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Abstract—The article presents a diffusion approximation several times in other non-priority models, considering the
model applied to investigate the behavior of priority queues. dynamics of FIFO queues in ATM routers [1], the dynamics
We discusses the use of the diffusion approximation in transient of queues in ATM multiplexers in the case of self-similar

analysis of queueing models in the case of a single station and : - . .
of a queueing network presenting the solutions. We emphasize traffic [6], the stability of TCP connections in the presence

the numerical aspect of the solution and analyze the errors. Of AQM (RED queues) inside IP routers [8], investigating
In classical queuing theory, the analysis of transient states is transmission time in ad-hoc networks [9] or modeling traffic
complex and practically does not go far beyond M/M/1 queue control by leaky-bucket algorithm [10]. Section IV present
and its modifications. However, the time dependent flows in diffusion approximations of busy periods distributionsievh

computer networks and especially in Internet focus our interest . tant f iorit ted in Section V
on transient-state analysis, which is necessary to investigate the@r€ IMportant for priorty queues presented in Section V.

dynamics of TCP flows cooperating with active queue manage- II. DIFFUSION APPROXIMATION OF AFIFO STATION
ment or to see the changes of priority queues which assure the ’

differentiated QoS. With the use of G/G/1/N and G/G/1/N/PRIOR  Let A(z), B(z) denote the interarrival and service time
models, we present the potentials of the diffusion approximation distributions at a service station amdz) and b(x) be their
and in conclusions we compare it with alternative methods: density functions. The distributions are general but netcsp

Markovian queues solved numerically, fluid-flow approximation ... . e
and simulation. Diffusion approximation allows us to include ified, the method requires only the knowledge of their first

fairly general assumptions in queueing models. Besides the WO moments. The_means are denoted I8l = 1/),
transient state analysis, it gives us a tool to consider input streas  E[B] = 1/ and variances are Viat] = 0%, VarB] = 0%.
with general interarrival time distributions and servers with  Denote also squared coefficients of variatiéﬁ = 0124)\2,

general service time distributions. Single server models can be C% = o2, N(t) represents the number of customers present
easily incorporated into the network of queues. Here we apply the . .
in the system at time.

diffusion approximation formalism to study transient and steady- X 4 . .
state behavior of G/G/1 and G/G/1/N priority preemptive models. Diffusion approximation replaces the proced¥t) by a
The models can be easily converted to non-preemptive queueingcontinuous diffusion procesX (¢), e.g. [25], the incremental
discipline. The introduction of self-similar traffic is possible as changesd X (t) = X (¢ + dt) — X (t) of which are normally
well. The models can be useful in performance evaluation of (istributed with the meadt and variancendt, where 3, o

mechanisms to differentiate the quality of service e.g. in . e -
routers, WiMAX, metro networks, etc. are coefficients of the diffusion equation

Index terms — diffusion approximation, transient states, Of (x, t;zg)  ad?f(w,t;a0) Of (z,t;x0) 1
priority queues. ot T2 a2 —p ox - @
I. INTRODUCTION This equation defines the conditional pdf &ft):

The paper extends results presented earlier in [11]. @ssi  f(z,¢;29)dr = Plz < X(t) < x +dz | X(0) = zg).
gueueing models of priority queues are practically limited
steady-state analysis of M/G/1 queues with non-preemptive
preemptive resume priorities, see e.g. [18], [23], [19]s Ihot N
enough to analyze today mechanisms to ensure the quam )t“r“]f(n)' & 4N h v distributed
of service inside e.g. IP routers or in access networks wher Oth processes (t) and N(t) have normally distribute
: : : o . _changes; the choic8 = A — i, a = o3\ +o5u® = C2 )\ +
the load is changing dynamically and the traffic is entirely,, ’ ' A Bl = 4
different from Poisson streams. Therefore we adapt theodeth” B* ensures that t_he parameters of these dlstr_lbutlon'_s grow
of diffusion to consider transient states in the case ofrjtyio at the same ratg W.'t.h th_e length of the obs_erva_tlon penod_.
queues. The method is based on Gelenbe’s model of G/G/1 anMore .forr'naliju'stlflcatlon of the use of dlffus!on approx-
G/G/1/N queue supplemented with our approach [5] to sol E;mol? ]I:A]es_ln I|m|t_theofremzfoG/G_/lblsystgm_ gl\(/jefn e.%..ln
transient states using this model. The single server medels ] n is @ series of random variables derived frangt):
summarized in Section Il, in Section Ill they are extended N(nt) — (A= p)nt

to open network queueing models. We tested this approach (0303 + o%ud)/n’

The density of the diffusion process approximates theidistr
bution of N(t): p(n,t;ng) = f(n,t;ng), and in steady state

N, =
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then this series is weakly convergent (in the sense of bistri ¢t = 0 from = = x¢ and ends when it attains the barrier. Its
tion) to &, where&(t) is a standard Wiener process providegrobability density function is easier to determine and thas
that the system is overloaded and never attains equilibriurrfollowing form [4],

A. Unlimited queue: G/G/1 station, transient solution oL (a—z0)— 50t | (a—ag)?  (atag)?
The processV(¢) is never negative, henck (¢) should be ~ #(%:%%0) = s ¢ e 7@
also restrained to > 0. A simple solution is to put gflecting

barrier at z = 0, see [22]. In this case

The density function of the first passage time frem= zy to

- xr=0Is
fla,tzo)de =1, = 1im %2 bz tz) — eV
/0 ) ’yﬁmo(t) - ili%[2 ax¢(x7tax0) ﬁ(b(l‘,t,.’l)o)] -
and N N _ 2.%]‘]0 t3 o= (52:1)2 . (4)
g/ flx, t;z0)dx = / Mdm =0. “ . .
at J 0 ot Suppose that the process startstat 0 at a pointz with

