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Abstract—This paper advocates for the introduction of perfor-
mance awareness in autonomic systems. Our goal is to introduce
performance prediction of a possible target configuration when
a self-* feature is planning a system reconfiguration. We propose
a global and partially automated process based on queues and
queuing networks modelling. This process includes decomposing
a distributed application into black boxes, identifying the queue
model for each black box and assembling these models into a
queuing network according to the candidate target configuration.
Finally, performance prediction is performed either through
simulation or analysis. This paper sketches the global process
and focuses on the black box model identification step. This
step is automated thanks to a load testing platform enhanced
with a workload control loop. Model identification is based
on statistical tests. The identified models are then used in
performance prediction of autonomic system configurations. This
paper describes the whole process through a practical experiment
with a multi-tier application.

Keywords-Autonomic systems; performance; automatic mod-
elling; queuing network model; load injection

I. INTRODUCTION

A. Autonomic computing and performance management

Management of modern distributed systems is becoming
increasingly complex and costly. Autonomic computing typ-
ically addresses this issue by providing systems with self-
management capabilities. A common approach to building
self-managing systems has been sketched by [1], through the
well-known MAPE-K control loop (Monitor, Analyze, Plan,
Execute - Knowledge): some self-* features (e.g., optimiza-
tion, configuration, healing and protection) are implemented in
the system in the form of feedback loops that result in system
reconfiguration plans to be executed when special undesired
situations are met. Reconfigurations typically result in remov-
ing, adding or replacing one or several system constituents,
thus resulting in a new configuration. Here, we consider
changing constituent parameters (e.g., tuning) as a component
replacement inasmuch its behavior changes, especially from a
performance point of view.

Reconfiguring a distributed application may result in per-
formance changes, ranging from anecdotal to dramatic. In the
case of critical or Service Level Agreement-ruled systems,
it may be quite relevant to evaluate the performance of a
candidate new configuration before actually deploying it. This

1This work is supported by the French ANR, through the Selfware and
SelfXL projects, and ANRT.

remark applies to any self-* feature-driven reconfiguration,
but it particularly applies to self-optimization. This sort of
feature may typically compare different candidate configura-
tions, looking for an optimized trade-off between an expected
performance level and operational constraints and costs.

This paper deals with the introduction of a strong
performance-awareness in autonomic systems, in order to
drive the Analyze step of the MAPE-K loop with relevant
performance Knowledge, combined with performance analysis
or simulation capabilities. To do this, our approach consists in
relying on performance models of a distributed application’s
constituents, and then composing these models according to
interactions between constituents, to get a performance pre-
diction of an application configuration. We typically address
distributed applications where some constituents may be repli-
cated in order to increase the overall application performance
(e.g., multi-tier web applications). In this introduction, we
sketch the global process, as presented in [2].

B. Identifying black boxes

The first roadblock we meet is getting the constituents’
performance models. Applications, middleware and systems
based on common information technologies typically come
with poor performance-related specification, if any. At a cer-
tain granularity, the inner architecture of some constituents
is either so complex or under-specified that trying to infer a
performance model for each one would practically take far too
much effort. However, a certain granularity of decomposition
seems to be humanly affordable, at least for distributed appli-
cations. For instance, an HTTP front-end, an EJB container
and a database is a straightforward level of decomposition in
the context of multi-tier Java EE applications. Based on this,
our approach is two-fold:

1) decompose a distributed application into constituents,
called black boxes, with a relevant granularity,

2) automatically get a performance model of each black
box through an experimental stimulus-response obser-
vation principle.

The relevant granularity level is a trade-off between the
decomposition feasibility (with regard to available information
and complexity) and the final model accuracy and sizing
opportunities. The major criterion is sizing opportunity: if one
sub-element of a black box can be replicated to increase the
workload capacity of the sub-feature it supports, then there is
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a big motivation in decomposing this black box into sub-black
boxes. Accuracy is another motivation for decomposition,
since a queuing network model will be closer to reality than a
single queue model representing the same element. Last, the
black boxes model identification process may be quicker and
simpler, for smaller black boxes, and may have less weird
behaviors than for bigger ones.

A black box is a constituent whose content is unknown.
You may only know its external interfaces and be able to
invoke their operations, and observe the outputs resulting from
your invocations. This black-box may (or may not) provide
an interface to give some information about its state. It runs
in an execution environment whose resources usage may be
observed (CPU, RAM, network bandwidth, etc.). We partic-
ularly address software black boxes running on an operating
system. Commercial, off-the-shelf software elements, as well
as complex open source middleware, would be typically black
boxes. In case of distributed software, network interactions
give decomposition opportunities.

C. Automatic model identification

Once we have decomposed the global system into black
boxes, we need to get a performance model for each of
them, and then to combine these models into a single one
representing the global system. To achieve this, we choose
to model black boxes as queues, and the global system as
a queuing network. The idea is that we can experimentally
identify queuing models that best represent the performance
of black boxes, and then build the resulting queuing network
for performance prediction. Model identification is based on
non-parametric statistical tests. This enables to determine the
best distributions fitting service times and inter-arrival times.

The other idea is to get experiments on black boxes auto-
matically performed by a load testing platform, enhanced with
self-regulated load injection capabilities [3]. The workload is
automatically adjusted according to measures and policies that
define workload steps, levels and saturation criteria. There
are three reasons for this step-by-step increasing workload
injection. First, we have no knowledge and we make no
assumption about the maximum capacity of each black box:
we start with a minimal capacity assumption, and then we
gradually increase the assumed capacity. Second, we prevent
load injection from actually reaching a critical saturation level
that would result in a black box crash, with a possible necessity
to reboot and restart. Third, we want to observe the black box
in permanent, stable states, which practically requires to have
these steps.

