

Conventional Back up system
(Redundant back up sites)

(1) All data is backed up by
expensive leased lines.

(2) The Maintenance and operation
costs are very high.

Proposed
backup system

(1) Making use of tremendous amounts of
PC, smart phone, or storage cloud.

(2) Minimizing the maintenance cost and
increasing the security level and
recovery rate at the same time

Important
data 1

Important
data

（Back up）

Important
data

（Back up）

Important
data 2

Important
data 3

Sufficient
network
resources

Huge amount
of PC resource

Important
data file

Leased line

Company #1 Company #2 Company #3

Site A

Data center B Data center C

Unused memory
capacity should
be utilized

company #1

Grid nodes: PC, tablet,
smart phone, cloud

VPN / Internet, PSTN

Figure 1. Comparison of the proposed system with a conventional data

backup system

Performance Evaluation of a Disaster Recovery System and

Practical Network Applications in Cloud Computing Envionments

Yoichiro Ueno, Noriharu Miyaho, Shuichi Suzuki
School of Information Environment,

Tokyo Denki University,
Muzai Gakuendai, Inzai-shi, Chiba, 270-1382 Japan

e-mail: ueno@sie.dendai.ac.jp,
miyaho@sie.dendai.ac.jp, ssuzuki@sie.dendai.ac.jp

Kazuo Ichihara
Net & Logic. Co.

Daizawa, Setagaya-ward, Tokyo, 155-0032 Japan
e-mail: Ichihara@nogic.net

Abstract — This paper presents evaluation results for a high
security disaster recovery system using distribution and rake
technology. In an experimental evaluation, the encryption and
spatial scrambling performance and the average response time
have been estimated in terms of the data file size. Discussion is
also provided on an effective shuffling algorithm to determine
the dispersed location sites. Finally, this paper describes a
prototype system configuration for several practical network
applications, including the hybrid utilization of cloud
computing facilities and environments which are already
commercialized.

Keywords-disaster recovery; backup; metadata; distributed
processing; cloud computing; strong cipher; secure video
streaming

I. INTRODUCTION

Innovative network technology to guarantee, as far as
possible, the security of users’ or institutes' massive files of
important data from any risks such as an unexpected natural
disaster, a cyber-terrorism attack, etc., is becoming more
indispensable day by day. To meet this need, technology is
required that can be used to realize a system that has
affordable maintenance and operation costs and provides
high security.

For this application, Data Grid technology is expected to
provide an effective and economical backup system by
making use of a very large number of PCs whose resources
are not fully utilized. In particular, Data Grid technology
using a distributed file data backup mechanism will be
utilized by government and municipal offices, hospitals,
insurance companies, etc., to guard against the occurrence of
unexpected disasters such as earthquakes, large fires and
storms.

However, these methods involve high operation costs,
and there are many technical issues to be solved, in particular
relating to security and prompt restoration in the event of
disasters occurring in multiple geographical locations.

In addition, there is a network infrastructure, which can
be used to distribute and back up a great number of data files,
and a large number of remote office personal computers,
smart phones, or cellular phones, can be readily utilized for
this purpose.

 In addition to these factors, many people involved in
industry and commerce are interested in making use of
public or private cloud computing facilities/environments,
provided by carriers or computer vendors, to provide
temporary storage of and real-time access to their multimedia
files, as a means of achieving security and low maintenance
and operation costs. However, the guaranteed security level
provided by cloud computer services has not yet been
established.

In this paper we propose an innovative file backup
concept which makes use of an effective ultra-widely
distributed data transfer mechanism and a high-speed
encryption technology, based on the assumption that we can
use a small portion of the storage capacity of a large number
of PCs and cellular phones that are in use in daily life, to
efficiently realize safe data backup at an affordable
maintenance and operation cost [1][2].

Figure 1 shows a comparison of the proposed method
with the conventional method in terms of network utilization.
The principal differences in the proposed system are as
follows. (1) It does not require the use of expensive leased
lines. (2) It only utilizes otherwise unused network resources,
such as unused network bandwidth and unused storage

130

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capacity in PCs, smart phones and cellular phones, etc. (3) It
can utilize cloud computing facilities/environments as one of
the remote Grid nodes to obtain a requested amount of
storage and a specific security level in accordance with the
customer’s requirements. (4) It can cipher a number of
important data files at the same time using spatial scrambling
and random dispatching technology. (5) As the number of
user companies increases, the security against being
deciphered illegally increases accordingly. (6) The
maintenance cost can be drastically reduced. In addition,
since it uses a stream cipher, the speed of encryption of data
is increased, so it can also be applied to secure streaming for
video transmission services.