Replacingd (z, t; 20) /9t in the above integral by the right density¢(z) and every time it comes to the barrier it stays

side of the diffusion equation we obtain the boundary condfl€re for a time given by a density functidp(x) and then
tion corresponding to the reflecting barrier at zero: reappears at = 1. The total streamy(¢) of probability mass
that enters the barrier is
a 0f(x,t; )

I 5o Awte=0. @ W) = po(0)5(t) + [1 = po(0)]0t) +
. . e . t
The solution of Eg. (1) with conditions (2) is, cf. [22] / g1 (T)yo(t — 7)dr (5)
) 72 r—x0 — Bt _ % x4+ xo + Bt 0
fl@,tizo) = Ox [Q( at ) © 45( at )} where
where &(z) = [ —A_e */2dt is the PDF of standard = /°° ¢ d
normal distribution. var o0() 0 Neo(BP(E)dE

The reflecting barrier excludes the zero value of the process T
the process is immediately reflected. Therefore, this warsi gi(r) = /0 Yo()lo(T — t)dt .
of diffusion process is a heavy-load approximation: it giv
reasonable results if the utilization of the investigateatian
is close to 1, i.e. probability(0) of the empty system is .
negligible. . _ i -

This inconvenience can be removed by the introduction of f(@tizo) = $la, t:9) +/0 a(r)o(@,t —mi1)dr. (6)
another limit condition ar = 0: a barrier with instantaneous For | aplace transforms of these equations we have
(elementary) jump$l14]. When the diffusion process comes

®rhe density function of the diffusion process with instanta
neous returns is

to z = 0, it remains there for a time exponentially distributed 7o(s) = po(0) + [1 = po(0)]7y,0(s) + g1(s)71,0(s) ,
with a parameter\, and then returns ta = 1. The time g1(s) = Fo(8)lo(s) )
when the process is at= 0 corresponds to the idle time of
the system. where
The diffusion equation becomes o o(s) o BHAG) 0(s) /°° e o(s)0(€)de
0,0(8) =€ R—— s ols) = o(s y
of(x,t;xo0) g@Qf(a:,t;mo) _ﬁaf(ac,t;xo) " Tro0 o 0 e
ot B 2 Ox? ox and then
Apo(t)o(x — 1), 7 (s)
dpo(t) .. a 0f(x,t;xo) ) = — 0 1— 0)14, 70—5 . (8
00 gy @280 ) e, 910 = [po(0) + 1= o)) T e ©®

wherepq(t) = P[X (t) = 0]. The term\py(¢)d(z—1) gives the Equation (6) in terms of Laplace transform becomes
probability density that the process is started at peint 1 - - -

at the moment because of the jump from the barrier. The @, 8320) = 6(2, 539) + 41(s)¢(, 571,
second equation makes the balance of thé&): the term where
limg .o [%W — Bf(z,t;x0)] gives the probability flow LGS o

into the barrier and the termpy (¢) represents the probability é(z, s; z0)
. A(s)
flow out of the barrier. o
Our approach, see [5], to obtain the functiptr, t; zo) of  ¢(z, s;¢) = / d(x, 5;6)P()dE,  A(s) = /B2 + 2as.
the process with jumps from the barrier is to express it with 0
the use of another pdf(x,t; () for the diffusion process The inverse transforms of these functions could only be doun
with the absorbing barrier at = 0. This process starts atnumerically. For this purpose we use the Stehfest’s algworit
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[28]: for any fixed argument, the functionf(t) is obtained
from its transformf(s) as

s =23 g () @ by
i=1
where
N2 min(i, N/2) N/ (211
vi=1) —%U (NJ2 = R)RI(k — D)1(i — K)I(2k — )1

N is an even integer and its choice depends on a computeﬂo(t)
precision; we usedV = 12 — 40.

The above transient solution af/G/1 model assumes
that the parameters of this model are constant. If they are
evolving, we should define the time-periods where they can
be considered constant and solve diffusion equation within
these intervals separately. A transient solution obtaatetthe
end of an interval serves as the initial condition for thetnex
interval.

Y (t)

B. Limited queue: G/G/1/N station, transient solution

In the case of G/G/1/N station, the second barrier shou\;ﬂ]e
be placed att = N. When the process comes to this barrie
it stays there for a time corresponding to the period when t
queue is full and incoming customers are lost and then, after
the completion of the current service, the process jumps to
r=N-—1.

The model equations become [14]

’}/1,0@) = lim

207

Then the pdff(z,t;+) of the diffusion process with ele-
mentary returns from both barriers is expressed as

t
oz, t;9) +/ g1(T)p(x,t —7;1)dr +
) 0
/ gn—1(T)p(z,t —7; N — 1)dr .
0

Densities~,(t), vn(t) of the probability that at timeg the
process enters to =0 or z = N are

p0(0)6(t) +[1 = po(0) — pn (0)]vy,0(t) +
+A 91(7)71,0(t — T)dT —+

+/0 gN-1(T)YN-1,0(t = T)dT
pn(0)3(t) + [1 = po(0) — pn (0)]yy,n (2) +

t
4 / g (Tyyaw (t — T)dr +
0

t
—I—/ gN—1(T)YN=1,n(t = T)dT |
0

v revi,o(t), v1,5(t), vnv—1,0(t), yn—1,n5(t) are the densities
I(w)(fethe first passage times between corresponding points, e.g

adg(z,t;1)

ox (11)

Bo(x,t;1)] .

wHO[2

The functionsy, o(t), vy~ (t) denote densities of the proba-
bilities that the initial process, started tat 0 at the point¢
with density(£), will end at timet by entering respectively

Finally, we can expresg; (t) and gx(¢) with the use of
functions~y(t) andyx (t):

gl(T) /OT ’YO(f)lo(T — t)dt s

Of(x,t;x0) @@ f(a,t;x0) ﬁaf(%t; o)
ot T2 Ox? or r=00rxz=N.
+Aopo(t)d(z — 1) + Anpn (8)d(x — N + 1),
d . Of (z,t;
2ol — iy (5O (o ti0)] - Aot
dpn(t) . a0f(x,t;x0) .
dt = xlgf}v [_gT + Bf(z,t;z0)] —
ANpN (1) , (10)

whered(z) is Dirac delta function.

