
Integrated System for Malicious Node Discovery and

Self-destruction in Wireless Sensor Networks

Madalin Plastoi

Politehnica University of Timisoara
Timisoara, Romania

madalin.plastoi@aut.upt.ro

Constantin Volosencu

Politehnica University of Timisoara
Timisoara, Romania

constantin.volosencu@aut.upt.ro

Ovidiu Banias

Politehnica University of Timisoara
Timisoara, Romania

ovidiu.banias@aut.upt.ro

Roxana Tudoroiu

Politehnica University of Timisoara
Timisoara, Romania

tudoroiu.roxana@ac.upt.ro

Daniel-Ioan Curiac

Politehnica University of Timisoara
Timisoara, Romania

daniel.curiac@aut.upt.ro

Alexa Doboli

State University of New York
Stony Broke, New York, USA

adoboli@ece.sunysb.edu

Abstract — With the tremendous advances of the wireless
devices technology, securing wireless sensor networks became
more and more a vital but also a challenging task. In this paper
we propose an integrated strategy that is meant to discover
malicious nodes within a sensor network and to expel them
from the network using a node self-destruction procedure.
Basically, we will compare every sensor reading with its
estimated values provided by two predictors: an autoregressive
predictor [1] that uses past values provided by the sensor
under investigation and a neural predictor that uses past
values provided by adjacent nodes. In case the absolute
difference between the measured and the estimated values are
greater then a chosen threshold, the sensor node becomes
suspicious and a decision block is activated. If this block
decides that the node is malicious, a self-destruction procedure
will be started.

Keywords - wireless sensor networks, prediction, malicious
node discovery, self-destruction

I. INTRODUCTION

With the continuous progress in micro-electro-
mechanical systems (MEMS) and radio technologies, a new
concept arose - wireless sensor networks (WSN). A wireless
sensor network, being a collection of tiny sensor nodes with
limited resources (limited coverage, low power, smaller
memory size and low bandwidth), proves to be a viable
solution to many challenging civil and military applications.
Their deployment, sometimes in hostile environments, can
be dangerously perturbed by any type of sensor failure or,
more harmful, by malicious attacks from an opponent.

Sensor networks because of their specific limitations are
susceptible to various kinds of attacks that cannot be
prevented only by traditional methods (e.g. cryptography):
eavesdropping, traffic analysis, selective forwarding,

spoofing, wormhole attack, sinkhole attack, Sybil attack and
Hello flood attack are the most significant [2]. But, almost
certainly the most important danger, due to the inherent
unattended characteristic of wireless sensor networks, is
represented by node-capturing attack [3], where an enemy
acquires full control over sensor nodes through direct
physical contact. A node capturing attack is very feasible
because of at least two reasons: a) practically, we cannot
demand an efficient access control to thousands of nodes
distributed in a large territory; and b) it is very difficult to
assure tamper-resistance requirements because sensor nodes
frequently need to be inexpensive to justify their use.

After an attacker gains the physical control over a sensor
node he can extract secret information such as cryptographic
keys to achieve unrestricted entrance to higher network
levels, or by using reverse engineering techniques he can
find security holes to compromise the entire sensor network.

Our proposed countermeasure is based on the fact that a
corrupted node is better to be expelled from the network as
soon as its malicious activity is started [4]. Even if more
sensors are expelled, the WSN will function as designed
because of one inherent feature: spatial redundancy [5].

In order to identify a corrupted sensor node, we
presumed that even if it may still send authenticated
messages (e.g., it can use the cryptographic keys already
stored in its memory), it might not operate according to its
original specifications sending incorrect readings to the base
station. We will identify these sensors by using prediction
techniques and will eliminate them by starting a self-
destruction node procedure.

The rest of the paper is organized as follows. The second
section presents a detailed description of our strategy.
Section 3 presents the technique used for the self-destruction
procedure applied to corrupted nodes. In the last two
sections, experimental results and conclusions are offered.