In general, encryption can use two types of technology,
that is, block cipher technology or stream cipher technology.
In the case of block cipher technology, the data is divided
into successive blocks and each block is processed separately
for point-to-point systems; as a result, the encryption speed is
quite slow. As the data volume increases, the required
processor and memory cost increases in an exponential
manner.

On the other hand, in case of the stream cipher, the input
data is simply operated on bit-by-bit, using a simple
arithmetic operation. Therefore, high-speed processing
becomes feasible. These are the fundamental differences
between the two cipher technologies [3].

When an ultra-widely distributed file data transfer
technology, a file fragmentation technology and an
encryption technology are used together, then quite different
characteristics arise from a point of cipher strength. It is
possible to combine the use of technologies, specifically, the
spatial scrambling of all data files, the random fragmentation
of the data files, and the corresponding encryption and
replication of each file fragment using a stream cipher. The
corresponding history data, including the encryption key
code sequence, which we call "encryption metadata", are
used to recover the original data. This mechanism is
equivalent to realizing a strong cipher code, comparable to
any conventionally developed cipher code, by appropriately
assigning affordable network resources [4].

By making use of the proposed combined technology,
illegal interception and decoding of the data by a third party
becomes almost impossible and an extremely safe data
backup system can be realized at reasonable cost. The
proposed technology can also increase both the cipher code
strength and the data recovery rate.

To realize the proposed disaster recovery mechanism, the
following three principal network components are required:
(1) a secure data center, (2) several secure supervisory
servers, and (3) a number of client nodes such as PCs or
cellular phones. We have previously clarified the
relationships between data file capacity, the number of file
fragments and the number of replications for the case of
disaster recovery [5][6].

In this paper, we briefly describe the related work in
Section II, and discuss the basic configuration of the system
architecture in Section III, and the performance evaluation in
Section IV. The practical experimental system is discussed in

Section V. Finally, we provide our conclusions from these
studies in Section VI.

II. RELATED WORK

Conventionally, a file data backup system [7] has been
realized by duplication of a data center, access lines, etc.
However, considering that an earthquake may cause fiber
cable failures over a wide area and shut down several
communication links, this approach is not fully satisfactory
[8].

To take account of this, we have already proposed a
disaster recovery concept which can use to realize a reliable
file backup system by making use of safe and fast encryption
mechanisms, a network distribution mechanism, and a
technique for the effective use of secure meta-data
containing the history of encryption key code sequences
[9][10][11][12]. This technical approach has not yet been
implemented elsewhere. Other related studies have included
the concept of a distributed file backup system [13][14].
However, in these studies, neither a precise performance
evaluation nor practical network service systems are clearly
described. In addition, the technological aspects concerning
the effective distribution of the fragmented data to establish
the required security level are not clearly discussed for
conventional systems.

On the other hand, there has been only a little published
research on personal disaster recovery systems. A personal
disaster recovery system should take account of the cost and
the guarantee of security of personal data. So, a personal
disaster recovery system may use some kind of cheap storage
service for data backup. In recent years, it has become
possible to implement data backup using free online storage.
However, such low cost storage services are not secure
enough for personal information. A persistent file server that
should improve security of such storage service has been
proposed [15]. This persistent file server system introduced
encryption, fragmentation, replication, and scattering. Our
proposed system adds more security with spatial scrambling,
a second encryption, and an effective shuffling algorithm.

III. BASIC CONFIGURATION OF THE SYSTEM

ARCHITECTURE AND ITS VARIATIONS

This section discusses the basic configuration of the high
security distribution and rake technology (HS-DRT).

A. Basic Configuration of the HS-DRT System

The HS-DRT file backup mechanism has three principal
components as shown in Figure 2. The main functions of the
proposed network components are Data Center, Supervisory
Server and various client nodes, and these can be specified as
follows.