This experimental process uses research results in terms of
component-based architecture for building autonomic comput-
ing systems [4].

D. Performance prediction

Once the Knowledge part of our autonomic system is fed
with the black boxes queuing models, the Analysis function
of any self-* control loop is able to evaluate performances of
possible target configurations. This prediction may be based on

G/G/K models

M/G/K models

M/M/K models

-

+

+
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TractabilityAccuracy

Figure 1. Accuracy versus tractability

queuing network simulation or analysis. When several queuing
model candidates have been successfully identified for a single
black box, the actual model selection may be driven, on the
one hand, by its accuracy, and, on the other hand, by its ability
to be quickly analyzed or simulated. The more accurate is the
model, the more difficult is the analysis (see Figure 1).

As a matter of fact, the efficiency of this performance
prediction influences the speed and effectiveness of the self-*
control loop. The global process is summarized by Figure 2.
This paper develops the second step (model identification) of
the approach, as a continuation of [2]. An example of the use
of identified queue models in performance prediction is given.

This paper is organized as follows: first, we position our
work with other related work in Section II. Then, Section III
describes how the self-regulated load injection process is
achieved: we compute the duration of an injection period
and explain how to estimate stabilization time, injection step
duration, and sampling period. In Section IV, we detail the
black box model identification process by first presenting inter-
arrival and service sampling, and then by explaining how to
determine the distribution shape and the whole identification
process. We also present how to estimate, from the observed
parallel processing level of a given black box, the correspond-
ing queue model’s number of servers. In Section V, we show
how to use identified models in performance prediction. We
show a practical application of our model identification process
in Section VI on a typical use case and we give experimental
results. Finally, we conclude in Section VII and give some
open questions and perspectives.

II. RELATED WORK

Several works have been proposed to model systems for
autonomic computing purposes. Some authors used regres-
sion models [5] for transactional systems, but most of them
proposed queuing networks as predictive models [6], [7], [8],
[9]. Kamara et al. [7] modelled a 3-tiers architecture with a
single queue; Rafamantanantsoa et al. [8] described a simple
web server with an M/G/1/K-PS queue model. The parameters
of this model (queue capacity and mean service time) are
estimated by the maximum likelihood technique, given data
obtained by extensive experiments. Other proposals [9] used
queuing networks instead of a single queue model. This
last modelling seems to be more appropriate for distributed
systems.
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Figure 2. Performance prediction of a distributed application configuration

Begin et al. [10] approximate the measured behavior of
a variety of systems by selecting and calibrating a limited
set of queuing models. More recently, using a black box
approach, Menasce [11] addresses the problem of finding an
unknown subset of service demand parameters in queuing
network models, given the known values and given the values
of response times for all workloads.

Woodside, Zheng and Litoiu [12] worked also on tracking
parameters of queuing network models for an autonomic
system. They used extended Kalman filters, while integrating
various kinds of measured data such as response times and
utilization. Using Kalman filters is quite valuable since they
are known to be predictor-corrector estimators: they make the
obtained model optimal when dealing with error covariance
minimization.

These proposals are interesting, however autonomic systems
need to be dynamically analyzed with precision, to be able to
choose the best solution when a problem occurs.

This fact led us to estimate an accurate queuing model, that
might represent the observed system: we propose to model
inter-arrival and service times, as well as the number of
servers. We don’t use for that Kalman filters because they
are not suitable for our approach: first, Kalman filters are not
sufficient in our case, since we estimate shapes of distributions.
Second, convergence of these filters is not guaranteed for a
number of queuing models, which makes their use without a
predefined model more difficult in an autonomic approach.
Rather, we can identify distributions with more precision,
using non-parametric statistical tests. Most of our experiments
show more Lognormal and other distributions than exponential
distributions, which were used in most work.

Our approach is thus a generalization of previous methods

proposed in literature. It also provides rich distributions mod-
elling systems behavior, and giving more information. The
final contribution of this paper is an implementation of the
developed approach in a prototype for modelling multi-tier
autonomic systems and anticipating their performances.

III. SELF-REGULATED LOAD INJECTION

Our approach relies on injecting a step by step increasing
workload (see Figure 3). To allow estimation of a coherent
model, we inject a workload composed of a single traffic type.
Basically, this consists in automating a benchmarker work,
trying to find the performance limits of a system through
load testing. It injects a first load level, observes the system
behavior (response time, resource usage. . . ) and decides the
amount of the next workload step. It repeats the procedure
until reaching - or more probably overpassing - a workload
high limit, beyond which the system becomes unstable or the
delivered quality of service is no more satisfactory.

To automate this process, we rely on a load injection
framework: the CLIF [13] framework provides injectors, for
generating a workload modelled as virtual users (vUsers) and
measuring requests response times, and probes, for measuring
usage of arbitrary computing or networking resources. More-
over, we need to define an injection policy specifying several
parameters, mainly: the workload level in each step (injection
step), the length of an injection period, the time required to
get the system in a stable state (stabilization time), the System
Under Test saturation limits where the load testing process
must stop.

In the remainder of this paper, we use the Kendall no-
tation [14] of an elementary queuing system, denoted by
T/X/K where T indicates the distribution of the inter-arrival
times, X the service times distribution and K the number
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of servers (K ≥ 1). Note the number of servers represents
the observed parallel processing capability and not the actual
number of physical computers or processors. This capability
practically depends on the multi-threading support and on
the computation profile (e.g., CPU-intensive or Input/Output-
intensive). So, it is both hardware-dependent and software
dependent (operating system, middleware, application). As a
simplification, we still consider it as an integer number in this,
but it is more likely a decimal number.

A. Injection policy

The main issue related to self-regulated injection is to deter-
mine automatically the injection policy parameters defining the
steps of increasing workload (see Figure 3). These parameters
are computed at runtime, step by step.