241

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

II. PREDICTION BASED METHODOLOGY

In a large number of applications where wireless sensor
networks interact with sensitive information or function in
hostile unattended environments, it is crucial to develop
security related mechanisms.

Due to their nature, these networks have to resist to a
plethora of possible attacks. The attackers will try to obtain
in-network information or to corrupt the network partially or
totally. For making this possible, the attackers will try to gain
control over one or several network nodes. Our proposed
defending strategy is based on the detection of malicious
sensor nodes using predictors and the elimination of their
effects by expelling them from the network using a self-
destruction node technique.

A. The Sensor Network Assumptions

In order to assure a high rank of efficiency for our
malicious node detection and self-destruction strategy we
chose a sensor network having the following features:

a) The sensor network is static, i.e., sensor nodes are
not mobile; Moreover, each sensor node knows its own
position in the field.

b) The base station, sometimes named access point,
acting as a controller and as a key server, is supposed to be a
laptop class device and supplied with long-term power. We
also assume that the base station will not be compromised.

c) Between the three most common wireless
topologies (star, mesh and cluster-tree) we chose a star
topology (e.g. Cellular Wireless Network [6] and SENMA
[7]) for our sensor network. Star topology is a point-to-point
architecture where each sensor node communicates directly

with the base station. The main characteristics of the star
topology are: there are no node-to-node connections and no
multi-hop data transmission; sensor synchronism is
unnecessary; sensor do not listen, only transmit and only
when polled for; complex protocols are avoided;
dependability of individual sensors is much less significant.
Because of these features, attacks on routing protocols
(spoofing, selective forwarding, sinkhole attack, wormhole
attack, Sybil attack and Hello flood attack) are almost
impossible.

d) We rely on efficient secret-key cryptography with
pre-distributed keys using Skipjack, RC5 or AES algorithms
to encipher all data communications inside the sensor
network; These three symmetric encryption algorithms have
a common attribute that makes them an attractive alternative
in case of sensor networks: they are able to encrypt short or
medium size messages, like the ones send by sensors and
received by base stations, in the case of limited power
consumption. By using such appropriate cryptographic
techniques the damaging potential of the passive attacks
(eavesdropping and traffic analysis) can be ignored.

e) The measurements supplied by each sensor have an
important deterministic character, rather than a strictly
random (stochastic) one. In this case there exists a
correlation between past values and the current one, giving
us the power of prediction. As an example, the future values
of temperature measurements in a location are strongly
related with past and present values, so a prediction method
can be applied.

Figure 1. Malicious node discovery and self-destruction with mixed prediction

B. The Proposed Strategy

Our strategy exploits two types of observations over the
current and past measurements of the wireless sensor

network nodes. First, the temporal redundancy in the sense
that previous provided measurements from each sensor will
be used to decide if the given sensor operates as desired or
not. And second, based on the past and present values of

242

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

neighboring nodes, the operation of the given sensor is
classified as right or wrong.

We decided to use a mixed estimation and prediction
system with two predictors – an autoregressive predictor
(AR) and a neural network predictor (NN). The first
predictor will describe the node evolution using its past
values while the second one will describe node evolution
using present and past values provided by neighboring
nodes.

In Fig. 1 is presented the system architecture, composed
of 4 major components: a) The Wireless Sensor Network
under investigation; b) The Estimation and Prediction
Block; c) The Decision Block; and d) The Self-destruction
Procedure. The Estimation and Prediction Block includes
two on-line predictors, one autoregressive predictor and one
neural network predictor. The outputs of these two
predictors represent the inputs for the Decision Block. At
this level the system will provide automatic decisions upon
engaging or not the self-destruction procedure for the given
node.

In the following paragraphs we will present both
predictors, including the mixed strategy.

Our stratagem to identify a corrupted sensor node is
based on the fact that even if it may still send authenticated
data it may not operate according to initial requirements,
sending incorrect readings to the base station. These nodes
will be identified in the moment they begin to broadcast
erroneous information. For this purpose, we will present
further two types of predictors, one autoregressive predictor,
and one neural network predictor. Based on these predictors
we will decide if a self-destruction procedure is needed.

