waveforms must 

satisfy is the band limited property. The band limited 

property requires that the functions cannot have any 

discontinuity or sharp edges during the symbol period and 

also at the inter-symbol interfaces. The functions should be 

analytic if possible, that is, they will have smooth and 

continuous derivatives of all order. The orthogonality is 

another important requirement for the design of a simpler 

fm system. Otherwise all functions must be independent 

over the interval [0,T]. 

In this section, we describe a very general method, 

called Constrained Gram Schmidt (CGS) method, for 

generating band-limited orthonormal functions over [0,T]. 

We qualify the method as constrained because in addition to 

orthogonality, the functions satisfy many constraints, 

appropriate for digital communication. The method can be 

used for constrained independent functions also. 

There are many methods of generating orthogonal 

functions. The methods in [21] cannot produce orthogonal 

functions with any kind of constraints on the nature of the 

resulting functions. A method for generating band-limited 

orthogonal functions, which are orthogonal over the finite 

symbol time interval, has been presented in [18]. However, 

that method also does not allow us to control the 

characteristics of the orthogonal functions it produces. 

Reference [26] describes a modem implementation method 

using the orthogonal functions of [18]. Chang [25] gives a 

method of generating band-limited orthogonal functions, 

which are orthogonal over infinite time interval. Again his 

method also does not allow us to use constraints on the 

functions. In the following paragraphs, we briefly describe 

the CGS method. There are many possible variations of 

CGS, which are not explored in this paper. 

Let C
1
 denote the class of all real valued continuous 

functions, with continuous first order derivatives, defined 

over the finite symbol time interval [0,T]. Let ?(�) = �((�) ∈ ��, � ∈ [0, x]' be a set of linearly independent 

functions with inner product defined by (67): 

 V�( , �)W = � �((�)�)(�)	��<         (67) 

 

The Gram Schmidt Orthogonalization (GSO) method as 

described in [10] is given by the equations in (68) 

 ��(�) = ��(�) �"(�) = �"(�) + ����(�) + ����(�) + ⋯ + �"E��"E�(�), # ≥ 2          (68) 

 

where the set of coefficients {ai} is obtained from the 

solution of the linear simultaneous equations (69): Figure 11.   PSD comparison 
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� = ?�                       (69)

  

Here b is a n-1 column vector with i-th element equal to the 

inner product (gn , fi), a is the n-1 column vector of unknown 

coefficients [a1, a2, … an-1]', and F is a square matrix of size 

n-1 with ij-th element given by  the inner product (fi , fj). 

Our constrained approach extends the method defined by 

(69). 

Communication channels require many different types 

of constraints on the symbols. Some of these requirements 

are stated below. The symbols (i) must join smoothly at 

inter-symbol boundary points, (ii) must not introduce any dc 

bias, and (iii) remain frequency band-limited. In addition the 

fm system may also need to use (iv) orthonormal functions. 

Our objective is to generate a set of orthonormal 

functions }(�) =  �((�) ∈ ��, - = 1 … z, � ∈ [0, x]' from 

the set F(t) that will satisfy the above and similar other 

requirements. It should be realized that it is not necessary 

that the elements of the function space be constrained to 

start with. During the process of transmission they can be 

dynamically adjusted to satisfy the above constraints in real 

time. However, the present formulation and the 

methodology are sufficient to keep the symbols constrained. 

We express the bit functions as a linear combination of 

sinusoidal functions as shown in (70). Expressions (70) will 

ensure that the bit functions in G(t) are analytic within the 

symbol interval [0,T]. 

 �((�) = ∑ =()�¥)3� �-# V@()� + !()W  � ∈ [0, x]                   (70)

  

In equation (70) {wij,} and {φij} are some arbitrary and 

convenient choices for generating the functions. {wij} must 

be within the channel bandwidth making sure that G(t) is a 

band limited set. Each one of the functions in {gi(t)} are 

created using a different set of  frequency parameters. Since 

each set of sine functions for each gi(t) are independent, 

their linear combinations are also independent making G(t) 

an independent set. The value of Mc will depend on the 

number of constraints defined below by (71-75). 

The constant coefficients {cij} of the linear ombination 

in (70) are selected to satisfy a series of constraints. We 

only mention some of the constraints that appeared to be 

necessary for the proper operation of the fm system as 

defined in this paper. Different communication channel may 

require different set of constraints. However the general 

concept presented here still covers many possibilities. The 

functions selected in (70) are also not the only choices. Any 

set of band limited and independent functions can be used to 

start with. 