1) Estimation of maximal load: An initial load injection
phase is undertaken to estimate the maximal supported load

ˆCmax. In this phase, we load our system with markovian
interarrivals requests of one virtual user. We collect response
times and compute a first approximation of ˆCmax, as 1

µ ,
µ being the service rate. This result comes from the fact
that, when dealing with one customer arriving in an empty
queue (no concurrence), the mean waiting time is null (W=0),
leading to the following mean response time:

R = W +X = X = 1
µ

When the queue model is M/G/1, the arrival rate of requests
converges to µ. An example of this convergence is depicted
in Figure 4, obtained when experimenting our example. The
value of ˆCmax is experimentally corrected when the estimated
number of servers K increases (see Section IV-D).

2) Injection step: The load injection step should be care-
fully defined, as a small step may result in a huge experimental
time, whereas a big step may brutally saturate the system. We
use an additive increase while checking if the experiment is
close to the value of the estimated maximum load ˆCmax. The

µ 2µ

X
0
=1/µ

Mean response time

M/G/1 M/G/2

Arrival rate

Figure 4. First estimation of maximal load Cmax

increment is defined through a decomposition of the estimated
maximum workload into a user-set number of iterations. The
greater this parameter is, the more workload steps will be
performed, thus giving more accurate information, but taking
much more execution time.

3) Rising period: After an injection phase, the load is
increased with an increment and submitted. To avoid a mal-
functioning of the system due to a big injection step, we
choose to inject the increment of requests gradually, drawing
thus a ramp. The rising period is the period during which
the injection of a new load increment is done. In practice,
injecting 10 vusers/sec is acceptable. The rising duration is
then automatically computed as a function of the injection
step, while maintaining 10 vusers/sec.

4) Sampling period: This should be computed such that
the system behavior remains stationary and the sampling is
sufficiently large to get good confidence in measures. Rai Jain
in [15] proposes a formula for determining the sample size
n required to achieve a given level of accuracy r% and a
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confidence confidence interval of 100 ∗ (1− α)%:

n = ( 100zσn

rm̄ )2,

where z is the normal variate of the desired confidence level
(for a 95% confidence interval, z ≈ 1.96), m̄ is the mean value
of the parameter to estimate and σn stands for the sample
standard deviation.

B. Estimation of the stabilization time

When collecting measures, it is important to distinguish the
transient and stationary periods. The variance of measured data
gives a first insight in system stability. This is not sufficient as
there may be measurements peaks when some phenomenon
like the garbage collector appears. Thus, a combination of
theoretical and experimental methods is required.

We estimate the stabilization time at each injection step,
as the convergence time of the Markov chain [14], [16]
underlying the associated queue model. We restrict ourselves
to Engset models.

In other words, the stabilization time ST is considered
as the time required to get the equilibrium (stationary) state
probabilities, denoted as the probability vector π, when the
Markov chain is ergodic.

It can be computed by studying the transient behavior of the
system. As the queue model of the step (i) is not yet defined,
we rely on the queue model (denoted model(i−1)) determined
in the previous step (i-1). We compute ST by:

(1) deriving the transition probability matrix P of
model(i−1), which has a dimension equal to MxM, M being
the amount of load submitted in step (i);

(2) obtaining the probability vector:

π(n) = π(n−1)P = π(n−2)P 2 = . . . = π(0)Pn

,

π(0) being the initial vector and n the number of iterations
required to reach the equilibrium state;

(3) computing the stabilization time ST as:

ST = n
λ+µ ,

λ being the inter-arrival parameter of step (i) and µ is
approximated by the service rate parameter of model(i−1).

As we base on model(i−1), which is not necessarily the
model of step (i), we correct the obtained stabilization time
by adding an error εi, computed experimentally by observing
the variation coefficient of measures collected in step (i).

IV. IDENTIFICATION OF THE PERFORMANCE MODEL OF A
BLACK BOX

As previously said, a black box is modeled with a queuing
model. Identification of such model requires to define the
distribution of inter-arrival times, the distribution of service
times and the number K of servers. The identification of these
distributions requires first to capture adequate measures from
the injection framework, then deduce a sample to analyze,
i.e., an interarrival sample and a service sample. The obtained
samples are submitted to statistical tests from which is es-
timated the corresponding distribution shape. Parameters of

the identified distributions (interarrival and service) are also
estimated to complete the definition of final models.

A. Inter-arrival sampling

This implies, for a distributed system, to identify the shape
of the inter-arrival process received on upstream of each black
box. The interarrival process of a black box depends, on one
side, on the rate of submitting requests to the global system
and, on the other side, on the system architecture. As a matter
of fact, we investigate inter-arrival times distribution of a black
box only when being in the context of a configuration of the
system to which it belongs. To achieve that, load injections
are submitted to the system and arrival times of requests
are captured for each black box. For a given black box, we
compute inter-arrival times, obtaining the sample T .

B. Service identification process

This process consists in submitting load injection to the
black box (see Figure 3). The workload is increased through
several steps, until reaching the maximal estimated load ˆCmax.
As many theoretical results exist for the M/G/1 and M/G/K
models, we choose to inject requests through exponential inter-
arrival times, obtaining at worst a M/G/K model.

Let us detail this process. It is done through two major
phases : an initialization phase and an identification phase.

1) Load injection steps: Two major steps are followed:
a) Phase 1: Initialization: This phase consists in submit-

ting to the black box a flow of similar requests representing
only one customer. We measure the response time mean,
denoted R0, during the sampling period computed as explained
in Section III-A4. As a single customer uses only one server,
we can infer that the black box behavior follows the M/G/1
model in the worst case (see Section III-A1). Hence, the value
of service rate during this phase, µ0, is used to get the maximal
estimated load Cmax and the next injection step.