In order to implement the first predictor, we considered
that an autoregressive (AR) model efficiently approximates
the evolution in time of the measurements provided by each
sensor. An autoregressive or AR model describes the
evolution of a variable only using its past values. This class
of systems evolves due to its "memory", generating internal
dynamics, and is defined as follows:

)()(...)1(1)(tntxnatxatx , (1)

where)(tx is the measurement series under investigation,

ia are the autoregression coefficients, n is the order of the

autoregression and is assumed to be the Gaussian white

noise. By convention, the time series)(tx is assumed to be

zero mean. If not, another term 0a is added in the right

member of equation (4). Establishing the correct model of
order n is not a simple task and is influenced by the type of
data measurements and by computing limitations of the base
station. Reasonable values of the order n are between 3 and
6.

If the ia coefficients are time-varying, the equation (1)

can be rewritten as:

)()()(...)1()(1)(tntxtnatxtatx . (2)

The model (2) can be used either to estimate the coefficients

)(tai in case the time series)(),...,(ntxtx are known

(recursive parameter estimation), either to predict future

value in case that)(tai coefficients and past values

)(),...,1(ntxtx are known (AR prediction).

In parallel with the AR predictor, we use a three order
feed forward neural network predictor with two hidden
layers. The input layer consists of neurons which are
associated with values provided by adjacent nodes at
moments t, t-1 and t-2. The output layer has only one
neuron for the estimated value.

For network’s node A, the estimated value by the neural
predictor is:

)),(),...,1(()()(ˆ)(,, NNAadjAadjA BntXtXftNNAx , (3)

 TadjmAadjAadjA itxitxitX ,1,, ,...,)(, (4)

 TadjmAadjANNA bbB ,1,)(,..., , (5)

where: itx adjkA , is the value from the adjacent node k at

it moment,)(NNAB is a vector containing the trust

factors of each of the m adjacent nodes of A, and n is the
predictor order.

The trust factor)(NNAb has a linear dependence on the

previous node trust factor and the error value. However, the

computation of)(NNAb is made in the decisional block.

After the node’s output of the neural prediction, an error
value is obtained:

)(ˆ)()()()(txtxte NNAANNA . (6)

C. The Autoregresive Prediction

Our strategy exploits the temporal redundancy in the
sense that previous provided measurements from each
sensor will be used to decide if the sensor operates as
desired or not. The plan is the following: an attacked sensor
node that will attempt to insert false information into the
sensor network will be recognized by comparing its output
value with the value predicted using past readings offered
by that specific sensor (Fig. 2). In the case that any
malicious activity is observed, the Decision Block is
triggered to decide if the self-destruction procedure must be
started for this specific node in order to prevent its further
undesired activity.

The complete mechanism workflow runs while network
is active. By considering a specific node symbolized by A,
this process is done in the following steps:

243

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 2. Autoregressive predictor

a) Associate a node trust indicator with every sensor
node. The specified sensor node A will have a trust factor

denoted by)(ARAb . This integer value is initially set to zero

(0)(ARAb for a fully reliable sensor node) and is

incremented during our methodology every time a potential
malicious activity is encountered. This trust factor must be
reset to zero, if no potential malicious activity is
encountered for a long period of time. The node trust
indicator represents, in other words, the perception of
confidence between the WSN and that specific sensor.

b) At every moment of time t, estimate the present value

)()(
ˆ tARAx provided by sensor node A, using the past readings

)()(itx ARA provided by the same sensor A. For the

sensor A, we can write:

))()(),...,1()(()()(ˆ ntARAxtARAxftARAx (7)

where n is the estimator’s order. In our approach, an on-line
AR predictor performs this step.

c) Compare the present value)(txA measured by the

sensor node A with its estimated value)()(ˆ tARAx by

calculating the error:

)()(ˆ)()()(tARAxtAxtARAe (8)

d) Increment the node trust indicator Ab if the error

)()(te ARA exceeds a given threshold AR : ARtARAe)(

(this is done only one time inside a transitory time zone –
due to the internal structure of recursive predictors, an error
obtained at instant time t, is propagated/attenuated in the
recursive predictor response for some instants, obtaining a
transitory regime). If the node trust indicator is higher than a
chosen value)(ARAb , the node could be declared as

potentially malicious and depending on the Decision Block
output, a self-destruction procedure could be started for the
A node.