The client nodes (at the bottom of Fig. 2) are PCs, Smart
Phones, Network Attached Storage (NAS) devices, and
Storage Services. They are connected to a Supervisory
Server in addition to the Data Center via a secure network.

The Supervisory Server (on the right in Fig. 2) acquires
the history data, which includes the encryption key code
sequence (metadata) from the Data Center (on the left in Fig.
2) via a network.

131

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The basic procedure in the proposed network system is
as follows.

1) Backup sequence
When the Data Center receives the data to be backed up,

it encrypts it, scrambles it, and divides it into fragments, and
thereafter replicates the data to the extent necessary to satisfy
the required recovery rate according to the pre-determined
service level. The Data Center encrypts the fragments again
in the second stage and distributes them to the client nodes in
a random order. At the sane time, the Data Center sends the
metadata used for deciphering the series of fragments to the
Supervisory Server. The metadata comprises encryption keys
(for both the first and second stages), and several items of
information related to fragmentation, replication, and
distribution.

2) Recovery sequence
When a disaster occurs, or at other times, the Supervisory

Server initiates the recovery sequence. The Supervisory
Server collects the encrypted fragments from various
appropriate clients in a manner similar to a rake reception
procedure. When the Supervisory Server has collected a
sufficient number of encrypted fragments, which is not
necessarily all encrypted fragments, they are decrypted,
merged, and descrambled in the reverse order of that
performed at the Data Center and the decryption is then
complete. Though these processes, the Supervisory Server
can recover the original data that has been backed-up.

B. Secuirty Level of HS-DRT

The Security level of the HS-DRT does not only depend
on the cryptographic technology but also on the combined
method of specifying the three factors, that is, spatial
scrambling, fragmentation/replication, and the shuffling
algorithm.

Because of these three factors, nobody is able to decrypt
without collecting all relevant fragments, selecting a unique
set of fragments, and sorting the fragments into the correct
order. Even if some fragments are intercepted, nobody is
able to decrypt parts of the original data from such fragments.

1) Spatial scrambling
The spatial scrambling procedure can be realized by

executing the simple algorithm illustrated as follows. Using a
C-style description, we can write:

for(i=1;i<imax;i++){buf[i]=buf[i]+buf[i-1];}
buf[0]=buf[0]+buf[imax-1];

The array buf[] is the target data to be scrambled and

imax is the size of the buf array. This computation process
should be repeated several times. It is strongly recommended
that this process be repeated at least six times. To de-
scramble, it is only necessary to perform the same operations
in the reverse order. By introducing the above mentioned
spatial scrambling technology, it is almost impossible for a
third party to decipher the data by comparing and combining
the encrypted fragments, since uniform distribution of
information can be achieved by this spatial scrambling.

2) Fragmentation/replication
One of the innovative ideas of HS-DRT is that the

combination of fragmentation and distribution can be
achieved in an appropriately shuffled order. Even if a cracker
captured all raw packets between the data center and the
client nodes, it would be extremely difficult to assemble all
the packets in the correct order, because it would be
necessary to try about (no. of fragments)! possibilities.

Furthermore, the proposed backup mechanism replicates
each fragment and encrypts each copy of the fragment with a
different encryption key. Even if a pair of encrypted
fragments are the copy of the pre-encrypted fragment with
each other, their bit patterns are completely different from
each other owing to the different encryption key. Therefore,
it is impossible to identify the encrypted fragment with the
other. Crackers would require innumerable attempts to
decipher the data.

3) Shuffling
HS-DRT mainly uses a shuffling method with pseudo-

random number generators for the distribution to the client
nodes. When we distribute the fragments of the encrypted
data to widely dispersed client nodes, we can send them in a
shuffled order, since we predetermine the destination client
nodes from the shuffled table in advance. If the shuffled
table has a uniform distribution, the table itself is hard for a
third part to guess. But, if the shuffled tables are biased, there
may exist weak points in the corresponding recovery system.

The result of the significance level, when we divide the
data into 100 fragments, is as follows. The significance level
for the Mersenne Twister and "Fisher-Yates shuffle"
[16][17] with 1 round was 0.4617, and with 3 rounds was
0.8416.

HS-DRT adopts the Fisher-Yates shuffle with 3 rounds
as the shuffling method and Mersenne twister as the pseudo-
random number generator.