The density functionf(z,t; z¢) is obtained in the similar
way as previously. First we obtain the densityr, ¢; z() of
the diffusion process with two absorbing barrierscat 0 and
x = N, started at = 0 from x = x¢, cf. [4]

gn—1(7)

/OT ’}/N(t)lN(T — t)dt 5

wherely(z), [y (x) are the densities of sojourn timesin= 0
andx = N; the distributions of these times are not restricted
to exponential ones.

The presented transient solutions tendtas> oo to the

1 o0 known steady-state solutions, given by [14]:
" —ﬁo(l — ) for 0<z<1,
where
flz) = @(e_z—l)e” for 1<z<N-1,
e [BTn (@~ - BE)? o
n = &P 1=~ 2at PPN (o2@=N) _ 1) for N-1<a <N,
b = x| B (@0~ — Bt)? (12)
no = OXP a 20t wherez = % andpg, py are determined through normaliza-
tion
andz!, = 2nN, z!! = —2x¢ — !, .
If the initial condition is defined by a function(z), z € py = lim po(t) = {1+ oe* V-1 4 L[l _ eZ(N—l)]}—l ,
(0,N), limy_o¢(z) = lim,—n¢¥(z) = 0, then the pdf of e - 1-o
the process has the fort(z, t;¢) = [\ ¢(x,t;)p(€)de.  Pv = lim pn(t) = opoe” :
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Customer classesAs proposed in [15], the input stream

Input rate

A can be composed o classes of customers and = 14 , , : : : : :

Zle A*) (all parameters concerning clakshave an upper e
index with brackets) then the joint service time pdf is define 21 1
as
K (k) 1+ 4
b(z) =Y =" (x),
k=1 A o8 r 1
hence 06 - 1
1 &k
ILL - ; )\ ’u/(k)) ’ 0.4 i
and 02 f ]
K 1 )2 7
2 _ 2 (k) _ i ‘ ‘ A A
Cp=p Z A ,u%k) (CB +)-1. %o 10 20 30 40 50 60 70 80 9 100
k=1

We assume that the input streams of different class cus-
tomers are mutually independent, the number of class
customers that arrived within sufficiently long period ahé

2
is normally distributed with variance(’“)Cf) ; the sum of input, Fig. 4, and the probability( NV, t) that the queue is full,
independent randomly distributed variables also has norm&. saturated, and rejects the arriving customers, Fig. 5.
distribution with variance which is the sum of composing In Example 2the input rate is periodically varying between

Fig. 1. Example 1: Input traffic intensitx(t).

variances, hence values 0.25 and 5. Figs. 6, 7, 8 display the same kind of mesult
as previously: the mean number of customers, the probabilit
9 K A® (k)2 of the empty and the probability of the saturated queue as a
Ca= ; TCA : (13) function of time. All results prove an almost perfect matéh o

diffusion and simulation results. All simulations in theiele
The above parameters yield, 3 of the diffusion equation; have been performed with the use of OMNET++ [26].
function f(x) approximates the distributignn) of customers
of all classes present in the queygn) ~ f(n) and the [1l. OPEN NETWORK OFG/G/1/NQUEUES
probability that there are(®) customers of clas is The diffusion steady state model of an open network of
pe(n®) = G/G/1 or G/G/1/N queues was presented in [15]. Below we
present its short summary. Léf be the number of stations,
N n A n® AR n—n(®) the throughput of station is, as usual, obtained from traffic
=y [p(”) (n(k>> (A) (1 ) ] ' equations
M
k=1,....K. >\¢:)\0i+Z)\jquj, 1=1,..., M, (14)

j=1

Numerical examples We consider a G/G/1/30 queue (inwherer;; is routing probability between statiohand station
fact, it is M/M/1/30 queue, as we assurG& = C% = 1). In % Ao; is external flow of customers coming from outside of
Example Ithe input rate\(¢) is varying in time as presented innetwork.

Fig. 1. It represents a typical TCP flow with additive incesas The second moment of interarrival time distribution is
and multiplicative decreases in the case of packet loskes, @btained from two systems of equations; the first defifigs,
range of time is [0,100] time units. In computations, theresl the squared coefficient of variation of interdeparture time
of diffusion parameters are changed each 0.5 time unit. Figéstribution at stationi, as a function ofC%, and C3,; the

2 - 5 present the main results of the diffusion model comparégicond define€’; ; as another function of%, ..., Cp,;
with the simulation results (in the latter case it is the ager 1) The formula (15) defining the density functiaf)(z)

of 500 000 independent runs). of interdeparture times at station is exact for M/G/1,

In Figs. 2 and 3 display the same numerical results coAl/G/1/N stations and is approximate in the case of non-
cerning the values of the mean queue. Fig. 2 displays thétfisson input [3]
in linear scale and Fig. 3 does it in logarithmic scale, to see, , \ _ N , o
better the errors of the diffusion approximation: they bmeo d(@) = 0ib: () + (1 = i)ai(@) x biz), i =1,.. ’Z(Vljé)
V'S'b.le for very sma!l mean queue values, 1.€. .Iess thenl0.0there * denotes the convolution operation. From (15) we get
at this model. Next figures present the probabili(9, ¢) of the
empty queue as a function of time, following time-dependent C%, = 03C%, +CA,(1— o) +0i(1 —0;).  (16)
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GIG/1/N Model G/G/1/N Model
! ' y 1 \ — 0.0008 Probab‘lllty of sat‘urated qu‘eue p(N). ‘Dlﬂ‘uslon j——
Mgaenaréuoél::ielfgtg‘EFI\}]N%ET:S:J;:(;R rrrrrrr Probability of saturated queue p(N), Simulation -
T 0.00025 - i ]
5
)
] % l“
0.0002 - X ‘\‘ 4
|
% ‘TJL
0.00015 | 4
i
1 |
1
0.0001 - 4
5e-005 - 4
L 0
70 80 90 100 0 10 20 30 60 70 80 90 100

Fig. 2. Example 1: The mean number of customers as a function of tinféd. 5. Example 1: The probability(V, ¢) of the saturated queue, diffusion
diffusion approximation and simulation results. . approximation and simulation results.