The associated pseudocode is presented in Fig. 3.

//this function is performed for each node in the network
int Autoregression(int nodeId)
{

SET)(ARAb ,)(ARA ; //node trust indicator, threshold

WHILE (network is active)
{
…

Ax =READ sensor A; //get sensor actual value for node ID equal

//with nodeID
…

)(ˆ ARAx = ARpredict(prior Ax values); //call AR prediction

)(ARAe =
)(ˆ ARAxAx ; //calculate the error

IF (ABS ()(ARAe) >)(ARA)

{
IF (AR predictor is not in transitory regime)

{)(ARAb =)(ARAb + 1; //increment node trust indicator

START thread TRANSITORY_REGIME;
//a counter set on k //and will be decremented every
//instant until it becomes zero

}
DECISION_BLOCK (node with node ID equal to nodeID);

//call //decision method
}}
…
}

Figure 3. AR implementation pseudocode

First of all, we have to associate a threshold 0AR for

every sensor node. This threshold will be used to decide if a
sensor operates normal or abnormal and its measured value
depends on the type of the sensor and its specific and
desired operation in real environment. For a specific sensor

A, the threshold will be denoted by)(ARA .

After this initialization, at every instant t, we will
compute the estimated value)()(ˆ tARAx relying only on

past the values)0(),...,1(AA xtx and we will use both

parameter estimation and prediction as presented in the
following steps:

First step: we will estimate the parameters)(tai using a

recursive parameter estimation method. From a large
number of methods for estimating AR coefficients we
decided to use a numerically robust RLS (recursive least
square) variant based on orthogonal triangularization,
known in literature as QRD-RLS [8]. One of the reasons is
that it can be implemented efficiently on the base stations
level (laptop class device).

Second step: we will obtain the prediction

value)(ˆ
)(tx ARA using the following equation:

)()()(...)1()(1)()(ˆ tntAxtnatAxtatARAx (9)

244

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

The corresponding pseudocode for implementing the
estimation procedure is presented in Fig. 4:

float ARpredict(prior Ax values)

{ CALCULATE autoregression coefficients ai ;
// an estimation using QRD-RLS method

CALCULATE predicted value)(ˆ ARAx ;

//compute sensor predicted value as a result of (9)

RETURN)(ˆ ARAx ; }

Figure 4. Autoregressive prediction pseudocode

Following, we will compare the present value

)t(x A measured by the sensor node with its estimated

value)()(
ˆ tARAx , and the error)(ARAe will be computed

using equation (8).

D. The neural network prediction

In order to improve the efficiency and reliability of the
Estimation and Prediction Block, we implemented a neural
network predictor based on measurements provided by
contiguous sensors [9]. This predictor will work in parallel
with the autoregressive predictor to discover all malicious
activity. In Fig. 5 the neural network predictor is presented:

Figure 5. Neural Network predictor

A neural network predictor consists of three or more
layers of artificial neurons (Fig. 6). Usually, neural networks
have at least three layers, an input layer, an output layer and
a hidden one. Our implemented neural network has four
layers because we used two hidden layers. Neurons are
linked one with each other through quantitative relations
known as weights. Each layer is activated by an activation
function. Most used activation functions are: direct identity
(for input layers), sigmoid, hyperbolic tangent and linear
functions. In fact this neural predictor model exposes a
composition function which describes how the inputs are
transformed into outputs.

Figure 6. Neural network predictor

Each neuron implements the following function:

i

ii xgKxf))(()(, (10)

where K is a composition function, i are the weights, and

ig is a vector containing neuron’s inputs

),...,,(21 ngggg [10].