Note that a realistic traffic typically involves a mix of differ-
ent kinds of requests, e.g. user connection and authentication,
requests involving or not database read or write operations, etc.
In fact, we could also address such heterogeneous traffics, as
long as response times are of the same order of magnitude
from one request kind to another. Our steps might last longer
because of the higher service time variability, but the resulting
average service time would be still representative of the traffic
mix. We would assume that the mix is the same whatever the
workload level. Experiments about this would be an interesting
complement to our work.

b) Phase 2: Identification: This phase is carried out
through several steps , where each step (i) consists of:

1) Submitting a self-regulated load injection Ci following
a Poisson distribution.

2) Waiting for stabilization (stabilization time already com-
puted as shown in Section III-B) and collecting experi-
mental measures during the computed sampling period:
response times, interarrival times and utilization of the
black box for this workload step.
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3) Inferring service times (Xk)1≤k≤n from the samples
of response times (Rk)1≤k≤n and interarrival times
(tk)1≤k≤n.

4) Removing aberrant values from the service time sam-
ples. This is done by removing a fixed percentage
(for instance 5%) of greater values. These great values
may be considered as experimental measurement errors,
resulting, for instance, from by some phenomena such as
the occurrence of garbage collector on the load injector.

5) Identifying the shape of the service times sample using
statistical tests.

6) Computing the injection parameters for the next step:
injection step and the stabilization time.

2) Stop condition based on saturation checking: During the
load injection steps, it is necessary to test if the black box is
getting saturated to stop the experiment. This is done by mon-
itoring the black box state and detecting whether its utilization
reaches some predefined limits. In our context, we define the
black box utilization through computing resources utilization
(CPU, memory, JVM heap memory). This is achieved by
deploying a probe for each monitored resource. Load injection
is stopped as soon as one or several resources get(s) saturated.
Resource saturation is defined as reaching a given threshold,
determined by an expert of the system.

When the black box reaches the estimated maximal load
and no saturation appears, we correct the maximal load and
continue load injection tests, and so on, until saturating the
black box (see Section IV-D). This technique of reaching
maximal load level allows us to capture all possible behavior
of the box against all possible load levels. Hence, the obtained
model is the closest and the best one fitting the service offered
by the black box per load level.

3) Service sampling: To obtain the service sample of an
injection step, the load injection framework delivers several
measures. We use mainly response times (Rk)1≤k≤n, interar-
rivals (tk)1≤k≤n and utilization U of all resources. We need
also to estimate the scheduling policy to be able to compute
the service sample. So, in a first time, we assume that the
black box relies on a process sharing (PS) scheduling policy,
then when getting close to saturation, the scheduling policy
becomes FIFO. In both cases, service times (Xk)1≤k≤n are
computed as follows:

1) For a PS policy:
Xk = Rk ∗ (1− λ ∗X) [14]

where λ is the interarrival rate used during the load
injection and X is estimated with the fix point algorithm
using the estimated X of the previous step as an initial
value.

2) For a FIFO policy: We use an extended result relating
service times (Xk)1≤k≤n, response times (Rk)1≤k≤n
and interarrival times (tk)1≤k≤n [14]:

Rk = [Rk−1 − tk]+ +Xk

This result is valid for a model using one server and
a FIFO policy. So, if we get to identify, in step (i),
a model characterized by K servers (K>1), this result

cannot be used. To generalize this result, we propose to
use a similar result:

Rk = [Rj − tj,k]+ +Xk

where j corresponds to the previous request that quitted
the server, which served the kth request, and tj,k is the
interarrival between the jth and kth requests. The jth

request is determined by recomputing iteratively service
times (Xk)1≤k≤n, beginning from the first served re-
quest and using the Rj and tj,k computed from collected
measures.

C. Distribution shape identification

To automatically determine the shape of inter-arrival times
and service times distributions, we use a statistical test based
approach, which selects the distribution that fits well the
samples.

1) Identification using statistical tests: The statistical
goodness-of-fit hypothesis test is a process that consists of
making statistical decisions using experimental data. Several
hypothesis testing approaches exist. In our case, we use the
Kolmogorov-Smirnov statistical test [17], since it is appro-
priate to continuous distributions. We also use the Anderson-
Darling test, which is appropriate to distributions with heavy
queue.

However, these tests are only suitable for small samples
and cannot apply to large samples. To avoid this drawback,
we uniformly select a sub-sample from our data, on which
we perform the test. Distributions that give a p-value (output
value of a statistical test) greater than 0.1 are selected as good
distribution representatives for our measures.

2) Estimating distributions shape: To seek the most appro-
priate distribution fitting an inter-arrival/service sample, we
test several distribution families, known in the literature as
distributions appearing naturally in computing systems [18]:
exponential family, heavy-tail distribution family, etc.

We begin by choosing a distribution from the exponential
family. We estimate parameters of each distribution using a
Maximum likelihood estimator. We then keep distributions that
give a p-value greater than 0.1.

To achieve that, we compute the variation coefficient CV 2

of the sample and its confidence interval. Depending on its
value, we test a set of distributions. If the confidence interval
of CV 2 contains 1, we test the exponential distribution. If
CV 2 ∈]0, 1[, we test the hypoexponential(k) distribution, the
Erlang(k) distribution and the gamma distribution. If CV 2 ∈
]1,+∞[, we test the hyperexponential(k) distribution, the
Uniform, the Normal, Lognormal, and Weibull distributions.

For each distribution d, we analyze a sample S as follows:
• If necessary, we make transformations (for instance a

shift) on the sample (Sk)1≤k≤n to fit distribution d,
• We estimate parameters of d with a Maximum likelihood

estimator.
• We choose a small sample S∗ from (Sk)1≤k≤n.
• We perform a statistical test for S∗ and d with estimated

parameters. As previously said, we choose to work with
the Kolmogorov-Smirnov test. We repeat several times
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this statistical test, and take the mean of obtained p-
values, so as to ensure a correct p-value result.