To synchronize the symbols at the receiver we make the 

symbols start and end at zero value (70). A sufficient 

condition for that is to make the bit functions behave the 

same way. Thus we consider the constraints (71) on G(t): 

 �((0) = 0,    �((x) = 0, - = 1 … z                  (71)
  

To make the symbols join smoothly we want to impose 

the following derivative constraints (72) at the two ends of 

the bit functions. 

 ¦¦C �((�)|C3< = §,       ¦¦C �((�)|C3� = §, - = 1 … z                 (72) 

 

In (15) α is any real number. In this paper we will set 

α=0 merely for convenience. It is clear that if we want 

further smoothness at the symbol interfaces we can force the 

higher order derivatives to similar constraints. The 

constraints (71) and (72) will ensure that the entire symbol 

stream given by (58) is analytic. They also prevent any kind 

of discrete variations at the inter-symbol interfaces. 

In many situations it may be necessary to avoid biasing 

the communication channel by a Direct Current (DC) 

voltage. To implement that requirement we set the integrals 

(73) of all bit functions to zero: 
 � �((�)	� = 0, - = 1 … z�<                     (73) 

 

To be able to detect the symbols properly at the receiver 

we may need to make the symbols pass through some 

predefined points. We call them way points. This property 

(74) may also help to synchronize the symbols properly. 
 �((�v) = �v ,   �v ∈ [0, x], w = 1. . (̈ , - = 1. . z                       (74) 

 

Here, {Ki} denotes the number of way points for the i-th bit 

function and {ak } are some known choices.   

If we want to generate orthogonal functions as bit 

functions then we include the constraints (75): 
 � �((�)�)(�)	� = 0    -, / = 1. . z,    - ≠ /�<                       (75) 

 

Summarizing, the method for generating the bit 

functions is to substitute the expression for the bit function 

(70) into all the constraints (71-75) defined above. This 

substitution will produce several linear equations, similar to 

(69), for the set of unknown constants  =()'. This set of 

simultaneous equations can then be solved for the constants. 

These constant coefficients will then be substituted back in 

(70) to get the analytical expression for each bit function. 

Note that for each bit function we have to solve a different 

set of equations like (69). The above process generates G(t) 

as an independent set of analytic functions with specified 

bandwidth.  

We have used the constraints (71-74) to generate four 

non-orthogonal bit functions. That is, we did not use the 

orthogonality constraints defined by (75). These bit 

functions are shown in Fig. 6 and Fig. 7. By including the 

constraint (75) we have created constrained orthogonal 

functions shown in Fig. 12. 

Constrained Gram Schmidt (CGS) is a very powerful 

method of constructing orthogonal functions. The original 

Gram Schmidt Orthogonalization (GSO) algorithm is very 

136

International Journal on Advances in Networks and Services, vol 2 no 2&3, year 2009, http://www.iariajournals.org/networks_and_services/



well known in literature. It is widely used for many 

communication problems, like Global Positioning Systems. 

However GSO was not enough for generating orthogonal 

functions with specific characteristics. We have extended 

GSO to CGS where you can create orthogonal functions 

with many additional properties. CGS will be very helpful 

in fm system for creating band limited orthogonal and non-

orthogonal functions with desired properties. 

 

VI. THE CAPACITY THEOREM 

 

In this section we show that the function modulation method 

has higher capacity than the SHK methods. We also extend 

the Shannon’s capacity theorem to a new higher capacity 

result and show that the fm method can be used to achieve 

such a capacity. 

A. Infinity Assumption 

 

Shannon presented his capacity theorem almost sixty 

years back. Lot of research has been done on this subject 

since then. During the early phase most of the focus was on 

finding alternatives [12] of sinc functions for the 

reconstruction of original function from the sample values. 

During the later phase it seems that the focus got shifted to 

dimensionality [27] aspect of the theorem. It appears that 

people have [28] assumed that T is constant and finite, 

which is not true. Shannon said in his paper [2] many times 

that T will go to infinite value in the limit. No one, it seems, 

has ever paid any attention to finite time issue of the 

engineering requirements. Recent research [29] has found 

that under certain assumptions ultra narrow band systems 

can produce capacity higher than that predicted Shannon. 