In order to use a neural network predictor, two steps
must be performed:

Neural network training - will be established the number

of hidden neurons and the neural network weights i by

performing successive training sessions using Levenberg-
Marquardt method [11]. For the hidden layers we will use
hyperbolic tangent activation function and for the output
layer we will use a linear activation function. This training
step is done off-line, prior to the neural network predictor
implementation on the base station.

Neural network on-line prediction - will be obtained the

prediction value)(ˆ
)(tx NNA , computing for each neuron the

equation (10). This procedure starts with the neurons from
the input layer and ends with the neuron from the output
layer and it’s implemented as an on-line predictor on the

base station. In the end, the error)(NNAe is computed using

equation (6). The associated pseudocode for the neural
network predictor is presented in Fig. 7:

//this function is performed for each node in the network
int NNPrediction(int nodeId)
{

SET)(NNAb ,)(NNA ; //node trust indicator, threshold

WHILE (network is active)
{
…

Ax =READ sensor A; //get sensor actual value for node ID equal

//with nodeID
…

245

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

)(ˆ NNAx = NNpredict (present and past adjacent nodes values);

//call NN prediction

)(NNAe =)(ˆ NNAxAx ; //calculate NN error

IF (ABS ()(NNAe) >)(NNA)

IF (NN predictor is not in transitory regime)

{ 1)()(NNAbNNAb //increment node trust indicator

START thread TRANSITORY_REGIME;
//a counter set on k //and will be decremented every
//instant until it becomes zero

}
DECISION_BLOCK (node with node ID equal to nodeID);

//call decision method; Fig. 8.
}
…
}

Figure 7. NN implementation pseudocode

The initialization steps are the same as for the AR

prediction, a threshold 0)(NNA being associated with

sensor node A.
At every instant t, we will compute the estimated value

)(ˆ
)(tx NNA relying on the present and past values of the

adjacent neighbors of the node A.

E. The Decision Block

The Decision Block will provide the decision to start the
self-destruction procedure of a malicious node, based on the

pair of errors, ()()(tARAe ,)()(tNNAe) that will be used as

inputs in an expert system, by computing two trust

indicators)(ARAb and)(NNAb .

These trust indicators are initially set to zero

)0,0()()(NNAARA bb signifying that in the beginning,

the sensor is considered to be fully reliable. After that, when
potential malicious activity is detected, the trust indicators
are incremented. In order to filter possible sporadic
malfunctions of the sensors, these counters must be reset to
zero at specific intervals in time.

An efficient Decision Block can be implemented either
as a fuzzy-based system, either as a rule-based system. In
this paper we have chosen a rule-based approach. The
Decision Block architecture is presented in the Fig. 8:

Figure 8. Decision Block

Based on the previously defined patterns & scenarios,
the decision block was implemented as an expert system.
We defined two parameters , , with 0 , for

classifying each of the trust factors)()(, NNAARA bb , as

follows:

a) 5 categories for)(ARAb

)()(

)()()(

);,(

;);,0(;0

ARAARA

ARAARAARA

bb

bbb (11)

b) 5 categories for)(NNAb

)()(

)()()(

);,(

;);,0(;0

NNANNA

NNANNANNA

bb

bbb (12)

Using this classification, we developed 25 types of rules for

the pair),()()(NNAARA bb having the inputs)(ARAb ,)(NNAb ,

 , , and the outputs the activation or not of self-

destruction procedure. The rules formalization is presented
in Fig. 9:

RULE X: // activation of self-destruction procedure

if Evaluate()(ARAb ,)(NNAb , ,) then

Self_Destruction(sensor A);

RULE Y: // not activation of self-destruction procedure

if Evaluate()(ARAb ,)(NNAb , ,) then

DoNothing();
Figure 9. Rule definition

As presented in Fig. 9, the activation of certain rules lead to
the self-destruction procedure of the given node
(Self_Destruction procedure). This procedure is presented in
the following paragraph.