• We then discard distributions whose statistical test gives a
p-value less than 0.1. The set of remaining distributions,
denoted L, is considered as the possible behavior of the
black box service, resulting in a black box model M/X/K
specified by several service distributions.

D. Estimating the number of servers

The number of servers (parallel processing capability, see
section III) observed for a black box is determined experi-
mentally. When reaching the estimated maximal load ˆCmax,
we observe the black box utilization. If it indicates the black
box is saturated, the number of servers remains 1. Otherwise,
we progressively (step-by step) increase the load and check if
saturation is reached. If no, we correct the estimated maximal
load Cmax = k ∗ ˆCmax and increment the assumed number
of servers by 1. We resubmit new increasing load injections.
We observe again the black box utilization and repeat the
procedure until reaching saturation.

If during step (i), we identify a number of servers K>1, we
need to correct models of previous steps, so we repeat samples
analysis of these previous steps, by recomputing the service
sample and re-identifying the models of each step.

Note that the estimation of servers number representing
a black box is done independently from distributions shape
estimation. The final estimated number is deduced at the
end of the step-by-step process (at saturation), while shape
distributions are estimated at each injection step.

E. Validation of the black box queue model

The identification process produces one or several candi-
date queue models possibly corresponding to different load
levels. These models are validated by comparing empirical
performance measures with theoretical ones, typically mean
response time, mean waiting time and throughput.

V. USING IDENTIFIED MODELS IN PERFORMANCE
PREDICTION OF AUTONOMIC SYSTEMS

Let us consider a system configuration C as a possible
solution for ensuring an autonomic feature. The goal is to
be able to evaluate performances of C before its application
on the system.

To reach this objective, the first step is to feed the autonomic
system with its black boxes queuing models, following the
identification process sketched in Section IV: a model repos-
itory for the system is hence created. Then, the global model
of the configuration C is built, so that to launch the Analysis
function of any self-* control loop and predict performances
of C. This is done by picking from the model repository and
by composing them.

A. Composition of black box models

A queuing network is entirely defined by the number of its
nodes, the parameters of each node (queue) and the routing
probabilities between nodes (probability that a request is

transferred to the jth node after service completion at the
ith node). To compose the set of black boxes models, it is
important, in one side, to get the topological structure of the
interconnection, and in the other side, to describe transitions
between the models in this topology.

1) Transitions between black boxes models: To compute
the routing probabilities between nodes, we rely on traces
of incoming and outgoing traffic of each node. We propose
so to conduct a typical experimentation, during which we
capture input and output requests of each black box. The
capture is done using log files and is specific to each software
product. The number of outgoing requests of each black box is
deduced from this capture and so are the incoming requests to
the corresponding black box addressees (notice that common
log files give generally for each incoming request the sender
address). A ratio of the traffic distribution between the black
boxes is then computed, resulting in the definition of routing
probabilities.

Node A

Node B

Node C

A

C

B

18000

10000

8000

p
1
=0.56

p
2
=0.44

Figure 5. A black box interconnection example

Let us take an example of a system S (Figure 5), made
of three black boxes A, B and C, where A is linked to B
and C and each of B and C are only linked to A. In this
case, we compute the number of outgoing requests of A and
the number of incoming requests of each of B and C. Let us
say there are 18000 outgoing requests for A, 10000 incoming
requests for B and 8000 incoming requests for C. The routing
probabilities are p1 = 10000/18000 = 0.56 between A and B
and p2 = 8000/18000 = 0.44 between A and C.

2) Building the global model of a system: Once the transi-
tion probabilities between black boxes queues are obtained,
we compose the queues and get a queuing network, the
global model of the system. In our models, we deal only
with open networks, as we study distributed infrastructures
where requests are received and leave the system after service
processing completion.

B. Analysis of the global model

To predict performances of the configuration C, we solve
the obtained queuing network model using a specific algorithm
allowing the computation of theoretical performance parame-
ters. Typical parameters are:
(i) for the whole system: mean response time R, throughput
D and mean customer number N ;
(ii) for each queue Qi: mean response time Ri, mean number
of customers Ni and utilization Ui.
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The resolution algorithm to use depends on the complexity
of queues composing the whole model :
• If the queuing network is composed of only M/M/K

models, the exact MVA (Mean Value Analysis) algorithm
is the most suitable to use [14], [19]. This algorithm is
suitable for many systems as the markovian distributions
are known in the literature to appear naturally in various
systems [18].
The MVA method allows to compute the mean values
of parameters of interest such as the mean waiting time,
throughput and the mean customer number at each node.
Another algorithm to use is the AMVA algorithm [14],
[19], which is an approximation improving the computa-
tion time of MVA.

• In other cases and depending on the structure of the
resulting queuing network, we use the appropriate algo-
rithm such as the method of Raymond Marie [20], [21].
This algorithm has been defined as an approximate so-
lution for studying the asymptotic behavior of a network
of queues with a general service distribution. When the
network is composed of different types of queues, we
propose to compute performance bounds. In the worst
case, when analysis is impossible, we use simulation to
determine global performances.

VI. ILLUSTRATION

The automatic model identification process is currently
implemented as a framework prototype. This framework pro-
vides: (i) an automated benchmarking controller, based on
CLIF [13], for performing the self-regulated load injection
steps, (ii) a model identification tool, based on Matlab/R statis-
tical environments [22], [23] and, (iii) an editor for composing
identified queue models and launching analysis/simulation of
obtained queuing networks for performance prediction.

