
Diffusion Approximation Models for Transient States
and their Application to Priority Queues

Tadeusz Czach́orski
IITiS PAN

Polish Academy of Sciences
44-100 Gliwice, ul. Baltycka 5, Poland

tadek@iitis.gliwice.pl

Tomasz Nycz
Centrum Komputerowe

Politechnika Slaska
44-100 Gliwice, ul. Akademicka 16, Poland

tomasz.nycz@polsl.pl

Ferhan Pekergin
LIPN

Universit́e Paris-Nord
93430 Villetaneuse, France

pekergin@lipn.univ-paris13.fr

Abstract—The article presents a diffusion approximation
model applied to investigate the behavior of priority queues.
We discusses the use of the diffusion approximation in transient
analysis of queueing models in the case of a single station and
of a queueing network presenting the solutions. We emphasize
the numerical aspect of the solution and analyze the errors.
In classical queuing theory, the analysis of transient states is
complex and practically does not go far beyond M/M/1 queue
and its modifications. However, the time dependent flows in
computer networks and especially in Internet focus our interest
on transient-state analysis, which is necessary to investigate the
dynamics of TCP flows cooperating with active queue manage-
ment or to see the changes of priority queues which assure the
differentiated QoS. With the use of G/G/1/N and G/G/1/N/PRIOR
models, we present the potentials of the diffusion approximation
and in conclusions we compare it with alternative methods:
Markovian queues solved numerically, fluid-flow approximation
and simulation. Diffusion approximation allows us to include
fairly general assumptions in queueing models. Besides the
transient state analysis, it gives us a tool to consider input streams
with general interarrival time distributions and servers with
general service time distributions. Single server models can be
easily incorporated into the network of queues. Here we apply the
diffusion approximation formalism to study transient and steady-
state behavior of G/G/1 and G/G/1/N priority preemptive models.
The models can be easily converted to non-preemptive queueing
discipline. The introduction of self-similar traffic is possible as
well. The models can be useful in performance evaluation of
mechanisms to differentiate the quality of service e.g. in IP
routers, WiMAX, metro networks, etc.

Index terms — diffusion approximation, transient states,
priority queues.

I. I NTRODUCTION

The paper extends results presented earlier in [11]. Classical
queueing models of priority queues are practically limitedto
steady-state analysis of M/G/1 queues with non-preemptiveor
preemptive resume priorities, see e.g. [18], [23], [19]. Itis not
enough to analyze today mechanisms to ensure the quality
of service inside e.g. IP routers or in access networks where
the load is changing dynamically and the traffic is entirely
different from Poisson streams. Therefore we adapt the method
of diffusion to consider transient states in the case of priority
queues. The method is based on Gelenbe’s model of G/G/1 and
G/G/1/N queue supplemented with our approach [5] to solve
transient states using this model. The single server modelsare
summarized in Section II, in Section III they are extended
to open network queueing models. We tested this approach

several times in other non-priority models, considering e.g. the
dynamics of FIFO queues in ATM routers [1], the dynamics
of queues in ATM multiplexers in the case of self-similar
traffic [6], the stability of TCP connections in the presence
of AQM (RED queues) inside IP routers [8], investigating
transmission time in ad-hoc networks [9] or modeling traffic
control by leaky-bucket algorithm [10]. Section IV presents
diffusion approximations of busy periods distributions which
are important for priority queues presented in Section V.

II. D IFFUSION APPROXIMATION OF AFIFO STATION

Let A(x), B(x) denote the interarrival and service time
distributions at a service station anda(x) and b(x) be their
density functions. The distributions are general but not spec-
ified, the method requires only the knowledge of their first
two moments. The means are denoted asE[A] = 1/λ,
E[B] = 1/µ and variances are Var[A] = σ2

A, Var[B] = σ2
B.

Denote also squared coefficients of variationC2
A = σ2

Aλ
2,

C2
B = σ2

Bµ
2.N(t) represents the number of customers present

in the system at timet.
Diffusion approximation replaces the processN(t) by a

continuous diffusion processX(t), e.g. [25], the incremental
changesdX(t) = X(t + dt) − X(t) of which are normally
distributed with the meanβdt and varianceαdt, whereβ, α
are coefficients of the diffusion equation

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
. (1)

This equation defines the conditional pdf ofX(t):

f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) = x0].

The density of the diffusion process approximates the distri-
bution ofN(t): p(n, t;n0) ≈ f(n, t;n0), and in steady state
p(n) ≈ f(n).

Both processesX(t) andN(t) have normally distributed
changes; the choiceβ = λ− µ, α = σ2

Aλ
3 + σ2

Bµ
3 = C2

Aλ+
C2
Bµ ensures that the parameters of these distributions grow

at the same rate with the length of the observation period.
More formal justification of the use of diffusion approxi-

mation lies in limit theorems forG/G/1 system given e.g. in
[17]. If N̂n is a series of random variables derived fromN(t):

N̂n =
N(nt) − (λ− µ)nt

(σ2
Aλ

3 + σ2
Bµ

3)
√
n
,
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then this series is weakly convergent (in the sense of distribu-
tion) to ξ, whereξ(t) is a standard Wiener process provided
that the system is overloaded and never attains equilibrium.

A. Unlimited queue: G/G/1 station, transient solution

The processN(t) is never negative, henceX(t) should be
also restrained tox ≥ 0. A simple solution is to put areflecting
barrier at x = 0, see [22]. In this case

∫ ∞

0

f(x, t;x0)dx = 1 ,

and

∂

∂t

∫ ∞

0

f(x, t;x0)dx =

∫ ∞

0

∂f(x, t;x0)

∂t
dx = 0 .

Replacing∂f(x, t;x0)/∂t in the above integral by the right
side of the diffusion equation we obtain the boundary condi-
tion corresponding to the reflecting barrier at zero:

lim
x→0

[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)] = 0 . (2)

The solution of Eq. (1) with conditions (2) is, cf. [22]

f(x, t;x0) =
∂

∂x

[

Φ

(

x− x0 − βt

αt

)

− e
2βx

α Φ

(

x+ x0 + βt

αt

)]

where Φ(x) =
∫ x

−∞
1√
2Π
e−t

2/2dt is the PDF of standard
normal distribution.