246

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

III. MALICIOUS NODE SELF-DESTRUCTION

If a certain node has been tagged as malicious, the base
station will initiate a self-destruction sequence for that
specific node. The self-destruction routine is divided into
several actions:
 Erase node RAM memory that contains susceptible

network information, driven software and cryptographic
keys and also other additional memories (e.g. flash
memory, if present);

 Drain node battery in different ways like R/T radio flood
or node logical unit infinite cycle [12];

 Destroy node radio device;
 Delete node unique identifier from the lists of each of

the neighbor nodes, including base station; This way an
already captured node won’t gain authentication rights if
an attacker tries to reintroduce it in the network (will
disable auto-organization property);

 Mask node measurement nature by hiding the type of the
sensor that has been used (each node has one or more
sensors and knows in a logical way which of them is
used for measurements).

The above actions have to be performed in order of their
importance, although some kind of concurrency could be
assured. For example: the initiation of self-destruction could
start the procedure for draining node battery, but in the same
time it could conduct erasing actions for memory and
cryptographic keys.

Self-destruction should take into consideration all
network characteristics from design to deployment
including the topology. Also it strongly depends on the node
hardware profile. For the proposed star network model, self-
destruction will imply only the base station and the
compromised node – as we stated earlier, each node
communicates directly with the base station.

Basically, self-destructive sequence may be a software
routine embedded into node’s memory or sent bit by bit
from the base station to the aimed node. Entire code has to
be compatible with nodes and base station operating system.
The pseudocode for node self-destruction is presented in
Fig. 10:

void Self_Destruction (sensor A)
WHILE (sensor A is in network)
{
START thread
CONSUME battery energy //broadcast specific messages;

START thread
{ERASE node memory; //erase RAM and flash memory

DISABLE auto-organization property;
//delete node identifier from all neighbor’s lists

DESTROY node radio device;
MASK node measurement nature;

//for hiding the type of the sensor
}}

Figure 10. Node self-destruction pseudocode

In the optimistic scenario, after self-destructive routine
was initiated, the intended node is destroyed and obvious,
undetectable in the network. All references to its identifier
will disappear from all network devices. Cryptographic keys
and stored information will be also deleted.

In the pessimistic scenario, the self-destructive response
won’t have any triggered action attached to it; the corrupted
node will still be alive in a fully or partially functional state.
This scenario will have to be avoided by reducing the
probability of some unfortunately events like:
1. Self-destructive routine was not suitable implemented

for node hardware profile;
2. The node’s software is modified by the enemy in such

way that it doesn’t accept incoming messages from the
base station, it only sends malicious data;

3. Node battery is almost exhausted at the moment of
executing the routine. In this case no memory erasing
will be performed. The attacker will replace the batteries
and the node will be partially or totally running.

Our solutions for avoiding these incidents are: testing of
the self-destruction code on every type of sensor nodes that
is included in the WSN; hiding the self-destruction routine
into the node’s memory; paying attention to the energy
consumption on each sensor.

IV. CASE STUDY

For validating our strategy, we used a Crossbow wireless
sensor networks, containing 15 Mica2 nodes and one base
station in a star topology. The sensors were set to measure
the temperature in a room. In order to model an attack upon
sensor A, we made the following experiments:
 First case study: at specific moments in time we

intervened with an electric incandescent lamp (200
watts) placed very near to sensor A, for disrupting the
normal functioning of only one specific node;

 Second case study: at specific moments in time we
placed a heat source near to the network. In this case,
normal functioning was disrupted for several network
nodes, including the sensor node A.

We set up both predictors with the order 3n , the

thresholds CARA
1)(, CNNA

2)(and the pair

),(= (3, 5).

We considered that the node A has 8 adjacent neighbors.
Past and present values from these adjacent neighbors will
be used for neural network prediction of the node A value at
a certain moment in time, while past values of node A will
be used for autoregressive prediction.