However the majority of research [30][31] work is now 

focused on comparing the performance of their systems 

using Shannon’s theorem as a measure. 

In this section we go back to the original theorem [2] 

and take a look at one of its core assumptions, the infinite 

time assumption, of the symbol duration. This subject was 

raised because we were sampling our symbols at a very high 

rate in our software radio approach. Apparently this violated 

the sampling theorem and the dimensionality theorem. To 

prove the general engineering practice of high sample rate 

we looked into the original theory, which eventually lead to 

the capacity theorem. Both capacity and sampling theorems 

were presented in the same paper [2] by Shannon. 

In the next few paragraphs we show how Shannon [2] 

used infinite time in the derivation of his capacity theorem. 

He used m to denote number of bits to be transmitted and M 

to represent the number of symbols. These two are related 

by the well known equation (76): 
  

M = 2
m

                       (76) 
 

This relationship is very important in digital communication 

engineering. As before, we point out that we do not transmit 

m bits, we transmit M symbols. From these M symbols we 

find out how many bits they represent using the above 

relation (76). Thus the focus of capacity theorem is not on 

the bits but on the symbols. How many symbols our 

receiver can detect is the main concern in the derivation of 

the capacity theorem. 

After that, Shannon defines the capacity C using the 

symbol time T by (77): 
 � = lim�→2 �©ªe��                      (77) 

 

Thus clearly, his assumption is that T is very large and is 

going to go to infinity eventually. He writes near the above 

definition “…M different signal functions of duration T on a 

channel, ..”. In another place he repeats, “There are 2
m
 such 

sequences, and each corresponds to a particular signal 

function of duration T”. Thus T is the symbol time and he 

assumes all his symbols are of infinite time durations.  

Shannon’s entire theory, derivation, and proof depend 

on this infinite time assumption. He writes “The transmitted 

signal will lie very close to the surface of the sphere of 

radius √2x¬�, since in a high-dimensional sphere nearly 

all the volume is very close to the surface”. Here P is the 

average signal power and W is the channel bandwidth. He 

achieves high dimension by assuming T as very large. Thus 

his proof will be invalid if we assume that the symbol time 

T is finite and small. 

An interesting observation can be derived as a result of 

his infinite time assumption. He writes “The quantity TW 

log(1+P/N) is, for large T , the number of bits that can be 

transmitted in time T.”  This means that the bits cannot be 

recovered until the time T ends. Therefore bits/sec is not 

really meaningful here. Bits are not coming out of the 

system every second. He confirms “There will be, therefore, 

an overall delay of 2T seconds”. Thus actually the receiver 

stops when T approaches infinity.  

The total number of bits per symbol is infinity in 

Shannon’s case. Because T is infinity in the expression for 

bits, as mentioned in the previous paragraph, TW 

log(1+P/N). It is true that any finite rate over infinite time 

will also give infinite bits. But we have shown that it is not 

happening here. Thus Shannon’s result indicates – infinite 

capacity. We show that we have the same conclusion even 

over finite time interval. 
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Figure 12. Constrained Orthogonal Functions 
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A well explored statement in [2] is the following: 

“Then we can say that any function limited to the bandwidth 

W and the time interval T can be specified by giving 2WT 

numbers.” The number WT is actually infinity, because T is 

infinity. In the literature however, it has been presented as if 

it is a finite number [7, p. 93]. This finite interpretation to 

Shannon’s proof has generated a large volume of research 

papers similar to [12]. We have shown that the above 

finiteness interpretation violates a very well known and a 

fundamental mathematical theory that says all functions are 

infinite dimensional vectors even over finite and small time 

intervals and therefore cannot truly be represented by 

finitely many numbers. In this section we show that this 

infinite time assumption is not necessary.  
 

B. The (P+N)/N Factor 
 

Now we examine how Shannon [2] got the expression 

(P+N)/N in his capacity theorem. Here N is the average 

noise power, averaged over the symbol time T. The received 

signal power is P+N. The concept used in our geometric 

approach is actually deeply embedded in the geometric 

approach of [2]. 

Consider the ASK scenario shown in Fig. 13. The 

allowed amplitude levels are shown by two dashed lines. 

For every dashed line there is a band over which the 

amplitude can swing because of the noise in the channel. 