Web 
Container

EJB 
Container

MySQL 
Server

Figure 6. Use case: SampleCluster JONAS application

To illustrate the steps of our identification process, we
experimented a three-tiers Java EE application, called Sam-
pleCluster, that runs in the JONAS application server, an
open source Java EE implementation developed by the OW2
consortium [24]. This application was developed as a testing
application of a JONAS cluster. This cluster is composed of a
Tomcat web container server, an Enterprise Java Beans (EJB
3.0) container and a MySQL database storing EJB sessions
information (see Figure 6).

The system is decomposed into three black boxes: the Web
container tier, the EJB container tier and the database tier.
This first level decomposition matches exactly the multi-tier
architecture and this is very useful to operate an adequate
and good system sizing. These black boxes are modeled using
our automatic identification process. To inject requests to a
black box, we use CLIF load injectors. We use a load injection
scenario featuring virtual users whose behaviors represent real
user behaviors. Network latency is considered as negligible
for these experiments, since we operate with a high-speed
local area network (Gigabit Ethernet), whose latency order
of magnitude is microseconds. To get resources utilization
measures and detect system saturation, CLIF probes have been
used for CPU, JVM heap memory and RAM. We defined the
black box saturation limits as 80% for the CPU (high limit),
80% for RAM (high limit) and 5% for the JVM’s free heap
memory (low limit).

To model a black box, it must be isolated from the other
black boxes. Isolating the database tier is straightforward, since
it is the last tier and it does not call any other black box.
Isolating the Web and EJB tiers requires more work:
• either develop respectively an RMI plug and an SQL plug,

i.e., a fake RMI or SQL server that accepts requests and
give responses in place of the real server, in deterministic
response time that can be subtracted from the black
box measured response times. This technique requires
some non-trivial programming, since responses must hold
correct information. A record-and-replay solution may be
applied, by observing requests and responses with the
real server and then replaying known responses on known
requests with the plug. This is not too complex to achieve
with text-based protocols (such as SQL) when no socket
secure layer is used (cf. encryption), but it is much more
complex with binary protocols like RMI. Moreover, plugs
must be benchmarked in order to know its response time
and to be able to compute the black box service times;

• or follow a step-by-step approach, starting the modeling
process from the downstream black box (the database
black box in our example). In next step, we run the
modeling process on the previous black box (EJB con-
tainer) and, thanks to the model obtained during the first
step, we subtract response times of the last box to the
measured response times in order to be able to compute
the corresponding real service times. Then, we iterate for
next steps until the first tier is reached.

We used the second solution (step-by-step) for practical
reasons: not only do we avoid developing a plug, but we
also avoid benchmarking the plug, while in the step-by-step
solution, next black boxes are benchmarked de facto.

In the following, we present modelling results for the three
black boxes, then we give performance prediction of the
system and an example of fulfilling an autonomic feature.

A. Modeling the database black box

The database black box runs on a Linux server with two 1.4
GHz PIII processors, and 1 GByte of RAM. We used a Linux
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Load Identified Model(s) Parameters
1 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.010, sigma=0.089
6 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.034, sigma=0.276
11 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.051, sigma=0.333
16 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.020, sigma=0.396
21 M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.030, sigma=0.421
26 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.053, sigma=0.428
31 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.033, sigma=0.464
36 M/Hr2/4, M/Γ/4, M/LN/4, M/Norm/4, M/Wbl/4 m=-8.074, sigma=0.476
45 M/M/4, M/Hr2/4 p=0.055,mu1 = 0.945,mu2 = 465.9
54 M/M/4, M/Hr2/4 p=0.036,mu1 = 0.964,mu2 = 239.3
63 M/M/4, M/Hr2/4 p=0.064,mu1 = 0.936,mu2 = 453.0
72 M/M/4, M/Hr2/4 p=0.060,mu1 = 0.940,mu2 = 419.5
86 M/M/4, M/Hr2/4 p=0.062,mu1 = 0.938,mu2 = 452.0

100 M/M/4, M/Hr2/4 p=0.065,mu1 = 0.935,mu2 = 510.8
119 M/M/4, M/Hr2/4 p=0.040,mu1 = 0.960,mu2 = 231.0

Table I
MODEL IDENTIFICATION RESULTS FOR THE DATABASE BLACK BOX

server with two 2.8 GHz Xeon processors and 2 GBytes of
RAM as a load injector. The automated self-regulated load
injection phase was carried out within 14 workload steps,
reaching more than 120 virtual users in 5 minutes on average.
The saturated resource was the CPU with a 82% usage.

The model identification tool got measures and computed
the corresponding service time samples for each workload
step. Each service time sample was analyzed using goodness-
of-fit tests and graphical methods. Various distributions were
identified with their parameters, including the Exponential,
Hyper-exponential with two stages, Log-normal, Gamma and
Weibull. The candidate models identified during experimen-
tation are given in Table I. Notations for this table I are the
following: λi refers to the interarrival rate, µi the service rate
and Xi its mean service time. LN refers to the Lognormal
distribution, Hr2 to the Hyperexponential with two stages and
Wbl to the Weibull distribution.For each load level, we select
the most appropriate model (given in bold characters) accord-
ing to the statistical tests best results (best p-values and fitting
scores). We also give the best model’s parameters (Parameters
column): λ is the inter-arrival rate, µ the service rate for the
exponential distribution (µ1 and µ2 for the Hyperexponential
distribution and p is its probability to go to a stage), µ, σ are
the shape and scale parameters of the Lognormal and Normal
distributions, and a,b are the Γ distribution parameters.

As the table shows, for light and medium loads (load
levels varying from 1 to 36 virtual users), we select the
M/LN/4 model, as the statistical tests gives greater p-values
for the lognormal distribution. For higher loads, we select
the M/Hr2/4 model. Graphs of Figure 7 show service times
histograms with identified fitting distributions.