Storage
Service

bdata

Data Center

1st encryption

spatial scrambling

fragmentation, duplication & shuffling

2nd encryption

Distribution with shuffling

Smart phoneSmart phoneSmart phone Storage
Service

NAS PC PC

Supervisory
Server

meta
data

encryption key

fragmentation,
duplication &
shuffle info.

distribution info.

encryption key

rake

decryption (2nd)

sort & merge

decryption (1st)

inverse spatial
scrambling

data

networknetwork

network

Figure 2. The basic configuration of HS-DRT system

132

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PERFORMANCE EVALUATION

In this section we discuss the encryption performance
and the spatial scrambling performance of the core module.

A. Fundamental data

We evaluated the performance of three systems. Figure 3
shows the test system, which consisted of two PCs, four
Network Attached Storage devices, and three 1000base-T
Ethernet networks. Table I shows the test environment
adopted in each PC.

We examined the fundamental performance as follows.
By using Mersenne twister (mt19937ar), it was possible

to generate a pseudo-random number in 7.35 nsec on PC1.
By using the Fisher-Yates shuffle algorithm with 3 rounds
and Mersenne twister, it was possible to generate 128 entries
for a uniform distribution table in 18.0 sec on PC1.

By using the 1000base-T (MTU=1522) network and a
TCP stream, it was possible to transfer data from PC2 to PC1
at 112 MB/sec. In this paper, we define “MB (MegaByte)”
as (1024)2 bytes and “GB (GigaByte)” as (1024)3 bytes,
except for HDD capacity. Due to hardware limitations, we
did not examine the performance using the jumbo frame size.
By using the 1000base-T and FTP protocol, we found that
we could achieve 33.9 MB/sec from PC1 to NAS for writing.
By using 1000base-T, where the MTU size was 7422, we
could achieve 42.6 MB/sec from PC1 to NAS for writing.

B. Highest performance

The HS-DRT encryption core module consists of three
threads and four buffers. To examine the highest
performance, the three threads, that is, the receiver,

encryption/scrambling, and sender processes, were as
follows. The receiver thread read the dummy data from
“/dev/zero”. This operation means that the receiver thread
reads all zero dummy data without reading from the HDD or
the network. The encryption/scrambling thread encrypts and
scrambles the data. Then this thread divides the data into 128
fragments, and encrypts them in the shuffled order. The
sender thread writes the 128 fragments in the shuffled order
to “/dev/null”. This operation means that the sender thread
abandons all encrypted fragments.

Table II shows the performance of the HS-DRT
encryption core module. The size of the buffers was 1GB
each. “Time” means the actual elapsed time between the
starting time of the first receiver thread and the finishing
time of the final sender thread. The HS-DRT encryption core
module was able to achieve 150MB/sec or more. This
performance was better than that of the 1000base-T network
interface of 119MB/sec.

C. Practical performance

The results obtained by examining the practical
performance of the receiver/sender thread processes are as
follows. The receiver thread reads the dummy data from the
TCP stream that was transmitted from PC2. The sender

HS-DRT encryption core module (PC1)

1st encryption

spatial scrambling

fragmentation & shuffling

2nd encryption

distribution with shuffling

encryption key

fragmentation
&

shuffle info.

distribution info.

encryption key

NAS0 NAS1 NAS2 NAS3

meta data

dummy data
generator data generator (PC2)

1000base-T

switching hub switching hub

1000base-T 1000base-T

1000base-T 1000base-T

Figure 3. The performance evaluation set-up for the HS-DRT module

Table I. System environment

PC1

Encryption core module
PC2

Data generator

CPU Core2 Quad Q6600 2.40GHz

Memor
y 8GB (DDR2-800) 4GB (DDR2-800)

HDD
RAID 0(striping)

SATA 500GB 7200rpm4
SATA 250GB 7200rpm

OS Fedora 12 x86_64 Fedora 10 i686

Kernel 2.6.31.5-127.fc12.x86_64 2.6.27.5-117.fc10.i686.PAE

gcc
gcc(GCC) 4.4.2 20091027
(Red Hat 4.4..2-7)

gcc (GCC) 4.3.2 20081105
 (Red Hat 4.3.2-7)

libc glibc-2.11-2.x86_64 glibc-2.9-2.i686

Table II. Highest performance of HS-DRT encryption core module

 Processed Data size

[GB]
Time
[sec]

Performance
[MB/sec]

1 6.76 151

2 12.8 160

4 25.0 164

8 49.3 166

12 73.9 166

16 97.9 167

24 146 168

32 195 168

48 292 168

64 390 168

133

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

thread writes 128 fragments in a shuffled order using a built-
in FTP client to four NAS devices. Since the sender thread
creates new four threads, the HS-DRT encryption core
module can write the encrypted fragments to the NAS
devices in parallel.