GIG/1/N Model

10
Mean Queue Length iffusion Logarithmic scale —+—
Meap@Queuedengit ulation Logarithmic scale <~
5 GIG/1/N Model
20 T T T . —
n Queue Length Diffusigny —+—
1 MeamQueue gth E[! imulatign -~
wr ,{%‘ ﬂ (\ a Q ’VF&& ﬁ f il
ol AR RARARAN
0.1 14 L ) Wl [ |
zr | + ]L J[ J{ R Jf ? Jf ]
0.01 f 0 T jfr T }L Jf T * 1
6L 4
>§% 4 1
%
% 2 ]
0.0001 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 L L L L L
0 50 100 150 200 250 300

Fig. 3. Example 1: The mean number of customers (logarithmic saalea

function of time; diffusion approximation and simulation rtsu. Fig. 6. Example 2: The mean number of customers as a function of time

diffusion approximation and simulation results. .

G/G/1/N Model GIG/1/N Model

1 . . . . 1 . . .
Difiusion Probability of empty queue p(0), Diffusion —+—
Simulation - Probability of empty queue p(0), Simulation —--x---
09 - 1 09} 4
08 1 0.8 E 4
07 | 1 07| |
0.6 - 1 06 4
05 b 05 g
04 7 04 R
03 7 03 - R
02 ! 1 02 1
01 7 01 R
0 I I I I I I I I I o
0 10 20 30 40 50 60 70 80 % 100 o 50 100 150 200 250 300

Fig. 4. Example 1: The probability(0,¢) of the empty queue, diffusion Fig. 7. Example 2: The probability(0, ) of the empty queue, diffusion
approximation and simulation results. approximation and simulation results.
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For K classes of customers with routing probabilit'vég)
(let us assume for the sake of simplicity that the customers d

G/G/1/N Model

09 Pro‘h;abllltyfof salura\éd queue ?\‘(N),vdl‘ﬂ‘us!on —
sl . . %‘ :‘ Prol:bllltyo s;turaled q:eue p(l );"Vslmuauo;“ ) nOt Change their ClasseS) we have
S (I 1‘ . M

(U A N £ S € N N { A { B £ B AR AW ST AWK My k=1, K
a0 IR (19)
04l (N B & [ N 1 J(“ | B 1 and

“" H w “ IR H H j K\ 2
03 ! | L 1 i k

IRttt IRt AR AR S AR S AR S Chi = Ay, SO0 +1] +20:(1 — i) +
O AR A S A S A A G S S =t
I A I I 2,
JEINANANANANANANANAY O+ DA~ ) =1 (20)

‘ * e 10 20 0 e A customer in the stream leaving statiofelongs to clas&

2
_ N ~with probability AM /), and we can determiné*g? in the
Fig. 8. Example 2: The probability(V, t) of the saturated queue, diffusion gjmilar way as it has been done in Egs. (17-18) replae}pg
approximation and simulation results. b )\(k)/)\ '
y i i

2 (k)
2) Customers leaving statianchoose statiorj with proba- Cpl = A;\' (CH: —1)+1; (21)
bility r;;: intervals between customers passing this way have !
the pdfd;;(z) then
2 L qay- ®) MY (k)
dij(x) = di(x)rij + di(x) * di(x)(1 — rij)rij + G o= 1 D> rN —(Chi— 1) | i 1
+d;i(x) * di(z) * di(2) (1 — 745)°rij + - 7 i=1 k=1 ’
K (k)2 (k)
or, after Laplace transform, + Z 01)\ 07 (22)
7 7 -2 k=1 7
dij(s) = dy(s)ryy + di(s)2(1 — rij)r; + _ Egs. (16), (18) or (20), (22) form a linear system of
Fdi(5)2(1 = ryg)2rij + - = rijdi(s) , equations and allow us to determi&, and, in consequence,

1— (L =ri;)di(s) " parameterss;, a; for each station.
In the case of transient analysis, the time axis is divided
into small intervals (equal e.g to the smallest mean service
L 2. =r;(C3 —1)+1. (17) tme) and at the beginning of each interval the Egs. (14),
Airij i sp (16), (18) are used to determine the input parameters of each
. . ) tation based on the values pf(¢t) obtained at the end of
E[Dig), C’%ij refer 0 mterde.pgrture.: 't|mes,' the' number g he precedent interval. A softwa(re)z tool was prepared and the
customers passing from St"?"a'_”to Jha time intervalt examples below, concerning 2 network topologies, see Fig. 9
has approximately normal distribution with meagr;;¢ and ab, are computed with its use.

variation CD,;jAlr”t. The sum of streams entering statign Example 3 The network is composed of the source and

hence

E[D;j;| =

has normal distribution with mean three stations in tandem, Fig. 9a. The source parameters are
M A=0.1¢t€]0,10], A =4.0¢t € [10,20]. Parameters of all
Ajt = [Z Xitij + Aojl t stations are the samé(; = 10, u; =2, C%, =1,i=1,2,3.
i=1 Fig. 10a presents mean queue lengths of stations in Model

1 as a function of time. Diffusion approximation is compared

and variance . . .
with simulation.