B. Modeling the EJB container black box

The EJB tier runs on a Linux server with two 2 GHz Xeon
processors, and 1 GByte of RAM. We used a Linux server with
two 2.8 Ghz Xeon processors, and 2 GBytes of RAM as an
injector machine. The automated self-regulated load injection
phase was carried out within 12 injection steps, reaching more

than 162 virtual users in 8 minutes and 0.2 seconds. Figure 8
shows the resulting load profile. The saturated resource was
the CPU with 86% usage.

The candidate models identified during experimentation are
given in table II. As the table shows, for light and medium
load (load levels varying from 1 to 118 virtual users), we
select the M/LN/3 model except for one load level (M/Γ/3
model for load=55 virtual users). For higher loads, we select
the M/Hr2/3 model. Graphs of Figure 9 show service times
histograms with identified fitting distributions.

C. Modeling the Web container black box

The Web tier runs on a Linux server with two 1.2 GHz
PIII processors and 1 GByte of RAM. We used a Linux
server with two 2.8 GHz Xeon processors and 2 GBytes of
RAM as an injector machine. The automated self-regulated
load injection phase was carried out within 6 workload steps,
reaching more than 16 virtual users in 7 minutes and 48
seconds. The saturated resource was the JVM heap memory
with 4% free space.

The candidate models identified during experimentation
are given in table III. As the table shows, the load levels
exhibit either an M/LN/1 or an M/Γ/3 model. Graphs of
Figure 10 show service times histograms with identified fitting
distributions.

D. Validation of the obtained global model

Our validation of the identified models is two-fold:
• First, we build a global queuing network model represent-

ing the SampleCluster application, using the three black
boxes’ models, and we perform its performance analysis
or simulation at a given load level (16.2 requests/s).
Then, we compare obtained performance values with
real measures at the same workload level, to check the
accuracy of our modelling.

• Second, we apply the automated load injection and model
identification process on the whole SampleCluster archi-
tecture considered as a single black box. Then, we do
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Figure 7. Service sample analysis for the database black box: light (left), medium (middle) and heavy (right) loads

Figure 8. Load profile resulting from self-regulated load injection performed on the EJB tier. The X axis is time, from 0 to 480 seconds. The Y axis is the
number of active virtual users, from 1 to 162. 12 steps have been completed, and the 13th step has been aborted because of system saturation detection.

Load Identified Model(s) Parameters
1 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.282, sigma=0.132

10 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.458, sigma=0.166
19 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.545, sigma=0.202
28 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.602, sigma=0.189
37 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.653, sigma=0.247
46 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.708, sigma=0.263
55 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 a=15.828, b=0.001
64 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.708, 0.306, sigma=0.476
82 M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.739, sigma=0.363

100 M/Hr2/3, M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.818, sigma=0.376
118 M/Hr2/3, M/Γ/3, M/LN/3, M/Norm/3, M/Wbl/3 m=-4.792, sigma=0.381
136 M/M/3, M/Hr2/3, M/Norm/3 p=0.138, mu1 = 0.862, mu2 = 77.65
162 M/M/3, M/Hr2/3 p=0.094, mu1 = 0.906, mu2 = 27.25

Table II
MODEL IDENTIFICATION RESULTS FOR THE EJB CONTAINER BLACK BOX
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Figure 9. Service sample analysis for the EJB black box: light (left), medium (middle) and heavy (right) loads

Load Identified Model(s) Parameters
1 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=76.87, b=0.001
4 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.254, sigma=0.133
7 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=62.92, b=0.001

10 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.493, sigma=0.145
13 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 a=36.82, b=0.001
16 M/Γ/1, M/LN/1, M/Norm/1, M/Wbl/1 m=-3.679, sigma=0.166

Table III
MODEL IDENTIFICATION RESULTS FOR THE WEB CONTAINER BLACK BOX

Figure 10. Service sample analysis for the WEB black box: light (left), medium (middle) and heavy (right) loads

Performance index Estimated value for the system
decomposed as 3 black boxes

Estimated value for the system
seen as a single black box

Measure

Response time 52 ms 51 ms 52 ms
Throughput 16.2 requests/s 16.2 requests/s 16.2 requests/s

Clients number 0.87 0.80 -

Table IV
COMPARISON BETWEEN THEORETICAL AND EMPIRICAL PERFORMANCE INDEXES
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performance analysis of the obtained model at the same
load level and we compare with the queuing network
results and the real measures. The goal here is to check
the model accuracy, and especially to see if decomposing
the whole system into three black boxes gives more
accurate results than when considering a single model
for the whole system.

Table IV shows mean values of theoretical performance
indexes computed using the identified models of each tier and
of the system modelled as a single black box, at the load
level of 16.2 requests/s. We see that these values are very
close to the mean empirical values. The relative error for the
mean response time is 0.75% for the 3-tiers decomposition
and 2.47% for the single global model. This is a partial
validation of our full automated benchmark and process, on
this particular sample application. This result also shows that
accuracy is actually better with the 3-tiers decomposition,
and with a finer granularity (in our example, relative error
is 3.3 times as small), which partially validates the interest of
decomposing the global system into several black boxes and
building a queuing network.

E. Performance prediction for self-sizing feature

In this section, we sketch an example of autonomic reaction
to possible bottlenecks, which may appear in the SampleClus-
ter system. Whenever a bottleneck appears, we show how the
Analysis function of the self-sizing control loop is able to find
the best system configuration to apply, through performance
analysis/simulation of possible target configurations.