The reflecting barrier excludes the zero value of the process:
the process is immediately reflected. Therefore, this version
of diffusion process is a heavy-load approximation: it gives
reasonable results if the utilization of the investigated station
is close to 1, i.e. probabilityp(0) of the empty system is
negligible.

This inconvenience can be removed by the introduction of
another limit condition atx = 0: a barrier with instantaneous
(elementary) jumps[14]. When the diffusion process comes
to x = 0, it remains there for a time exponentially distributed
with a parameterλ0 and then returns tox = 1. The time
when the process is atx = 0 corresponds to the idle time of
the system.

The diffusion equation becomes

∂f(x, t;x0)

∂t
=

α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
+

λp0(t)δ(x− 1) ,

dp0(t)

dt
= lim

x→0
[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)] − λp0(t) ,

wherep0(t) = P [X(t) = 0]. The termλp0(t)δ(x−1) gives the
probability density that the process is started at pointx = 1
at the momentt because of the jump from the barrier. The
second equation makes the balance of thep0(t): the term
limx→0 [α2

∂f(x,t;x0)
∂x −βf(x, t;x0)] gives the probability flow

into the barrier and the termλp0(t) represents the probability
flow out of the barrier.

Our approach, see [5], to obtain the functionf(x, t;x0) of
the process with jumps from the barrier is to express it with
the use of another pdfφ(x, t;x0) for the diffusion process
with the absorbing barrier atx = 0. This process starts at

t = 0 from x = x0 and ends when it attains the barrier. Its
probability density function is easier to determine and hasthe
following form [4],

φ(x, t;x0) =
e

β

α
(x−x0)− β2

2α
t

√
2Παt

[

e−
(x−x0)2

2αt − e−
(x+x0)2

2αt

]

. (3)

The density function of the first passage time fromx = x0 to
x = 0 is

γx0,0(t) = lim
x→0

[
α

2

∂

∂x
φ(x, t;x0) − βφ(x, t;x0)] =

=
x0√

2Παt3
e−

(βt+1)2

2αt . (4)

Suppose that the process starts att = 0 at a pointx with
densityψ(x) and every time it comes to the barrier it stays
there for a time given by a density functionl0(x) and then
reappears atx = 1. The total streamγ0(t) of probability mass
that enters the barrier is

γ0(t) = p0(0)δ(t) + [1 − p0(0)]γψ,0(t) +
∫ t

0

g1(τ)γ1,0(t− τ)dτ (5)

where

γψ,0(t) =

∫ ∞

0

γξ,0(t)ψ(ξ)dξ ,

g1(τ) =

∫ τ

0

γ0(t)l0(τ − t)dt .

The density function of the diffusion process with instanta-
neous returns is

f(x, t;x0) = φ(x, t;ψ) +

∫ t

0

g1(τ)φ(x, t− τ ; 1)dτ . (6)

For Laplace transforms of these equations we have

γ̄0(s) = p0(0) + [1 − p0(0)]γ̄ψ,0(s) + ḡ1(s)γ̄1,0(s) ,

ḡ1(s) = γ̄0(s)l̄0(s) (7)

where

γ̄x0,0(s) = e−x0
β+A(s)

α , γ̄ψ,0(s) =

∫ ∞

0

γ̄ξ,0(s)ψ(ξ)dξ ,

and then

ḡ1(s) =
[

p0(0) + [1 − p0(0)]γ̄ψ,0(s)
] l̄0(s)

1 − l̄0(s)γ̄1,0(s)
. (8)

Equation (6) in terms of Laplace transform becomes

f̄(x, s;x0) = φ̄(x, s;ψ) + ḡ1(s)φ̄(x, s; 1) ,

where

φ̄(x, s;x0) =
e

β(x−x0)
α

A(s)

[

e−|x−x0|
A(s)

α − e−|x+x0|
A(s)

α

]

,

φ̄(x, s;ψ) =

∫ ∞

0

φ̄(x, s; ξ)ψ(ξ)dξ , A(s) =
√

β2 + 2αs .

The inverse transforms of these functions could only be found
numerically. For this purpose we use the Stehfest’s algorithm
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[28]: for any fixed argumentt, the functionf(t) is obtained
from its transformf̄(s) as

f(t) =
ln 2

2

N
∑

i=1

Vi f̄

(

ln 2

t
i

)

, (9)

where

Vi = (−1)N/2+i

min(i,N/2)
∑

k=⌊ i+1
2 ⌋

kN/2+1(2k)!

(N/2 − k)!k!(k − 1)!(i− k)!(2k − i)!
.

N is an even integer and its choice depends on a computer
precision; we usedN = 12 − 40.

The above transient solution ofG/G/1 model assumes
that the parameters of this model are constant. If they are
evolving, we should define the time-periods where they can
be considered constant and solve diffusion equation within
these intervals separately. A transient solution obtainedat the
end of an interval serves as the initial condition for the next
interval.

B. Limited queue: G/G/1/N station, transient solution

In the case of G/G/1/N station, the second barrier should
be placed atx = N . When the process comes to this barrier,
it stays there for a time corresponding to the period when the
queue is full and incoming customers are lost and then, after
the completion of the current service, the process jumps to
x = N − 1.

The model equations become [14]

∂f(x, t;x0)

∂t
=

α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
+

+λ0p0(t)δ(x− 1) + λNpN (t)δ(x−N + 1) ,

dp0(t)

dt
= lim

x→0
[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)] − λ0p0(t) ,

dpN (t)

dt
= lim

x→N
[−
α

2

∂f(x, t;x0)

∂x
+ βf(x, t;x0)] −

λNpN (t) , (10)

whereδ(x) is Dirac delta function.
The density functionf(x, t;x0) is obtained in the similar

way as previously. First we obtain the densityφ(x, t;x0) of
the diffusion process with two absorbing barriers atx = 0 and
x = N , started att = 0 from x = x0, cf. [4]

φ(x, t;x0) =
1√

2Παt

∞
∑

n=−∞
(an − bn)

where

an = exp

[

βx′n
α

− (x− x0 − x′n − βt)2

2αt

]

bn = exp

[

βx′′n
α

− (x− x0 − x′′n − βt)2

2αt

]

andx′n = 2nN , x′′n = −2x0 − x′n .
If the initial condition is defined by a functionψ(x), x ∈
(0, N), limx→0 ψ(x) = limx→N ψ(x) = 0, then the pdf of
the process has the formφ(x, t;ψ) =

∫ N

0
φ(x, t; ξ)ψ(ξ)dξ.