9 M ) ) Example 4 The network topology is as in Fig. 9b. The
oAt = {Z ChijAirij + Cojhoj 1t characteristics of three sources and of one station aregaiman
=1 with time in the following pattern:

source A:d4 = 0.1 for t € [0,10], A4 = 4.0 for ¢ € [10,21],
Aa = 0.1 for t € [21,40],
o2 L ir--A-[(CQ 1]+ Ci; Mo (1g) ‘Source Bz = 0.1for ¢ € [0,11], Ap = 4.0 for ¢ & [11, 20},
ATy T K PV Ap = 0.1 for ¢ € [20,40],
source C:A\¢ = 0.1 for ¢t € [0,15], Ac = 2.0 for ¢ € [15,22],
Parameters\y;, Cg; represent the external stream of cush¢c = 4.0 fort € [22,30], A\¢ = 2.0 for t € [30,31], A\¢ = 0.1
tomers. for ¢ € [31,40].

hence
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(a) (a)
source station 1 station 2 station 3 9 — T
7 source ——
e ) —— I )—— ) —— station L, difusion ——
8l / station 1, simulation -----
; . station 2, diffusion
/ i station 2, simulation -~
/ [y station 3, diffusion -----
7F / station 3, simulation ------ -
/
(®) of / ]
!
station 4 5 e { 1

\ N \‘
station 3@ ! i N 7
source A ) 3} “'\ Y VY { <
station 1 station 5 station 6 \ | HEY ; e s
\ ' LA . e
OH D]]]]]]]]O D]]]]]]]O R —— mo \ | B i J T
2+ k\ | / // e
station 2 | Y S | i7
Voo

D]]]]]]]]O source C . ), \ "
L y \

source B/ O \ ‘\\ R
O ol

T
25

35

0 5 20
Fig. 9. Example 3 and 4 network topologies (b) » ‘ ‘
station 1, diffusion —
station 1, simulation -----

: w1 saton 2 Simuiaton |
Station 6:p = 2 for ¢ € [10,15] and¢ € [31,40]; pg = 4 for ol souren - |
t € [15,31].

Other parameters are constant: maximum queue lengths:| 8
N1 =Ny=10, N3 =5, No=Ng =20, 1 = -+- = s = 2. ol |

Routing probabilities arer;2 = r13 = 114 = 1/3, 764 = 0.8.
Initial state:N1(0) = 5, N1(0) = 5, N2(0) = 10, N3(0) = 10,
N,4(0) = 5, N5(0) = 5, Ng(0) = 10. The results in the
form of mean queue lengths are presented and compared with /
simulation in Figs. 10, 11. T

We observe that the output of queueing network models is \ !

10

CHERY

IN
T

reasonable.

not as good as in the case of single station models, but still
0 5 10 15 20

25 30

IV. DIFFUSION APPROXIMATION OF THEG/G/1AND
G/G/1/NBUSY PERIODS Fig. 10.

Busy periods play an important role in the descriptioffation3 as afunction of ime
results; the source intensity

35

40

(a) Example 3: The mean queue lengths of stationlipisfaand
— diffusion and simulation (100 @epetitions)
(t) is indicated. (b) Example 4: The mean

of priority queues. During a busy period of higher priorityy eye lengths of station1 and station2 as a function of timeiffusibn and

customers, the sever is not available for lower priorities.

A. G/G/1 station

Let I'(t) and~(t) denote PDF and pdf of the busy period .
duration; for the M/M/1 system the function(t) is known The expression

explicitly [19] P, (!
F(t):/o D e b ()

are indicated.

simulation (100 000 repetitions) results; the source intessh 4 (t), Ag(t)

1
’Y(t) = %G(A-"_M)tll (2t/,LQ> el
oz oo 1 212k - where b*"(t) is the n-fold convolution of b(¢) with itself,
whereli(z) = 3> 2, Tk (3) " Is the modified Bessel could be helpful in numerical evaluation of the busy time

function of the first kind and of order one. For M/G/1 system
a functional equation,

Y(s) = B(s + A+ A(s))
wherey(s) = [;° e *!y(t)dt, B(s) = [~ e *'b(t)dt are the
Laplace transforms of(t), b(t), although impossible to invert

in most cases, enables us to compute the moment& ffe.g. EQ. (4) that yields

distribution for the M/G/1 queue [19]. We know virtually
nothing aboul’(¢), v(¢) for the G/G/1 system. In the diffusion
approximation, the busy period has a simple interpretation
the case of G/G/1 system, it is just the first passage time from
x = 1 to the absorbing barrier at = 0, its pdf is given by

1 « 1
d 1 N 21—
E[fy] = _£’7(S)S:O = 1%”@ (23) E[’Ydif] - _6’ E[’Ydlf] 63 + 62
d? E[b?] which are exact results in the case of M/M/1 and M/G/1
2 _ N —
Ely] = d527(5)520 T (1-o)p (24) systems.
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5

10 15

and of station5 and station6 (b)

B. Busy period at G/G/1/N

As the process starting at = 1 may visit the barrier at

20

25 30 35

40

Example 4: The mean queue lengths of station3 anarstatg)

x = N an unlimited number of times before coming o=

0, the density function of the busy period is, preserving t

previously used notation

v(t)

Y1,0(8) + 71,8 () * In(t) * yn-1,0(t) +
+ ’yLN(t) * lN(t) * ’YN—l,N(t) * lN(t) * ’yN,LQ(t) +...
(25)

where * denotes the convolution operator, or

Fig. 12 presents the comparison of busy period pdf given

F1,0(8) +F1,n5(8)In ($)TN-1,0(5) +
LN (8)In ()TN —1,n (s) I (s )VN 10(s) + ...
Lo(s) + WlN() N(8)Tn-1,0(5)
1N (8)l ()

by diffusion approximation and simulation.