The predictor contains 4 layers: one for input with 24
neurons, two hidden layers and one output layer for the
estimated value. The hidden layers have 48 and 24 neurons.

The neural network predictor was trained using three
arrays of inputs corresponding to the 8 adjacent neighbors at

247

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

three moments of time (predictor order) and a target value
for node A (Fig. 11). The training was performed offline,
using the Matlab toolbox functions and features (e.g. train
function, nntool UI) [13].

Figure 11. Neural network training session

After the training step was finished, the neural network
predictor was installed on the base station node.

A. First case study

In this case study, we simulated an attack over a certain
node, by inserting a heated lamp in its close neighborhood,
leaving the other nodes unaffected (Fig. 12). We observed
the result of both predictors and the system’s decision
making.

Figure 12. First case study description

In Fig. 13a we presented the sensor’s A output time
series, including our three “malicious” interventions at
instants t=15sec, t=20 sec and t=27 sec. In Fig. 13b and 13c
we presented the time variation of the AR and NN predicted
time series, and in Fig. 13d and 13e we presented the

evolution in time of the errors tARAe)(and tNNAe)(.

As node A is the only attacked node, the NN predictor
estimated value remains in the limits of the adjacent nodes
real values, while the AR predictor estimated value is in the
vicinity of the attacked node real values,

)()()()(tete ARANNA , }27,20,15{t . From the graphics

depicted in the Fig. 13d and 13e, we can observe that the

trust factors)(ARAb and)(NNAb have the same value,

3)()(NNAARA bb . The decision to engage the self-

destruction procedure is made based on a predefined rule:

If ()(NNAb == AND)(ARAb ==)

Self_Destruction(sensor A);

The results are as expected: after exceeding the

thresholds)(,)(NNAARA for three times for both

predictors (Fig. 13d, Fig. 13e), the sensor A is expelled from
the WSN by starting its self-destruction procedure. This
result can be observed in Figure 13 where no more readings
are obtained from sensor A after t=27 sec.

a)

b)

c)

248

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

d)

e)

Figure 13. a)The sensor’s output time series;
b)AR Predicted time series; c) NN Predicted time series;
d) AR Prediction error time series; and e) NN Prediction

error time series;

B. Second case study

In this case study, a heat source is activated at time
moments t=15sec, t=20 sec, and t=27 sec in order to affect
all sensor nodes, which represent a normal operating
scenario - it is not a simulation of an attack. All network
nodes are affected by a hot air wave.

Figure 14. Second case study description

The evolution in time of the AR predicted values and the
evolution of the error tARAe)(are similar to the previous

case study.
Assuming that node A has 8 adjacent neighbors, since

all these neighbors are also affected by this heat wave (Fig.
14), the neural network predicted time series for the node A
will have a similar evolution with the AR predictor time
series (Fig. 15b, Fig. 15c). The computed error for the NN
predictor case is lower than the computed error for the AR

predictor case,),()()()(tete ARANNA }27,20,15{t . Also

the error)()(te NNA is lower than the threshold CA
2 .

The decision to engage or not the self-destruction procedure
is made based on a predefined rule:

if ()(NNAb == 0 AND)(ARAb ==)

DoNothing();

By activating this rule, the Decision Block decided that no
attack was performed over the node A.

a)

b)

c)

d)

249

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

e)

Figure 15. a)The sensor’s output time series;
b)AR Predicted time series; c) NN Predicted time series;
d) AR Prediction error time series; and e) NN Prediction

error time series;

Due to the diversity of the attack patterns we proved that
the use of the two predictors in parallel is more accurate
than the usage of a single predictor. For example, the use of
only one predictor (AR predictor) in the second case study
can lead to a wrong result – the self destruction of a normal-
functioning node.

V. CONCLUSIONS

Security issues related to WSN become more and more
an important research area. Detecting abnormal/malicious
operation of motes and offering efficient countermeasures
represents a difficult task. In this paper we propose a
combined strategy that not only detects the corrupted nodes,
but also excludes their malicious activity using a self-
destruction node technique. Due to the inherent spatial
redundancy feature of WSN, applying a self-destruction
procedure to the corrupted nodes has no major
inconveniences, extending the secure operation of the entire
sensor network.