Of course, the notion of “best configuration” is a matter of
viewpoint. From the system user’s viewpoint, only quality of
experience criteria count, such as end-to-end response time,
service availability and reliability. From the system operator’s
viewpoint, a trade-off must be found between investment and
operating expenditures on the one hand, and client satisfaction
on the other hand. Request throughput capability is a good
criteria for the operator since it rules how many clients may
be simultaneously served by the system. Other criteria such
as usage of processor, memory or network bandwidth are also
of interest to optimally size the system’s resources. However,
the operator must also take quality of experience criteria (e.g.
end-to-end response time) into account. The best configuration
typically consists in minimizing the infrastructure costs, while
meeting a service level agreement with respect to given work-
load assumptions (number of users and resulting workload).

In our example, we assume that a load rate of 180 requests/s
is submitted to the system. Performance simulation of current
configuration gives a utilization equal to 1 for the Web
container black box, thus showing saturation of this tier, and
9778s global response time, i.e., 2.71 hours, which is an
unacceptable quality of experience.

In this case, the self-sizing control loop would launch a
decision process, which chooses the best solution. Possible
target configurations are depicted in Figure 11. Table V shows,
in one hand, global response time and global throughput for
the multi-tier system, and in the other hand, utilization indexes

of each tier. These performance results are computed by the
performance analysis/simulation function of the control loop.
We can see that solution 3 results in an improved global
response time and an enhanced throughput. This configuration
is hence the best one and more adequate to our multi-tier
system, and then will be chosen by the autonomic control
loop to be applied to the system.

VII. CONCLUSION AND FUTURE WORK

This paper addresses automated performance modelling of
software elements considered as black boxes. Our goal is to
be able to predict the performance of a distributed application
configuration composed of these black boxes, and to use it
in autonomic systems so that self-* features can integrate
performance awareness while they plan system reconfigu-
rations. Target applications are those being able to evolve
to more strengthened configurations, through replication of
constituents.

For this purpose, we have proposed a performance model
identification process for black boxes. The process automat-
ically delivers, for each black box under test, one or several
queuing models with their parameters, according to a number
of workload ranges. This process has been implemented as a
framework prototype, reusing the CLIF open source load test-
ing platform for workload generation and resource utilization
monitoring. The process usability has been assessed through
the experimentation of a three-tiers web application and the
first results are promising. A first, partial validation is shown
on an clustered Java EE sample application, showing a good
level of response time prediction accuracy, and even better
when the application is decomposed into black boxes instead
of considering it as a single black box.

However, some issues and difficulties were met:

• Isolating a black box from dependent servers (i.e., servers
that are subsequently invoked by the black box when it
processes a request) is mandatory but not straightforward
to achieve. Two solutions may be adopted:
(i) build plugs to replace dependent servers and charac-
terize their performance; this solution is specific to each
protocol, and involves programming, benchmarking and
possibly some network-level wire-tapping efforts;
(ii) follow a step by step approach starting from the final
black box in the architecture and using identified models
of the characterized tier. We preferred the latter solution
for it is simpler to implement. But, while the plug can
be designed for high performance (it is a fake server), a
real server may saturate before the tested black box. In
this case, the black box modelling will partially complete,
with missing high load steps, because of the bottleneck.
The solution is to replicate the dependent server causing
the bottleneck.

• We provide no particular support for capturing traf-
fic routing between black boxes. First, we consider a
simplified vision of the traffic, assuming a pipe call
topology between black boxes, with no feedback calls.
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Solution 2
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Balancer
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Figure 11. Possible target configuration for solving the detected bottleneck
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Performance index Solution 1 Solution 2 Solution 3
Response time 4186 sec 1855 ms 1454 ms

Throughput 70.88 requests/s 106.80 requests/s 117.20 requests/s
Utilization Web 1 0.90 1 1
Utilization Web 2 0.90 1 1
Utilization Web 3 - 1 1
Utilization EJB 1 0.70 1 0.59
Utilization EJB 2 - - 0.60

Utilization MySQL 0.09 0.14 0.15

Table V
PERFORMANCE ANALYSIS RESULTS FOR POSSIBLE TARGET CONFIGURATIONS

However, this assumption is met with common multi-
tier applications, which are our key targets. Second, we
don’t provide a solution to capture multiple round-trip
calls between black boxes, in which an incoming call
in tier n may result in more than a single call to tier
n+ 1. However, our queuing network builder supports a
multiplication factor, which makes it possible to specify
that a given request on black box n generates r requests
on black box n+ 1.

• Our work considers a traffic of homogeneous requests.
Considering heterogeneous traffics with different request
kinds coming with highly variable service times would
require some more work. The issue is quite wide if
you consider also heterogeneous admission policies de-
pending on the request kind (priorities, preemption, etc.).
But this would be typically not the case for the class
of multi-tier applications we consider. Complementary
experiments would give valuable feedback about the
influence of requests heterogeneity in terms of service
times on the different stages of the process and the
accuracy of final performance predictions.

This work makes little assumptions about observation ca-
pabilities of black boxes: response time measurement as it
is experienced by a client, and monitoring utilisation of
host operating system resources. To improve and extend our
framework, it would take some more intrusive observation
capabilities. For instance, calls profiling and network analyzer
tools should be integrated to help capture information about
call routing or to help build plugs.

This work is essentially processor-centric, but it could be
extended also for modelling other resources utilization (e.g.,
network bandwidth, RAM, disk space or disk transfer rate).
Similar statistical techniques may also apply, but the set of
relevant candidate distributions are likely to differ. This would
be valuable for sizing each server, and not only the replication
level of tiers.

Finally, our future work concentrates on the autonomic
vision, since we plan to integrate this performance prediction
platform to an autonomic system manager, responsible for
checking or proposing new system configurations matching
given performance requirements. Within the SelfXL project
[25], applications of this “performance oracle" are foreseen for
anticipating and dynamically adjusting the number of virtual

machines required for a given service in a cloud computing
environment.
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