Then the pdff(x, t;ψ) of the diffusion process with ele-
mentary returns from both barriers is expressed as

f(x, t;ψ) = φ(x, t;ψ) +

∫ t

0

g1(τ)φ(x, t− τ ; 1)dτ +

∫ t

0

gN−1(τ)φ(x, t− τ ;N − 1)dτ .

Densitiesγ0(t), γN (t) of the probability that at timet the
process enters tox = 0 or x = N are

γ0(t) = p0(0)δ(t) + [1 − p0(0) − pN (0)]γψ,0(t) +

+

∫ t

0

g1(τ)γ1,0(t− τ)dτ +

+

∫ t

0

gN−1(τ)γN−1,0(t− τ)dτ ,

γN (t) = pN (0)δ(t) + [1 − p0(0) − pN (0)]γψ,N (t) +

+

∫ t

0

g1(τ)γ1,N (t− τ)dτ +

+

∫ t

0

gN−1(τ)γN−1,N (t− τ)dτ ,

whereγ1,0(t), γ1,N (t), γN−1,0(t), γN−1,N (t) are the densities
of the first passage times between corresponding points, e.g.

γ1,0(t) = lim
x→0

[
α

2

∂φ(x, t; 1)

∂x
− βφ(x, t; 1)] . (11)

The functionsγψ,0(t), γψ,N (t) denote densities of the proba-
bilities that the initial process, started att = 0 at the pointξ
with densityψ(ξ), will end at timet by entering respectively
x = 0 or x = N .

Finally, we can expressg1(t) and gN (t) with the use of
functionsγ0(t) andγN (t):

g1(τ) =

∫ τ

0

γ0(t)l0(τ − t)dt ,

gN−1(τ) =

∫ τ

0

γN (t)lN (τ − t)dt ,

wherel0(x), lN (x) are the densities of sojourn times inx = 0
andx = N ; the distributions of these times are not restricted
to exponential ones.

The presented transient solutions tend ast → ∞ to the
known steady-state solutions, given by [14]:

f(x) =























λp0

−β (1 − ezx) for 0 < x ≤ 1 ,

λp0

−β (e−z − 1)ezx for 1 ≤ x ≤ N − 1 ,

µpN
−β (ez(x−N) − 1) for N − 1 ≤ x < N ,

(12)
wherez = 2β

α andp0, pN are determined through normaliza-
tion

p0 = lim
t→∞

p0(t) = {1 + ̺ez(N−1) +
̺

1 − ̺
[1 − ez(N−1)]}−1 ,

pN = lim
t→∞

pN (t) = ̺p0e
z(N−1) .
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Customer classes. As proposed in [15], the input stream
λ can be composed ofK classes of customers andλ =
∑K
k=1 λ

(k) (all parameters concerning classk have an upper
index with brackets) then the joint service time pdf is defined
as

b(x) =

K
∑

k=1

λ(k)

λ
b(k)(x) ,

hence
1

µ
=

K
∑

k=1

λ(k)

λ

1

µ(k)
,

and

C2
B = µ2

K
∑

k=1

λ(k)

λ

1

µ2
(k)

(C
(k)
B

2
+ 1) − 1 .

We assume that the input streams of different class cus-
tomers are mutually independent, the number of classk
customers that arrived within sufficiently long period of time

is normally distributed with varianceλ(k)C
(k)
A

2
; the sum of

independent randomly distributed variables also has normal
distribution with variance which is the sum of composing
variances, hence

C2
A =

K
∑

k=1

λ(k)

λ
C

(k)
A

2
. (13)

The above parameters yieldα, β of the diffusion equation;
functionf(x) approximates the distributionp(n) of customers
of all classes present in the queue:p(n) ≈ f(n) and the
probability that there aren(k) customers of classk is

pk(n(k)) =

=

N
∑

n=n(k)

[

p(n)

(

n

n(k)

)(

λ(k)

λ

)n(k)
(

1 −
λ(k)

λ

)n−n(k)
]

,

k = 1, . . . ,K .

Numerical examples. We consider a G/G/1/30 queue (in
fact, it is M/M/1/30 queue, as we assumeC2

A = C2
B = 1). In

Example 1the input rateλ(t) is varying in time as presented in
Fig. 1. It represents a typical TCP flow with additive increases
and multiplicative decreases in the case of packet losses, the
range of time is [0,100] time units. In computations, the values
of diffusion parameters are changed each 0.5 time unit. Figs.
2 - 5 present the main results of the diffusion model compared
with the simulation results (in the latter case it is the average
of 500 000 independent runs).

In Figs. 2 and 3 display the same numerical results con-
cerning the values of the mean queue. Fig. 2 displays them
in linear scale and Fig. 3 does it in logarithmic scale, to see
better the errors of the diffusion approximation: they become
visible for very small mean queue values, i.e. less then 0.001
at this model. Next figures present the probabilityp(0, t) of the
empty queue as a function of time, following time-dependent

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  10  20  30  40  50  60  70  80  90  100

Input rate

Lambda

Fig. 1. Example 1: Input traffic intensityλ(t).

input, Fig. 4, and the probabilityp(N, t) that the queue is full,
i.e. saturated, and rejects the arriving customers, Fig. 5.

In Example 2the input rate is periodically varying between
values 0.25 and 5. Figs. 6, 7, 8 display the same kind of results
as previously: the mean number of customers, the probability
of the empty and the probability of the saturated queue as a
function of time. All results prove an almost perfect match of
diffusion and simulation results. All simulations in the article
have been performed with the use of OMNET++ [26].

III. O PEN NETWORK OFG/G/1/N QUEUES

The diffusion steady state model of an open network of
G/G/1 or G/G/1/N queues was presented in [15]. Below we
present its short summary. LetM be the number of stations,
the throughput of stationi is, as usual, obtained from traffic
equations

λi = λ0i +

M
∑

j=1

λjrji , i = 1, . . . ,M, (14)

whererji is routing probability between stationj and station
i; λ0i is external flow of customers coming from outside of
network.