This band is shown by the continuous lines with width 

proportional to √6. The total number of symbols M, i.e. 

number of amplitudes, which can be transmitted, is then 

given by (78): 

 ­ = ®"C¯°��� ±¯(ª²C��"¦ ±¯(ª²C = ³���        (78) 

 
 

Since the amplitude is proportional to the square root of 

power, the above expression reduces to (79): 

 ­ =  �D¢¢                       (79) 

 

This is the maximum limit we can achieve, at this 

frequency for an ASK system. In a later section we consider 

all possible frequencies. In Fig. 13 we used: (A) Discrete 

bounds and (B) Sinusoidal functions. If we relax these two 

SHK conditions then we can significantly improve the 

capacity expression (79).  

Consider Fig. 14 now, where we have relaxed both 

conditions mentioned above. In Fig. 14 we have shown only 

one general function. But you can imagine many such 

functions going up and down over the entire amplitude 

interval OA and crossing all bands many times. Fig. 15 

shows many such allowed functions. Virtually there is no 

limit of the number of symbols or functions that can be 

transmitted or plotted and that can be distinguished also. 

These are the kind of functions fm uses. Thus higher 

capacity can be achieved by using the fm communication 

method as opposed to the discrete or the SHK methods. 

Shannon has used such general class of functions in his 

derivation of capacity theorem. He wrote – “Actually, two 

signals can be reliably distinguished if they differ by only a 

small amount, provided this difference is sustained over a 

long period of time”. 

From the above statement we can see that the noise 

bands can be modified to a new format as shown in Fig. 16. 

In this figure we show two fm symbols along with their 

noise bands or pipes around them. One important difference 

between the noise bands in fm and SHK methods is that in 

fm the noise band is dynamic and moves with the function 

and not static, discrete, or straight lines like in Fig. 13. 
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These fm bands are like transparent and flexible pipes 

around the functions. In fm one symbol can penetrate the 

noise band of another symbol. They can remain together for 

some duration and then get separated to distinguish 

themselves. This fm band is the minimum distance between 

two symbols. As long as the distance between two symbols 

is greater than this minimal distance, over only a small 

interval of time, the symbols will remain detectable. The 

important fact is that this concept of overlapping bands or 

flexible pipes around a function is not present in the SHK 

communication systems. This fact significantly increases the 

number of allowable symbols in the fm system. 

Thus the capacity of fm method is much higher than the 

SHK methods and we show later that SHK cannot achieve 

Shannon’s limit but fm can. 
 

C. The WT Factor 
 

Now consider the signals used in Fig. 17 and ask the 

Shannon’s question [2] – “How many different signals can 

be distinguished at the receiving point in spite of the 

perturbations due to noise?” In this section we derive the 

same answer that he got but with the assumption that T is 

finite and small.  

The approach is to configure the function space into 

small discrete rectangles, as shown in Fig. 18, and count all 

possible symbols that can pass through these rectangles. We 

divide the interval [0, T] on the x-axis into n equal parts. 

Where n is the number of samples and is equal to 2WT, 

because we are using the Nyquist sampling rate in this 

figure. The signal amplitude interval on the y-axis is

N)(P + and is broken in to q number of y-subintervals, 

where N)/N(Pq += . Thus the two dimensional plane 

becomes a grid of rectangular boxes. Each box can be 

considered to have a point through which only one 

detectable function can pass. Some of these points are 

shown, only in the last two vertical columns, to avoid too 

much clustering. The continuous line shows an example of a 

symbol function, which can pass through these dots. 

We can connect any dot in one vertical column to any 

dot in the next or previous vertical column to create a 

portion of a function passing through these rectangles. The 

arrows in the figure show some such possible connections 

that the functions can take. These connection lines will not 

violate the bandwidth limit of the function, because the 

length of a t-subinterval is equal to the Nyquist length. Thus 

between two vertical columns there can be qxq=q
2
 number 

of functions. Counting this way we can see that the total 

number of symbols, M, in the entire grid of Fig. 17, can be 

expressed by (80): 

 ­ = c√�D¢¢ d c√�D¢¢ d … c√�D¢¢ d       (80) 

 

Since it has 2WT terms the above simplifies to (81): 

 ­ = c√�D¢√¢ d�F�
         (81) 

 

This is the same factor in the capacity formula [2]. This 

construction process can be used to generate detectable band 

limited functions for the fm method proving that the fm can 

achieve the Shannon’s limit. 