(2

6)

212

G/G/1/N Model
1 T T T

Busy Periods‘ Diffusion
Busy Periods Simulation 1879107 periods

0.001 L L L L
0 25

Fig. 12.  M/M/1/20 queuep = 0.75, busy period diffusion approximation
compared with simulation (histogram of over 1.8 million samples

V. DIFFUSION APPROXIMATION OF PREEMPTIVE RESUME
PRIORITY SYSTEM

This paragraph introduces a diffusion model of a single
server with priority preemptive - resume queuing disciglin
Customers arriving to the system are divided into a certain
number, sayK, of classes. Each class is distinguished by its
index k, £k = 1,..., K, and has its own priority. The lower
the number of the index, the higher the priority of the class.
When a customer of clagsis being served and a customer of
classl, I < k arrives, the current service is suspended and the
service of the newcomer begins. After the completion of this
service and the service of other, more privileged than class
k customers, who have arrived meanwhile, the interrupted
service is resumed at the point of suspension. Customers of
the same priority class are served in the order of arrivaé Th
presence of lower class customers is transparent to custome
of a given class. We assume that interarrival times in the

. . (k)?
particular stream are characterized by paramexérs o "

Having the same meaning as o2 in the case of one-class

system. The service time of customers of clashas mean
value 1/*) and varlancef(’“) :

Following exactly the same procedure as for the FIFO
system, we define: input proce&s’)(t) as the total number
of customers of alK classes who arrived to the system during
the time period[0, t], and the output procesd (%) (t) as the
number of customers of alk’ classes who left the system
n [0,¢]. Applying the central limit theorem and using the
same arguments as for the first-come-first-served diseiplin
we can prove that these processes have approximately normal
distributions if the period0, ¢] is sufficiently long and within a
busy period of the server. The input procds€<)(¢) consists
of separate input processe$) (¢) for each class of customers:

Zgac)

E(K)
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The output proces#l (%) (¢) can be described as Thus, we know the distribution® (n), the mean number of
customers present in the system
(K) e o™ (h—1)y _L S
H™(t) = Zﬁ (ﬂm(l - R )W E[n®) = Zv(k)(u)u
k=1 v=0
B us o) (k) ) @27) and, by Little’s result, the mean time they spend in the syste
=Tk )
S o E[TW] = m k=LK
wheren*) (¢) is the output process for thee-priority stream A
in the absence of other classé&) = > o and o) = for each class of customers.

2D /D R*) denotes the probability that the busy period for The inconvenience of this approach is the propagation of

customers of classek ..., k taken altogether is in progressgerrors of the method. An alternative approach is to study the
k . . .

% denotes the probability that a customer of clasis diffusion processes corresponding to the number o_f eads cla

present in the system. Classhas thel — R(*~1) part of the CuStomers separately and to see the influence of higheeslass

server time at its disposal.— R**~1) denotes the probability ©" the queues of lower clgsses through the probqbility treat t

that there are no customers of priority higher tiigpresent in  SyStém is occupied by higher classes and thus is not able to

serve the lower ones.
the systt(_amt.hThe t(:tal number of customers of classes K For example, if we take two classes, the first diffusion
present in the System process corresponding to the priority class has parameters
NE () = BE) (1) — HE) (1) AW =D — ;M anda® = ¢ A0 1 7,0 and the
second one, corresponding to the lower class which is served
is changing and its changes during the time pefipd] have only in absence of the higher class, has the parameters

the mean35)¢ and the variance(*)¢,

y ) AR = @ _ @0y
‘ Vo .

IR SIS gE sl W = A oA o 00,0 +

k=1 =1 RO tolD?,m?

= 5 M.

K K (k
oE) = Z)\(k)cgk)a N oF) M("')C,(;f)27

— — Rk Before the waiting time can be considered, we have to
Cﬁf)z _ /\(k)zaff)z Cg“)2 _ u(k)Qa([f)z define the distribution of the completion time. The completi

time is the time period between the beginning and the end
and are approximately normally distributed. We replace tieé the service of any customer. On the highest priority level
discrete-state proce¢(/)(¢) by the continuous-state procesghe completion time is equal to the service time, for the iothe
X ) (t) whose infinitesimal changes have normal distributioplasses it additionally includes the breaks caused by tivécse
with the meansXdt and the variancexdt. Solving the of more privileged customers. L&t be the service time of a
diffusion equation with the same type of boundary condgustomer of class. If n customers of classés..., k—1 arrive
tions as defined earlier with the intensity of jumps frondluring the timeT’, the service will be interrupted times,n

z = 0: AF) = Eszl A*) we obtain the density function has approximately normal distribution with the mekft—1)
fI) (2,t;20) for all classes considered together. and the varianc&F "' xOC{ T,

Let v®)(n) denote the probability that customers of class  The duration of any ofn breaks is distributed like the
K are present in the system apt<—")(N — n) denote the busy periody*~1) of the system serving customers of classes
probability thatV —n customers of all other classes are present..., k — 1. The total time of breaks ifi" has the pdf
in the system. Obviously, 0o

v W (| T) =Y pury* DM (1)
pHIN) = pH (N = n)o () n=0

o n=0 wherep,,r is the probability ofn breaks inT', v*k=1(n)(¢)

and similarily, is then-fold convolution ofy*~1)(¢) with itself. Thus the pdf

n c®)(t) of the completion time is
p*F(n) = Zp(kfl)(n — )P W), k=2.,K -

v=0 ) () = / O ()™ (¢ — T | TYL(t — T)dT,

or 0

i p®) (n) — ZZ;S p*F Y (n —v)o® (v) wherel(t) = 0 fort < 0 and1(t) = 1 for ¢t > 0, and from
v (n) = =) » k=2 K s L aplace transform