The second moment of interarrival time distribution is
obtained from two systems of equations; the first definesC2

Di,
the squared coefficient of variation of interdeparture times
distribution at stationi, as a function ofC2

Ai and C2
Bi; the

second definesC2
Aj as another function ofC2

D1, . . . ,C2
DM :

1) The formula (15) defining the density functiondi(x)
of interdeparture times at stationi is exact for M/G/1,
M/G/1/N stations and is approximate in the case of non-
Poisson input [3]

di(x) = ̺ibx(t) + (1 − ̺i)ai(x) ∗ bi(x) , i = 1, . . . ,M,
(15)

where * denotes the convolution operation. From (15) we get

C2
Di = ̺2

iC
2
Bi + C2

Ai(1 − ̺i) + ̺i(1 − ̺i) . (16)
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 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90  100

G/G/1/N Model

Mean Queue Length E[N] Diffusion
Mean Queue Length E[N] Simulation

Fig. 2. Example 1: The mean number of customers as a function of time;
diffusion approximation and simulation results. .

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60  70  80  90  100

G/G/1/N Model

Mean Queue Length E[N] Diffusion Logarithmic scale
Mean Queue Length E[N] Simulation Logarithmic scale

Fig. 3. Example 1: The mean number of customers (logarithmic scale) as a
function of time; diffusion approximation and simulation results. .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

G/G/1/N Model

p(0) Diffusion
p(0) Simulation

Fig. 4. Example 1: The probabilityp(0, t) of the empty queue, diffusion
approximation and simulation results.

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0  10  20  30  40  50  60  70  80  90  100

G/G/1/N Model

Probability of saturated queue p(N), Diffusion
Probability of saturated queue p(N), Simulation

Fig. 5. Example 1: The probabilityp(N, t) of the saturated queue, diffusion
approximation and simulation results.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  50  100  150  200  250  300

G/G/1/N Model

Mean Queue Length E[N] Diffusion
Mean Queue Length E[N] Simulation

Fig. 6. Example 2: The mean number of customers as a function of time;
diffusion approximation and simulation results. .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300

G/G/1/N Model

Probability of empty queue p(0), Diffusion
Probability of empty queue p(0), Simulation

Fig. 7. Example 2: The probabilityp(0, t) of the empty queue, diffusion
approximation and simulation results.
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300

G/G/1/N Model

Probability of saturated queue p(N), diffusion
Probability of saturated queue p(N), simulation

Fig. 8. Example 2: The probabilityp(N, t) of the saturated queue, diffusion
approximation and simulation results.

2) Customers leaving stationi choose stationj with proba-
bility rij : intervals between customers passing this way have
the pdfdij(x)

dij(x) = di(x)rij + di(x) ∗ di(x)(1 − rij)rij +

+ di(x) ∗ di(x) ∗ di(x)(1 − rij)
2rij + · · ·

or, after Laplace transform,

d̄ij(s) = d̄i(s)rij + d̄i(s)
2(1 − rij)rij +

+ d̄i(s)
3(1 − rij)

2rij + · · · =
rij d̄i(s)

1 − (1 − rij)d̄i(s)
,

hence

E[Dij ] =
1

λirij
, C2

Dij = rij(C
2
Di − 1) + 1 . (17)

E[Dij ], C2
Dij refer to interdeparture times; the number of

customers passing from stationi to j in a time interval t
has approximately normal distribution with meanλirijt and
variationC2

Dijλirijt. The sum of streams entering stationj
has normal distribution with mean

λjt = [

M
∑

i=1

λirij + λ0j ] t

and variance

σ2
Ajt = {

M
∑

i=1

C2
Dijλirij + C2

0jλ0j}t ,

hence

C2
Aj =

1

λj

M
∑

i=1

rijλi[(C
2
Di − 1)rij + 1] +

C2
0jλ0j

λj
. (18)

Parametersλ0j , C2
0j represent the external stream of cus-

tomers.

For K classes of customers with routing probabilitiesr(k)ij

(let us assume for the sake of simplicity that the customers do
not change their classes) we have

λ
(k)
i = λ

(k)
0i +

M
∑

j=1

λ
(k)
j r

(k)
ji , i = 1, . . . ,M ; k = 1, . . . ,K,

(19)
and

C2
Di = λi

K
∑

k=1

λ
(k)
i

µ
(k)
i

2 [C
(k)
Bi

2
+ 1] + 2̺i(1 − ̺i) +

+(C2
Ai + 1)(1 − ̺i) − 1 . (20)

A customer in the stream leaving stationi belongs to classk

with probability λ(k)
i /λi and we can determineC(k)

Di

2
in the

similar way as it has been done in Eqs. (17-18), replacingrij
by λ(k)

i /λi:

C
(k)
Di

2
=
λ

(k)
i

λi
(C2

Di − 1) + 1 ; (21)

then

C2
Aj =

1

λj

K
∑

l=1

K
∑

k=1

r
(k)
ij λi

[(

λ
(k)
i

λi
(C2

Di − 1)

)

r
(k)
ij + 1

]

+

K
∑

k=1

C
(k)
0j

2
λ

(k)
0j

λj
. (22)

Eqs. (16), (18) or (20), (22) form a linear system of
equations and allow us to determineC2

Ai and, in consequence,
parametersβi, αi for each station.

In the case of transient analysis, the time axis is divided
into small intervals (equal e.g to the smallest mean service
time) and at the beginning of each interval the Eqs. (14),
(16), (18) are used to determine the input parameters of each
station based on the values of̺i(t) obtained at the end of
the precedent interval. A software tool was prepared and the
examples below, concerning 2 network topologies, see Fig. 9
a,b, are computed with its use.

Example 3. The network is composed of the source and
three stations in tandem, Fig. 9a. The source parameters are:
λ = 0.1 t ∈ [0, 10], λ = 4.0 t ∈ [10, 20]. Parameters of all
stations are the same:Ni = 10, µi = 2, C2

Bi = 1, i = 1, 2, 3.
Fig. 10a presents mean queue lengths of stations in Model

1 as a function of time. Diffusion approximation is compared
with simulation.