We have shown two sine functions using dashed lines 

in Fig. 18. One of them has the highest frequency and 

lowest detectable amplitude and the other one has the lowest 

frequency but highest possible amplitude. It is easy to see 

that if we use only ASK design then we can get qWT 

number of symbols. This is because for each frequency we 

get q number of amplitudes and there are WT numbers of 

full cycle sine functions possible over 2WT sample 

intervals. Although it is not known if there are any ASK 

system that uses these frequencies all at a time. We also see 

from this grid design and the graphs drawn that Fourier sine 

functions will not be able to cover all the grids the way 

general functions can. This gives a geometric proof that 

sinusoidal approach cannot achieve the Shannon’s capacity 

results. 

In this subsection we provided a proof of Shannon’s 

theorem that did not require infinite time interval 

assumption. However in a small symbol time T the Nyquist 

rate will give very few samples and we will not be able to 

Figure 16. Noise bands 
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recover a symbol as shown by examples in Fig. 1. Next we 

show how a higher sample rate enables us to detect more 

symbols thus increasing the capacity. 
 

D. The Higher Sampling Rate 
 

Assume as before that T is small and finite and we 

sample at k times the Nyquist rate, where k > 1. Therefore n 

on the x-axis of Fig. 17 is now equal to 2kWT. Since each t-

subinterval is very small now, the noise energy due to N is 

also very small on these sub-intervals and therefore the 

equivalent noise band will be proportional to k/N on 

these subintervals as shown in the Fig. 18. However, the 

range of total signal variation still remains N)(P +  over 

the entire symbol time T. Thus the total number of y-axis 

intervals is )k/N/()NP( +  and is equal to kq. So the 

grid is k times finer in both t and y axes.  

In this finer grid any point on the vertical line for any t-

subinterval cannot be connected to any point on the vertical 

line on the next or previous t-subinterval, because that will 

make the function rise much faster and violate the 

bandwidth condition. It is easy to understand, however, that 

a point in one t-subinterval can be connected to only q 

consecutive number of points in the next or previous t-

subinterval without violating the bandwidth constraint. 

If we consider any consecutive q rows then we can see 

that the situation is very similar to the Fig. 17. Since there 

are 2kWT numbers of columns, then the number of 

functions generated by any q horizontal block can be 

expressed by (82):  
 ­ = c√�D¢√¢ d�vF�

         (82) 

 

This value when converted into bits/sec, using the formula 

(77) for capacity, will reduce to (83): 

 � > �©ªe�� = w¬´��� c�D¢¢ d                    (83) 

 

We have used greater than notation because we did not 

count all the functions in this finer grid. Although it is 

possible to count all possible functions and get a very 

precise expression instead of (83). But that counting result 

may not lead to the well known and simple expression like 

(83). We are only interested in showing that  

the capacity depends on the sample rate and therefore 

theoretically can go to infinity. Expression (83) is only a 

lower bound. We can now state the following new capacity 

theorem: 
 

Theorem 5:  Assume that any arbitrary set {P, N, W, T, m} 

is given. Where P=signal power, N=channel noise power, 

W=channel bandwidth, T=finite symbol time, and 

m=number of bits per symbol. Then there exists a fm 

system, with m continuous and independent bit functions of 

the given bandwidth W, and a sample rate that is k times the 

Nyquist rate, with k > 1, which will satisfy the relation 

 z = w¬x ´��� c�D¢¢ d        (84) 

 

Also, this resultant fm system will output m bits in every T 

seconds. 

 
The statement of the above Theorem 5 is in many ways 

different from the original [2] statement. Most importantly it 

explicitly mentions the symbol time T in the statement. It 

should be noted that T is not infinity in our case. It is 

believed that the lack of such a mention of T in the original 

statement of Shannon created a lot of confusion in the 

literature. The Theorem 5 statement also describes a digital 

communication system for achieving such a capacity which 

was missing so far in the communication theory. Finally the 

statement essentially points out that the capacity is 

dependent on the technology, the sample rate. 

We can see that the essential idea behind higher 

capacity is very similar to creating a high resolution camera. 

Higher the number of pixel in a digital camera better is the 

picture quality. In the communication case we are 

essentially resolving the two dimensional plane of the 

function space into a very high resolution grid by sampling 

at a very high rate.  