For the highest priority class

By = [ BT S p iy ® ()]
o) — 5 ). = [ 0T S )T
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we obtain its moment& = [¢(¥)] and E[(c®))?]: where

d _ _ 1
E=[e"] = ()0 = (BRI 4 1) o
ds (k) LD { (C(k,l)+%R(k71)g(k71,l)) (/\(k))z’ 1<k,
- 1-R()
l=k
E[(C(k))Q] = £c<k)(s)5:o = LR ’
ds? and
(k=1)
= B¢ p[(T a0y LN AD AG=D)
= Y A p’(k) C(k,l) _ +g(k71,l)
=1 M(k)(ﬁ(k_l))Q Iu(k)
1 1
_ A(k—l)f] L E[(y kYA L kil 1
o ()] mG gBh = oy
+ E['y(kfl)]E[(b%))Q]A(k) .
AERFTIIAFRTY Loy 4 B(6™)2).
{El ] } [( 2) ] b0 = 0y 1—R® {1+R(k_1)e(k—1)()\(k))2
When all input streams are Poisson, i@g) =11= 1(;{?““_1)
1,...,k the results are identical to the exact formula given for 12o®) (1 _A > +
this case in [18]. Finally, we can define the mean waiting time pl-v
for every priority level as A®) gE—1) ) A=Y
En®) e 142" (1= G )|}
n
E[w(k)] G —E[c(k)]. " C(Bk)2+1A(k:—1) (A(k—l) 2)
X = - — — 2] —
If we intend to consider a network of servers, we are obliged (u®)2 =1\ B
to determine the output stream of each server. In the case of Ak=D) (k1) A® cgv)"’ +1
priority queues we extend the approach used previously for a (B=D)2, (k) W® (2
network of G/G/1/N stations, see Egs. (16), (18) or (20)).(22 ko
Let us denotel®)(¢) the pdf of interdeparture times in the (® - 1 1 > ¢, meb?,
: (B2 (3R)3 R B
stream of clas& customers, it can be expressed as =1

(k) (k)
(1 —L
1— RG=D) 1— RG=D)
x[(1 = REINYa®) ()« ) ()
+RED P (1) 5 4F =D (1) 5 B (1)].

d® ) =

(28)

The equation (29) corresponds to (16): it defines how the
variation of the interdeparture times of the cl&sstistomers
depends on the variations of the interarrival times of @tsks
that may influence the output of this class. The parameters of
service time distributions are hidden in the coefficientshaf

The components of this expression correspond to three-sit§guation. Similarly, the extension of the equation (18)rieg

— the next customer of the clags is in the system (jt flow of classt customers coming to statignhas the following

occurs with probabilityl_g%) and will leave it after its

completion time,

— there are no customers of this class in the system
we shall wait the time described by*)(¢), the interarrival
time pdf (when the input is non-Poisson it is merely an (k

approximation) until it appears and enters the server,

12 L QAR (D) (0) )21 (D Coj Aoj
;" = o5 > 2 NTICE! D =
J

form
2
OO
0

’ (30)
s the probability that a clads-customer leaving

i=1 k=1 A

wherer;;

— no customer of clas& is present in the system and astatior_1i goes directly to statior having there clasls_priority._
customer of higher class comes before him, so the busy perfegtations (29) and (30) taken together determine the input

7(’“*1) must be terminated first.

flow parameters for each class and each station, allowing us

The mean interdeparture time is obviously the same as fQe@nalyze each station separately. As usual, in the case of
mean interarrival time and from the above (28), where fransient states, all parameters should be consideredatwns

turn the densities of busy periods at each priority level afé Small intervals and all model equations should be solved
given by expressions of the type (25) and their moments Jpt these parameters to define conditions at the beginning of

obtained from (26), we calculate the squared coefficienhef tthe next interval.

variation of interdeparture times at each priority custmsne

Numerical examplesConsider a server with two priority

needed to integrate a single priority station into a netwafrk levels. In Example 5the priority customers come with inten-

such stations. The final formula is as follows:

k
2 2

=1

sity () = 0.4 during intervalst € [0,10], [20, 30], [40, 50],
etc. OtherwiseA(!) = 0. The intensity of non-priority cus-
tomers is constan,(?) = 0.4. In Example @he server utiliza-
tion is higher and the bursts of priority input stream aregkem
A1 = 1.2 during intervalst € [0,20],[40,60], [80, 100],



and \(Y) = 0 between these intervals while the second class
1.

8
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intensity is constant\(?) = 0.5.
The queue capacities are in both cases limitad?) = 16
N®) = 20. To validate the diffusion model by the comparison
of its results with the exact ones obtained with Markov chain [
model solved numerically, we assume Poisson input streams.
and exponential service time distributions for both typés o
customersp () = (2 = 1. Figs. 13, 14 refer to the Example

T

5. Fig. 13 displays the mean number of customers of eactvs | ‘,r""

class as a function of time, given by diffusion model and by

the corresponding Markov model. Fig. 14 compares the total”’

number of customers of both classes. oatf
Figs. 15, 16 give the same results for the Example 6. ol
Of course, diffusion approximation gives not only the mean

T
"Priority queue, diffusion”
“non-priority queue, diffusion” -
"ptiority queue, exact
"non»pv\iori(y queue, exact

values but also the queue distributions; e.g. Fig. 17 ptesen o
for Example 5, exact and estimated probabilitig$) (0, ),

0

20 40 60 80 100

p?(0,t) that the queues of class 1 or class 2 are empty. Figg. 13. Example 5: Mean number of customers as a function of tone f
18 presents for Example 6 exact and estimated probabilities first and second priority levels, diffusion approximatéand exact results

pM(NW 1), p? (N t) that the queues of class 1 or class
2 are saturated. For all computations we considered cdnstan,,

parameters inside subintervals of the 0.1 time unit lerigthll

cases the errors observed for priority queues are smaker th
for non-priority ones. It is natural, the errors of the seton -
class queue accumulate the errors of both classes.

V1. CONCLUSIONS 15

The article presents an adaptation of the diffusion approx-
imation model with absorbing barriers to the analysis of L
transient states of queueing models. The method was applied ||
previously to G/G/1/N service stations, here we also presen ||
the case of preemptive-resume priority queues. 05

In the article, we demonstrate how the diffusion approxi-
mation formalism is applied to study transient and behavior

T

“global mean, diffusion"
"global mean, exact" -------
A A

of G/G/1 and G/G/1/N non-priority and preemptive-priority °;
models. The way we switch from one model to another
demonstrates the flexibility of the method. Also the preévept Fig. 14.