Example 4. The network topology is as in Fig. 9b. The
characteristics of three sources and of one station are changing
with time in the following pattern:
source A:λA = 0.1 for t ∈ [0, 10], λA = 4.0 for t ∈ [10, 21],
λA = 0.1 for t ∈ [21, 40],
source B:λB = 0.1 for t ∈ [0, 11], λB = 4.0 for t ∈ [11, 20],
λB = 0.1 for t ∈ [20, 40],
source C:λC = 0.1 for t ∈ [0, 15], λC = 2.0 for t ∈ [15, 22],
λC = 4.0 for t ∈ [22, 30], λC = 2.0 for t ∈ [30, 31], λC = 0.1
for t ∈ [31, 40].
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(a)
source station 1 station 2 station 3

(b)

source A

station 2

station 4

station 5 station 6

station 3

source C

source B

station 1

Fig. 9. Example 3 and 4 network topologies

Station 6:µ6 = 2 for t ∈ [10, 15] andt ∈ [31, 40]; µ6 = 4 for
t ∈ [15, 31].

Other parameters are constant: maximum queue lengths
N1 = N4 = 10, N3 = 5, N2 = N6 = 20, µ1 = · · · = µ5 = 2.
Routing probabilities are:r12 = r13 = r14 = 1/3, r64 = 0.8.
Initial state:N1(0) = 5,N1(0) = 5,N2(0) = 10,N3(0) = 10,
N4(0) = 5, N5(0) = 5, N6(0) = 10. The results in the
form of mean queue lengths are presented and compared with
simulation in Figs. 10, 11.

We observe that the output of queueing network models is
not as good as in the case of single station models, but still
reasonable.

IV. D IFFUSION APPROXIMATION OF THEG/G/1 AND

G/G/1/N BUSY PERIODS

Busy periods play an important role in the description
of priority queues. During a busy period of higher priority
customers, the sever is not available for lower priorities.

A. G/G/1 station

Let Γ(t) and γ(t) denote PDF and pdf of the busy period
duration; for the M/M/1 system the functionγ(t) is known
explicitly [19]

γ(t) =
1

t
√
̺
e(λ+µ)tI1(2tµ̺)

whereI1(x) = x
2

∑∞
k=0

1
k!(k+1)!

(

x
2

)2k
is the modified Bessel

function of the first kind and of order one. For M/G/1 system,
a functional equation,

γ̄(s) = B̄(s+ λ+ λγ̄(s))

whereγ̄(s) =
∫∞
0
e−stγ(t)dt, B̄(s) =

∫∞
0
e−stb(t)dt are the

Laplace transforms ofγ(t), b(t), although impossible to invert
in most cases, enables us to compute the moments ofγ(t), e.g.

E[γ] = − d

ds
γ̄(s)s=0 =

1/µ

1 − ̺
(23)

E[γ2] =
d2

ds2
γ̄(s)s=0 =

E[b2]

(1 − ̺)3
(24)
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Fig. 10. (a) Example 3: The mean queue lengths of station1, station2 and
station3 as a function of time — diffusion and simulation (100 000 repetitions)
results; the source intensityλ(t) is indicated. (b) Example 4: The mean
queue lengths of station1 and station2 as a function of time — diffusion and
simulation (100 000 repetitions) results; the source intensities λA(t), λB(t)
are indicated.

The expression

Γ(t) =

∫ t

0

∞
∑

n=1

e−λt
(λt)n−1

n!
b∗n(t)dt

where b∗n(t) is the n-fold convolution of b(t) with itself,
could be helpful in numerical evaluation of the busy time
distribution for the M/G/1 queue [19]. We know virtually
nothing aboutΓ(t), γ(t) for the G/G/1 system. In the diffusion
approximation, the busy period has a simple interpretation. In
the case of G/G/1 system, it is just the first passage time from
x = 1 to the absorbing barrier atx = 0, its pdf is given by
Eq. (4) that yields

E[γdif ] =
1

−β , E[γ2
dif ] = − α

β3
+

1

β2

which are exact results in the case of M/M/1 and M/G/1
systems.
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Fig. 11. Example 4: The mean queue lengths of station3 and station4 (a)
and of station5 and station6 (b)

B. Busy period at G/G/1/N

As the process starting atx = 1 may visit the barrier at
x = N an unlimited number of times before coming tox =
0, the density function of the busy period is, preserving the
previously used notation

γ(t) = γ1,0(t) + γ1,N (t) ∗ lN (t) ∗ γN−1,0(t) +

+ γ1,N (t) ∗ lN (t) ∗ γN−1,N (t) ∗ lN (t) ∗ γN−1,0(t) + . . .

(25)

where * denotes the convolution operator, or

γ̄(s) = γ̄1,0(s) + γ̄1,N (s)lN (s)γ̄N−1,0(s) +

+ γ̄1,N (s)l̄N (s)γ̄N−1,N (s)l̄N (s)γ̄N−1,0(s) + . . .

= γ̄1,0(s) +
γ̄1,N (s)lN (s)γ̄N−1,0(s)

1 − γ̄1,N (s)lN (s)
. (26)

Fig. 12 presents the comparison of busy period pdf given
by diffusion approximation and simulation.

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25

G/G/1/N Model

Busy Periods Diffusion
Busy Periods Simulation 1879107 periods

Fig. 12. M/M/1/20 queue,̺ = 0.75, busy period diffusion approximation
compared with simulation (histogram of over 1.8 million samples).