The integrated system presented in this paper has some
noticeable advantages: decision for node self-destruction is
taken based on two predictions, two errors and two trust
factors, therefore the accuracy is better; the whole system
takes into consideration not only the evolution of a specific
node, but also its neighbors evolution; as the two predictor
models have a different nature, different attack patterns
could be treated. Our strategy has also a drawback: a bigger
computational power is needed at the base station level.

ACKNOWLEDGMENT

This work was developed in the frame of PNII-IDEI-
PCE-ID923-2009 CNCSIS - UEFISCSU grant and was
partially supported by the strategic grant POSDRU

6/1.5/S/13-2008 of the Ministry of Labor, Family and Social
Protection, Romania, co-financed by the European Social
Fund – Investing in People.

REFERENCES

[1] D. Curiac, M. Plastoi, O. Banias, C. Volosencu, R. Tudoroiu,
A. Doboli, “Combined Malicious Node Discovery and Self-
Destruction Technique for Wireless Sensor Networks”, Third
International Conference on Sensor Technologies and
Applications, Athens, Greece, June 18-23, pp. 436-441.
[2] Karlof C., Wagner D., “Secure routing in wireless sensor
networks: attacks and countermeasures”, Proceedings of the 1st
IEEE International Workshop SNPA2003, Anchorage, USA, May
2003, pp. 113-127.
[3] Becher A., Benenson Z., Dornseif M., “Tampering with motes:
Real-world physical attacks on wireless sensor networks”
Proceedings of the 3rd International Conference on Security in
Pervasive Computing (SPC), York, UK, April 2006, pp.104-118.
[4] D.I. Curiac, O. Banias, F. Dragan, C. Volosencu, O. Dranga,
“Malicious Node Detection in Wireless Sensor Networks Using an
Autoregression Technique”, ICNS2007, Athens,Greece, June
2007.
[5] Y. Gao, K. Wu, and Fulu Li, “Analysis on the Redundancy of
Wireless Sensor Networks,” ACM WSNA’03, San Diego, USA,
September 2003, pp.108-114.
[6] J. Feng, F. Koushanfar and M. Potkonjak, “System-
Architectures for Sensor Networks Issues, Alternatives, and
Directions”, Proc. ICCD’02, Freiburg, Germany, Sept. 2002,
pp.226-231.
[7] L. Tong, Q. Zhao and S. Adireddy, “Sensor Networks with
Mobile Agents", Proceedings IEEE 2003 MILCOM, Boston, USA,
October 2003, pp.688-694.
[8] B. Haller, J. Gotze and J. Cavallaro, “Efficient Implementation
of Rotation Operations for High Performance QRD-RLS
Filtering”, ASAP '97 Proc., 14-16 July 1997, Zurich, Switzerland,
pp. 162-174.
[9] D.I. Curiac, C. Volosencu, A. Doboli, O. Dranga and T.
Bednarz, “Discovery of Malicious Nodes in Wireless Sensor
Networks using Neural Predictors”, WSEAS Transactions on
Computer Research, Issue 1, Volume 2, January 2007, pp. 38-43.
[10] B. D. Ripley, “Pattern Recognition and Neural Networks”,
Cambridge: Cambridge University Press, 1996, pp. 143-162.
[11] J. More “The levenberg-marquardt algorithm, implementation
and theory”, In G. A. Watson, editor, Numerical Analysis, Lecture
Notes in Mathematics 630, Springer-Verlag, 1977.
[12] A. A. Pirzada and C. McDonald: “Kerberos assisted
Authentication in Mobile Ad-hoc Networks”, Proceedings of the
27th Australasia.
[13] Howard Demuth,Mark Beale,Martin Hagan “Neural Network
Toolbox™ 6 User’s Guide”, March 2008, pp. 2-71.

250

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