Thus high rate sampling is equivalent to selecting a 

high resolution camera. This camera will allow us to see all 

the details of a function and thus giving the ability to detect 

more symbols. The result (83) is quite obvious and is 

expected also. Essentially we have reduced the noise by a 

factor of k, the sample rate, which thus produced higher 

capacity. In this context we should examine the definition of 

noise. It is actually dependent on the signal processing 

technology and the algorithms we use in our receiver. Thus 

in this sense our result is nothing new. If you can reduce the 

noise you can increase the capacity, which was obvious 

from the original Shannon’s theorem. All we did is we 

brought out this noise factor k outside the capacity 

expression. However, we have also given a method, the fm 

method, for implementing the Shannon’s theory, which was 

 Nyquist rate 

k times the Nyquist 

rate 

Figure 18. Noise at higher sample rate 
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missing so far in the literature. And finally of course the 

finite duration solution. 

It is possible to come to the same conclusion (83), 

however, from another direction also. Slepian has shown 

[18] that there are infinitely many band limited orthogonal 

functions over a finite interval of time. These Slepian 

functions can be used in the fm method of Fig. 2 to transmit 

theoretically infinite number of bits. This has been described 

using the limit operation of the finite term Fourier series 

(56). We have also shown that it is not necessary to use 

orthonormal functions to get the same results. The series 

(56) can be valid for independent functions also.  

Thinking philosophically, we can ask is the capacity 

really limited. If we look through our windows then we can 

see the nature outside, the blue sky, patches of clouds, 

mountains, trees, and plants. We can close and open our 

eyes and see the same view instantly. This is because our 

eyes and the brain working together as a receiver is 

immensely advanced and powerful. We have evolved over 

billions of years to this state of our mind, body, and soul. 

Thus the communication capacity of the air medium channel 

between the nature outside and our eyes is infinity. 

Assuming that is the definition of infinity, of course. The fm 

system presented here uses our state of the art technology. 

As our technology evolves we will get higher and higher 

capacity. The technology behind the digital camera is an 

example of one such step toward higher capacity. Thus it 

will be wrong to think that the capacity of a digital 

communication channel is limited and is independent of our 

technology.  
 

E. Discussion 
 

In this paper our focus is on the sampling theorem and 

the capacity theorem over finite duration signals. The main 

question we asked is how many samples we need for a finite 

duration signals. Our objective is not very much on how to 

reconstruct a finite duration signal from its samples, rather 

how many samples are necessary to correctly reconstruct a 

finite duration signal. We found that more you sample better 

will be your reconstruction. Or in the other words the 

original Nyquist rate is not good enough for recovery of 

signals of finite duration. 

We approached the capacity theorem from the same 

angle. Original theory assumed that the symbols must be of 

infinite duration. We wanted to see what happens when 

symbols are of finite duration. To perform this analysis we 

used the finite duration sampling theorem. 

Shannon’s approach defines capacity as the number of 

symbols that a receiver can distinguish. We have also used 

the same concept in this paper. Thus the ability to 

distinguish symbols is the key issue of capacity. Clearly this 

then depends on what kind of symbols you are using in your 

system. 

If we use general purpose independent functions then 

the ability to detect and distinguish will also depend on the 

computational power of the receiver. More sophisticated the 

algorithm is more will be the demand on the processor 

power. However the demand on the ADC is not very 

important. We have shown that ADC does not have to be 

very fast. Internal sampling by interpolation can be very 

effectively used to increase the resolution. We have also 

discussed a global approach to signal processing. Thus 

computational power is not of immediate concern. 

If we use orthogonal functions then our fm theory 

shows that computational burden is very low. All we have 

to do is to increase the number of parallel integrators in our 

Application Specific Integrated Circuit (ASIC). More 

symbols mean more integrators. Observe that in this 

orthogonal case, we have simplified the Shannon’s approach 

by introducing the concept of bit functions. In orthogonal 

case we do not work on the symbol space but in the bit 

functions space which requires significantly lower number 

of integrators. This approach shows why capacity is higher 

in the orthogonal fm systems. 

Because our present technology provides powerful 

processors, we now have very high computational 

capability. As a result we can revisit low bandwidth 

channels, like POTS, to provide high capacity data rate. The 

fm scheme and the algorithm presented here, based on 

software radio and global approach, essentially leads to that 

kind of direction. It is not always necessary to require high 

bandwidth channel to provide high capacity data rate. This 

fm theory can be used with all the existing theories. For 

example any compression algorithm can be used in 

conjunction with fm system to further enhance the 

performance. It may be possible to use many of the existing 

symbols in a fm scheme. It is also quite feasible to use fm 

symbols over a sinusoidal carrier. 