V. D IFFUSION APPROXIMATION OF PREEMPTIVE- RESUME

PRIORITY SYSTEM

This paragraph introduces a diffusion model of a single
server with priority preemptive - resume queuing discipline.
Customers arriving to the system are divided into a certain
number, sayK, of classes. Each class is distinguished by its
index k, k = 1, . . . ,K, and has its own priority. The lower
the number of the index, the higher the priority of the class.
When a customer of classk is being served and a customer of
classl, l < k arrives, the current service is suspended and the
service of the newcomer begins. After the completion of this
service and the service of other, more privileged than class
k customers, who have arrived meanwhile, the interrupted
service is resumed at the point of suspension. Customers of
the same priority class are served in the order of arrival. The
presence of lower class customers is transparent to customers
of a given class. We assume that interarrival times in the
particular stream are characterized by parametersλ(k), σ(k)2

A

having the same meaning asλ, σ2
A in the case of one-class

system. The service time of customers of classk has mean
value1/µ(k) and varianceσ(k)2

B .
Following exactly the same procedure as for the FIFO

system, we define: input processE(K)(t) as the total number
of customers of allK classes who arrived to the system during
the time period[0, t], and the output processH(K)(t) as the
number of customers of allK classes who left the system
in [0, t]. Applying the central limit theorem and using the
same arguments as for the first-come-first-served discipline,
we can prove that these processes have approximately normal
distributions if the period[0, t] is sufficiently long and within a
busy period of the server. The input processE(K)(t) consists
of separate input processesε(k)(t) for each class of customers:

E(K)(t) =
K
∑

k=1

ε(k)(t)
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The output processH(K)(t) can be described as

H(K)(t) =

K
∑

k=1

η(k)(t)
̺(k)

1 −R(k−1)
(1 −R(k−1))

1

R(k)

=

K
∑

k=1

̺(k)

R(k)
η(k)(t) (27)

whereη(k)(t) is the output process for thek-priority stream
in the absence of other classes,R(k) =

∑(k)
t=1 ̺

(l) and̺(l) =
λ(l)/µ(l). R(k) denotes the probability that the busy period for
customers of classes1, ..., k taken altogether is in progress,
̺(k)

1−R(k) denotes the probability that a customer of classk is
present in the system. Classk has the1 −R(k−1) part of the
server time at its disposal.1−R(k−1) denotes the probability
that there are no customers of priority higher thank present in
the system. The total number of customers of classes1, ...,K
present in the system

N (K)(t) = E(K)(t) −H(K)(t)

is changing and its changes during the time period[0, t] have
the meanβ(K)t and the varianceα(K)t,

β(K) =

K
∑

k=1

λ(k) −
K
∑

k=1

̺(k)

R(k)
µ(k),

α(K) =

K
∑

k=1

λ(k)C
(k)2

A +

K
∑

k=1

̺(k)

R(k)
µ(k)C

(k)2

B ,

C
(k)2

A = λ(k)2σ
(k)2

A , C
(k)2

B = µ(k)2σ
(k)2

B

and are approximately normally distributed. We replace the
discrete-state processN (K)(t) by the continuous-state process
X(K)(t) whose infinitesimal changes have normal distribution
with the meanβKdt and the varianceαKdt. Solving the
diffusion equation with the same type of boundary condi-
tions as defined earlier with the intensity of jumps from
x = 0: Λ(K) =

∑K
k=1 λ

(k) we obtain the density function
f (K)(x, t;x0) for all classes considered together.

Let v(K)(n) denote the probability thatn customers of class
K are present in the system andp(K−1)(N − n) denote the
probability thatN−n customers of all other classes are present
in the system. Obviously,

p(K)(N) =
N
∑

n=0

p(K−1)(N − n)v(K)(n)

and similarily,

p(k)(n) =

n
∑

ν=0

p(k−1)(n− ν)v(k)(ν), k = 2, ...,K

or

vk(n) =
p(k)(n) −

∑n−1

ν=0
p(k−1)(n− ν)v(k)(ν)

p(k−1)(0)
, k = 2, ...,K.

For the highest priority class

v(1)(n) = p(1)(n).

Thus, we know the distributionvk(n), the mean number of
customers present in the system

E[n(k)] =

∞
∑

ν=0

v(k)(ν)ν

and, by Little’s result, the mean time they spend in the system

E[T (k)] =
E[n(k)]

λ(k)
k = 1, ...,K

for each class of customers.
The inconvenience of this approach is the propagation of

errors of the method. An alternative approach is to study the
diffusion processes corresponding to the number of each class
customers separately and to see the influence of higher classes
on the queues of lower classes through the probability that the
system is occupied by higher classes and thus is not able to
serve the lower ones.

For example, if we take two classes, the first diffusion
process corresponding to the priority class has parameters
β(1) = λ(1) −µ(1) andα(1) = σ

(1)2

A λ(1)3 +σ
(1)2

B µ(1)3 and the
second one, corresponding to the lower class which is served
only in absence of the higher class, has the parameters

β(2) = λ(2) − µ(2)p(1)(0, t)

α(2) = σ
(1)2

A λ(1)3 + σ
(2)2

A λ(2)3 + σ
(2)2

B µ(2)3p(1)(0, t) +

+σ
(1)2

B µ(1)3 .

Before the waiting time can be considered, we have to
define the distribution of the completion time. The completion
time is the time period between the beginning and the end
of the service of any customer. On the highest priority level
the completion time is equal to the service time, for the other
classes it additionally includes the breaks caused by the service
of more privileged customers. LetT be the service time of a
customer of classk. If n customers of classes1, ..., k−1 arrive
during the timeT , the service will be interruptedn times,n
has approximately normal distribution with the meanΛ(k−1)

and the variance
∑k−1
l=1 λ

(l)C
(l)2

A T .
The duration of any ofn breaks is distributed like the

busy periodγ(k−1) of the system serving customers of classes
1, ..., k − 1. The total time of breaks inT has the pdf

ϕ(k)(t
∣

∣ T ) =

∞
∑

n=0

pn|T γ
(k−1)(∗n)(t)

wherepn|T is the probability ofn breaks inT , γ(k−1)(∗n)(t)
is then-fold convolution ofγ(k−1)(t) with itself. Thus the pdf
c(k)(t) of the completion time is

c(k)(t) =

∫ ∞

0

b(k)(t)ϕ(k)(t− T
∣

∣ T )1(t− T )dT,

where1(t) = 0 for t < 0 and1(t) = 1 for t ≥ 0, and from
its Laplace transform

c(k)(s) =

∫ ∞

0

b(k)(T )e−sT
∞
∑

n=0

{pn/T [γ̄(k)(s)]n}dT
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we obtain its momentsE = [c(k)] andE[(c(k))2]:

E = [c(k)] = −
d

ds
c(k)(s)s=0 = {E[γ(k−1)]Λ(k−1) + 1}

1

µ(k)
,

E[(c(k))2] =
d2

ds2
c(k)(s)s=0 =

= E[γ(k−1)]2
[(

(k−1)
∑

l=1

λ(l)C
(l)2

A

)

1

µ(k)
+

− Λ(k−1) 1

µ(k)

]

+ E[(γ(k−1))2]Λ(k−1) 1

µ(k)
+

+ E[γ(k−1)]E[(b(k))2]Λ(k) ·

·{E[γ(k−1)]Λ(k−1) + 2} + E[(b(k))2].