20 40 60 80 100

Example 5: Global mean number of customers as a funcfion o

discipline can be easily converted to non-preemptive qued@e. diffusion approximation and exact results.

ing discipline. Also the introduction of self-similar tfaf
is possible: as we change the diffusion parameters eackh

small time-interval, we can modulate them to reflect self-
similarity and long-term correlation of the traffic. Soménert 2y
applications may be considered: recently we have used the
diffusion approximation to estimate transfer times insale |
sensor network [9], to model the performance of leaky-bticke ,,
algorithm as well as to study the work of call centers [10H an

to investigate the stability of TCP connections with IP eyst 8
having AQM queues [8]. In the first case the diffusion process
reflects the distance defined as the number of hops betweefi|
the transmitted packet and its destination (sink). Owing to ,|
the introduction of the transient state analysis, the model

captures more parameters (time-dependent and heterageneoz /
transmission, the presence of losses specific to each hop) of |/

T

T

“priority queue, diffusion”
"non-priority queue, diffusion” -------
“priority queue, exact" --------

"non-priority queue, exact" 4

L L

a sensor network transmission time than the already egistin %
models of this type, also based on the diffusion approxiomati

20 40 60 80 100

[16]. It also gives more detailed results: the density fiorct Fig. 15. Example 6: The mean number of customers as a functiomefftir

of a packet travel time instead of its mean value. In the sg&¢coh

the first and second priority levels, diffusion approximatend exact results.
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time, diffusion approximation and exact results.
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1
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20

40

1
60 80

100

Example 5: Probabilities(1) (0,t), p(2)(0,t) that the queues of

class 1 or class 2 are empty, diffusion approximation and exestits.

0.0001
1e-06 -
1e-08 ”v"
1le-10 j
le-12 - ‘;‘

le-14 |

/,,:fnampnanw;gueue p(N2), exaet"

"pr‘\ority queue, p(Nl),‘diffuslon"
"non-riority queue, p(N2), diffusion"
“priority queue p(N1), exact'

Fig. 18.

probabilities.

100

Example 6: Probabilities(™) (N (1) t), p(2)(N(2) t) that the
queues of class 1 or class 2 are saturated, diffusion appadxin and exact
results. Logarithmic scale is chosen for better presemtatibvery small

216

case, the introduction of state-dependent diffusion aaeffis
enables us to study transient states of parallel stations of
G/G/N/N type. The third position proposes a diffusion model
of a queue with RED (Random Early Detection) mechanism
and considers the dynamics of TCP connections having RED
gueue in the congested router. Also the application of siiffiu
approximation to model wireless networks based on IEEE
802.11 standard gives promising results, [12].

Numerical examples, where the quantitative results of dif-
fusion approximations are compared with simulations or the
numerical solutions of corresponding Markov chain models,
indicate acceptable level of errors of the proposed approac

Of course, there are several ways we can analyze transient
states in queueing models. In recent years we have put a
considerable effort to master their use as efficient toods th
give sound numerical results. Each of them has its advasitage
and disadvantages. Firstly, we can use simulation models. |

Example 6: Global mean number of customers as a funcfion {fjs purpose we have developed an extension of OMNET++

(a popular simulation tool written in C++, [26]) allowingeh
simulation of transient state models. In particular, randgen-
erators were modified to make the changes of their parameters
as a function of time possible, a new software was added
to collect the statistics of multiple runs and to aggregate i
We used this module to validate the diffusion approximation
results. Basically, the simulation run in a transient siratesti-
gation should be repeated sufficient number of times (e.@. 50
000 in our examples) and the results for a fixed time should be
averaged. As the number of repetitions is high, the estonati
of errors is easy (confidence interval) on the basis of normal
distribution. However, the number of repetitions is refate

the value of the investigated probabilities and in the cdse o
rare events should be high and it increases the simulatios ti
(typically in some of our examples, 5 minuts of computations
for a diffusion model are compared to 24 hours of simulations
on a standard PC station).

The other way to model transient states is to create a Markov
chain model and to solve it numerically. This approach,
also combined with the use of stochastic Petri nets, gained
already a considerable attention of researches, e.g. [A],

[27] and a number of software tools, e.g. SHARP, PEPSY,
SNMP, MOSES [2] or XMARCA [20] was implemented. The
numerical problems of solving very large systems of equatio
related to Markov models were thoroughly studied, e.g..[21]
This effort concerned mainly steady-state models. Forraéve
years we have developed a software to construct and to solve
very large (having millions of states) Markov chains reigti

to queueing models and we have adopted suitable numerical
methods and distributed algorithms. In the case of trabsien
states, the implementation is based on the reduction of stat
space due to Arnoldi's orthogonal projection into the Kkylo
subspace [29]. We have also used Markov model to evaluate
the errors in the case of the priority model presented here.
Naturally, the usability of the approach depends on the alize
the considered model, and it is relatively easy to go beybad t
limit number, i.e. some tens of millions, of tractable staté&e

are still working on more powerful Markovian modules using
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distributed algorithms and run on a cluster architecture.

Another well-known approach of modeling is the fluid-
flow approximation where only the mean values of traffic
intensity and service intensity are considered. Compar ¢lokt

diffusion approximation, the model is simple: instead aftiph

differential equations of second order, the ordinary finster

linear differential equations are used. Due to its simplici [14]
it gained much interest in the analysis of transient states i
Internet and in investigation of stability of its connecti e.g.
[24].
approximation in modeling queues dynamics are considgrabl’él
larger than in the case of diffusion approximation which is a
second-order approximation, where not only the mean valugsr]
but also the variances of flow changes and of service tim
are considered.

Therefore we consider the diffusion approximation as a very
convenient tool in the analysis of transient states queueir20]
models in performance evaluation of computer and communi-
cation networks.

This research was partially financed by the Polish Ministry
of Science and Education grant N517 025 31/2997. Thi3]

However, as we tested in [7], the errors of the fluid-flow
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