The fm scheme is basically an analog approach for 

digital communication. All symbols in this scheme are just 

like continuous analog functions. No discrete concept is 

embedded in the symbol or in the symbol stream. Only 

transmitter and receivers are digital. Thus we are taking full 

advantage of the nature which is analog. We are not 

impinging any discrete disturbances in the analog world. 

 

VII.  THE SPHERE PACKING 

 

Shannon represents [2] every symbol as a point in an n-

dimensional Cartesian space. He used the entire set of 

Nyquist samples of a symbol as coordinates in this space. 

The total number of samples of a symbol is WT and 

increases as T increase. Thus the dimension of his space 

eventually increases to infinity. Since the power in each 

symbol is fixed all the symbols lie on the surface of a sphere 

of constant radius. This is because the sum of the square of 

the sample values is the power and is also is a measure of 

the distance from the origin. Thus every symbol is a point 

on the surface of the same sphere. Because of noise these 

symbols will become like a non-overlapping billiard ball 

centered on these points [32][33, pp. 655-659]. In this section 

we show another geometric representation, also in Cartesian 
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space, of a function using the infinite dimensionality 

concept of function space. 

In Fig. 19 we show a function f(t) taken from C[a,b] 

space, the space of continuous functions. We consider the 

interval [a,b] as finite and small in Fig. 19. Fig. 20 shows 

the corresponding representation of the function in a real n-

dimensional space. Here n is any finite and fixed number, 

not necessarily large and is not going to infinity, its value 

can be two also. 

We can partition the interval [a,b] in many smaller 

subintervals as shown by marks in Fig. 19. Each such small 

subinterval can be sampled n times and can be represented 

by one point in the n-dimensional space, the same way 

Shannon did. Thus the interval [a, t1] of Fig. 19 is 

represented by the point t1 in Fig. 20. There is no shortage 

of points in the function shown in Fig. 19. We have shown 

that infinite sample rate is meaningful because the function 

is infinite dimensional over any finite interval. The smaller 

the intervals are, larger will be the number of points in Fig. 

20. If we join these points by a smooth line then we get the 

dashed line, which represents the function, as shown in Fig. 

20. 

We have also shown, by solid lines, how the noise band 

or pipe around the function can be represented in the same 

way in the n-dimensional space of Fig. 20. As mentioned, in 

Fig. 20 these pipes are now the symbols in the n-

dimensional space. All these pipes, in the n-dimensional 

space, are flexible, transparent, and one pipe can penetrate 

or join another pipe for a period and then get separated. 

Contrary to sphere packing case of Shannon, where the 

spheres cannot overlap, in Fig. 20 we do not have that 

restriction. We can see now that the end points can indeed 

overlap and the functions will still be detectable. This 

flexibility of the pipes makes it possible to pack infinite 

number of pipes in the n-dimensional sphere. Thus proving 

that the capacity can be indeed infinity even when we use 

this n-dimensional geometric concept. 

Fig. 19 and Fig. 20 are in some sense identical. Both are 

line graphs, one in two dimensional function space and the 

other one is in n-dimensional Cartesian space. Therefore it 

is really not necessary to go to Fig. 20 to analyze functions. 

It may be possible to analyze all aspects of a function using 

Fig. 19. In some sense Fig. 19 has more information than 

Fig. 20. Fig. 20 represents only the coefficients of the 

infinite series or the sample values of the function. It does 

not contain the actual graph between the samples nor the 

orthogonal functions of the infinite Fourier series as in Fig. 

19. We also point out again that the underlying concept used 

in this explanation is still based on infinite dimensionality 

property of function space. 

 

VIII. CONCLUSION AND FUTURE WORK 

 

In this paper we have presented an analysis of digital 

communication engineering using the theory of infinite 

dimensionality of function space. We have used non-

sinusoidal symbols, finite duration theory, very high sample 

rate, and software radio approach to create a function 

modulation (fm) method. It is shown that this fm method 

can give much higher capacity than predicted by the original 

Shannon’s theorem thus helping us to create a green 

modem. 

The practical implementation of a high speed modem, 

based on the fm concept may require a large number of 

independent band limited functions. An in-depth research in 

that direction on a new powerful hardware is the next 

required milestone. 
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