When all input streams are Poisson, i.e.C
(l)2

A = 1, l =
1, ..., k the results are identical to the exact formula given for
this case in [18]. Finally, we can define the mean waiting time
for every priority level as

E[w(k)] =
E[n(k)]

λ(k)
− E[c(k)].

If we intend to consider a network of servers, we are obliged
to determine the output stream of each server. In the case of
priority queues we extend the approach used previously for a
network of G/G/1/N stations, see Eqs. (16), (18) or (20), (22).

Let us denoted(k)(t) the pdf of interdeparture times in the
stream of classk customers, it can be expressed as

d(k)(t) =
̺(k)

1 −R(k−1)
c(k)(t) +

(

1 − ̺(k)

1 −R(k−1)

)

×[(1 −R(k−)1)a(k)(t) ∗ c(k)(t)
+R(k−1)a(k)(t) ∗ γ(k−1)(t) ∗ c(k)(t)]. (28)

The components of this expression correspond to three situa-
tions, possible after the departure of any customer of classk:
– the next customer of the classk is in the system (it
occurs with probability ̺(k)

1−R(k−1) ) and will leave it after its
completion time,
– there are no customers of this class in the system and
we shall wait the time described bya(k)(t), the interarrival
time pdf (when the input is non-Poisson it is merely an
approximation) until it appears and enters the server,
– no customer of classk is present in the system and a
customer of higher class comes before him, so the busy period
γ(k−1) must be terminated first.
The mean interdeparture time is obviously the same as the
mean interarrival time and from the above (28), where in
turn the densities of busy periods at each priority level are
given by expressions of the type (25) and their moments are
obtained from (26), we calculate the squared coefficient of the
variation of interdeparture times at each priority customers,
needed to integrate a single priority station into a networkof
such stations. The final formula is as follows:

C
(k)
D

2
=

k
∑

l=1

h(k,l)C
(l)
A

2
+ ψ(k) (29)

where

h(k,l) =

{

(

ζ(k,l) + 1−R(k)

1−R(k−1)R
(k−1)g(k−1,l)

)

(λ(k))2, l < k,

1−R(k)

1−R(k−1) , l = k,

and

ζ(k,l) =
λ(l)

µ(k)(β(k−1))2
+ g(k−1,l) Λ

(k−1)

µ(k)
,

g(k,l) =
1

(β(k))3
,

ψ(k) = χ(k)(λ(k))2 +
1 −R(k)

1 −R(k−1)

{

1 +R(k−1)e(k−1)(λ(k))2

+2̺(k)

(

1 −
Λ(k−1)

β(k−1)

)

+

−
λ(k)R(k−1)

β(k−1)

[

1 + 2̺(k)

(

1 −
Λ(k−1)

β(k−1)

)]

}

− 1,

χ(k) =
C

(k)
B

2
+ 1

(µ(k))2
Λ(k−1)

β(k−1)

(

Λ(k−1)

β(k−1)
− 2

)

−

Λ(k−1)

(β(k−1))2µ(k)
+ e(k−1) Λ(k)

µ(k)

C
(k)
B

2
+ 1

(µ(k))2
,

e(k) =
1

(β(k))2
−

1

(β(k))3

k
∑

l=1

̺(l)

R(k)
µ(l)C

(l)
B

2
.

The equation (29) corresponds to (16): it defines how the
variation of the interdeparture times of the class-k customers
depends on the variations of the interarrival times of all classes
that may influence the output of this class. The parameters of
service time distributions are hidden in the coefficients ofthe
equation. Similarly, the extension of the equation (18) defining
the squared coefficient of variation of interarrival times in the
flow of class-l customers coming to stationj has the following
form

C
(l)
Aj

2
=

1

λ
(l)
j

M
∑

i=1

K
∑

k=1

r
(kl)
ij λ

(k)
i [(C

(k)
Di

2
−1)r

(kl)
ij +1]+

C
(l)
0j

2
λ

(l)
0j

λ
(l)
j

,

(30)
wherer(kl)ij is the probability that a class-k customer leaving
stationi goes directly to stationj having there class-l priority.
Equations (29) and (30) taken together determine the input
flow parameters for each class and each station, allowing us
to analyze each station separately. As usual, in the case of
transient states, all parameters should be considered constant
at small intervals and all model equations should be solved
for these parameters to define conditions at the beginning of
the next interval.

Numerical examplesConsider a server with two priority
levels. In Example 5, the priority customers come with inten-
sity λ(1) = 0.4 during intervalst ∈ [0, 10], [20, 30], [40, 50],
etc. Otherwiseλ(1) = 0. The intensity of non-priority cus-
tomers is constant,λ(2) = 0.4. In Example 6the server utiliza-
tion is higher and the bursts of priority input stream are longer,
λ(1) = 1.2 during intervalst ∈ [0, 20], [40, 60], [80, 100],
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andλ(1) = 0 between these intervals while the second class
intensity is constant,λ(2) = 0.5.

The queue capacities are in both cases limited:N (1) =
N (2) = 20. To validate the diffusion model by the comparison
of its results with the exact ones obtained with Markov chain
model solved numerically, we assume Poisson input streams
and exponential service time distributions for both types of
customers,µ(1) = µ(2) = 1. Figs. 13, 14 refer to the Example
5. Fig. 13 displays the mean number of customers of each
class as a function of time, given by diffusion model and by
the corresponding Markov model. Fig. 14 compares the total
number of customers of both classes.

Figs. 15, 16 give the same results for the Example 6.
Of course, diffusion approximation gives not only the mean

values but also the queue distributions; e.g. Fig. 17 presents,
for Example 5, exact and estimated probabilitiesp(1)(0, t),
p(2)(0, t) that the queues of class 1 or class 2 are empty. Fig.
18 presents for Example 6 exact and estimated probabilities
p(1)(N (1), t), p(2)(N (2), t) that the queues of class 1 or class
2 are saturated. For all computations we considered constant
parameters inside subintervals of the 0.1 time unit length.In all
cases the errors observed for priority queues are smaller then
for non-priority ones. It is natural, the errors of the second
class queue accumulate the errors of both classes.

VI. CONCLUSIONS

The article presents an adaptation of the diffusion approx-
imation model with absorbing barriers to the analysis of
transient states of queueing models. The method was applied
previously to G/G/1/N service stations, here we also present
the case of preemptive-resume priority queues.

In the article, we demonstrate how the diffusion approxi-
mation formalism is applied to study transient and behavior
of G/G/1 and G/G/1/N non-priority and preemptive-priority
models. The way we switch from one model to another
demonstrates the flexibility of the method. Also the preemptive
discipline can be easily converted to non-preemptive queue-
ing discipline. Also the introduction of self-similar traffic
is possible: as we change the diffusion parameters each
small time-interval, we can modulate them to reflect self-
similarity and long-term correlation of the traffic. Some other
applications may be considered: recently we have used the
diffusion approximation to estimate transfer times insidea
sensor network [9], to model the performance of leaky-bucket
algorithm as well as to study the work of call centers [10], and
to investigate the stability of TCP connections with IP routers
having AQM queues [8]. In the first case the diffusion process
reflects the distance defined as the number of hops between
the transmitted packet and its destination (sink). Owing to
the introduction of the transient state analysis, the model
captures more parameters (time-dependent and heterogeneous
transmission, the presence of losses specific to each hop) of
a sensor network transmission time than the already existing
models of this type, also based on the diffusion approximation
[16]. It also gives more detailed results: the density function
of a packet travel time instead of its mean value. In the second
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Fig. 13. Example 5: Mean number of customers as a function of time for
the first and second priority levels, diffusion approximation and exact results
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Fig. 14. Example 5: Global mean number of customers as a function of
time, diffusion approximation and exact results.
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Fig. 15. Example 6: The mean number of customers as a function of time for
the first and second priority levels, diffusion approximation and exact results.
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Fig. 16. Example 6: Global mean number of customers as a function of
time, diffusion approximation and exact results.
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Fig. 17. Example 5: Probabilitiesp(1)(0, t), p(2)(0, t) that the queues of
class 1 or class 2 are empty, diffusion approximation and exactresults.
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Fig. 18. Example 6: Probabilitiesp(1)(N(1), t), p(2)(N(2), t) that the
queues of class 1 or class 2 are saturated, diffusion approximation and exact
results. Logarithmic scale is chosen for better presentation of very small
probabilities.

case, the introduction of state-dependent diffusion coefficients
enables us to study transient states of parallel stations of
G/G/N/N type. The third position proposes a diffusion model
of a queue with RED (Random Early Detection) mechanism
and considers the dynamics of TCP connections having RED
queue in the congested router. Also the application of diffusion
approximation to model wireless networks based on IEEE
802.11 standard gives promising results, [12].

Numerical examples, where the quantitative results of dif-
fusion approximations are compared with simulations or the
numerical solutions of corresponding Markov chain models,
indicate acceptable level of errors of the proposed approach.

Of course, there are several ways we can analyze transient
states in queueing models. In recent years we have put a
considerable effort to master their use as efficient tools that
give sound numerical results. Each of them has its advantages
and disadvantages. Firstly, we can use simulation models. In
this purpose we have developed an extension of OMNET++
(a popular simulation tool written in C++, [26]) allowing the
simulation of transient state models. In particular, random gen-
erators were modified to make the changes of their parameters
as a function of time possible, a new software was added
to collect the statistics of multiple runs and to aggregate it.
We used this module to validate the diffusion approximation
results. Basically, the simulation run in a transient stateinvesti-
gation should be repeated sufficient number of times (e.g. 500
000 in our examples) and the results for a fixed time should be
averaged. As the number of repetitions is high, the estimation
of errors is easy (confidence interval) on the basis of normal
distribution. However, the number of repetitions is related to
the value of the investigated probabilities and in the case of
rare events should be high and it increases the simulation time
(typically in some of our examples, 5 minuts of computations
for a diffusion model are compared to 24 hours of simulations,
on a standard PC station).

The other way to model transient states is to create a Markov
chain model and to solve it numerically. This approach,
also combined with the use of stochastic Petri nets, gained
already a considerable attention of researches, e.g. [13],[30],
[27] and a number of software tools, e.g. SHARP, PEPSY,
SNMP, MOSES [2] or XMARCA [20] was implemented. The
numerical problems of solving very large systems of equations
related to Markov models were thoroughly studied, e.g. [21].
This effort concerned mainly steady-state models. For several
years we have developed a software to construct and to solve
very large (having millions of states) Markov chains relating
to queueing models and we have adopted suitable numerical
methods and distributed algorithms. In the case of transient
states, the implementation is based on the reduction of state
space due to Arnoldi’s orthogonal projection into the Krylov
subspace [29]. We have also used Markov model to evaluate
the errors in the case of the priority model presented here.
Naturally, the usability of the approach depends on the sizeof
the considered model, and it is relatively easy to go beyond the
limit number, i.e. some tens of millions, of tractable states. We
are still working on more powerful Markovian modules using
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distributed algorithms and run on a cluster architecture.
Another well-known approach of modeling is the fluid-

flow approximation where only the mean values of traffic
intensity and service intensity are considered. Compared to the
diffusion approximation, the model is simple: instead of partial
differential equations of second order, the ordinary first-order
linear differential equations are used. Due to its simplicity,
it gained much interest in the analysis of transient states in
Internet and in investigation of stability of its connections, e.g.
[24]. However, as we tested in [7], the errors of the fluid-flow
approximation in modeling queues dynamics are considerably
larger than in the case of diffusion approximation which is a
second-order approximation, where not only the mean values
but also the variances of flow changes and of service times
are considered.

Therefore we consider the diffusion approximation as a very
convenient tool in the analysis of transient states queueing
models in performance evaluation of computer and communi-
cation networks.
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