Although most access lines to the Internet are slower than
100base-T, we used 1000base-T networks in the practical
performance evaluations. There are two reasons. First, we
hope to use gigabit access lines to the Internet in the near
future. The second reason is the system requirement that the
backup process should be completed immediately and should
not be frustrated by a slow access line. So, the practical HS-
DRT system should consist of two stages. In the first stage,
the system processes are the 1st encryption, spatial
scrambling, and fragmentation, carried out as fast as possible
with local area high speed networks. After the first stage, the
computer which has been backed up would resume its
normal task. Then, in the second stage, the system processes
are replication, shuffling, and distribution according to the
speed of the access line. In our practical performance
evaluation, we focused on the first stage performance.

Table III shows the practical performance of the HS-
DRT encryption core module. “Sending Time” means the
actual elapsed time for the data transfer from PC2.
“Processing Time” means the actual elapsed time between
the starting time of the first receiver thread and the finishing
time of the final sender thread at PC1. The size of the buffers
was 1GB each. “Latency” means the difference between
“Sending Time” and “Processing Time”.

The Performance of PC1 changes according to the
Processed Data size, and depends on the Latency. As the
Latency consists of the final encrypting/scrambling time and
the final sending time, it retains a constant value. Figure 4
shows the performance comparison of throughput on PC1. In
Fig. 4, the X-axis shows the processed data size in
Gigabytes and the Y-axis shows the performance in billions
of bits per second. The upper line indicates the throughput of
the encryption core module on PC1 under conditions for the
highest performance and the lower line shows the same
throughput under the practical performance conditions.

The performance degrades at smaller sizes of processed
data because of the latency of processing and sending one
GB of data. However, this latency becomes negligible at
larger processed data sizes. Under the practical performance
conditions, the throughput of the encryption core module on
PC1 becomes saturated at one billion bits per second. The
difference between this one billion bits per second and the
total throughput on PC1 may be due to the overhead of
Ethernet frame handling.

Figure 5 shows the CPU usage of PC1 and the threads
execution timing chart when the HS-DRT encryption core
module executes such operations as receiving, processing,
and sending 4GB data. In the CPU usage graph in the upper
half of Fig. 5, the X-axis indicates the elapsed time and Y-
axis indicates the percentage CPU usage. As PC1 has a
Quad-Core CPU, 100% of CPU usage means four or more
processes/threads running in parallel, and 25% of CPU usage
means only one process/thread running. The “IDLE” area
shows the percentage of time that the CPU was idle. The
“SOFTIRQ” area shows the percentage of time spent by the
CPU in handling Soft-IRQs. The “SYS” area shows the
percentage of CPU utilization at the kernel level. The
“USER” area shows the percentage of CPU utilization at the
user level. The total graph area, except for the “IDLE”
section, indicates the total CPU workload. Any other
parameters, such as the “NICE” value, are omitted from this
graph as these values are negligibly small in this
performance evaluation.

The “USER” area is the workload of the HS-DRT
encryption core module, and the “SYS” + “SOFTIRQ” areas
are the workload of the Operating System for receiving and
sending.

The chart in the lower half of Fig. 5 shows the timing of
the execution of the threads for the CPU usage graph. In this
chart, there are twelve rectangles. The width of each
rectangle represents the processing period of a thread. As
mentioned above, the HS-DRT encryption core module
consists of three threads, the receiver thread, the
encryption/scrambling thread, and the sender thread. In this
chart, the four rectangles that are marked “R#” show the

Table III. practical performance of HS-DRT encryption core module

Processed
Data size

[GB]

Sending
Time
[sec]

Processing
Time
[sec]

Latency
[sec]

Performance
[MB/sec]

 PC2 PC1 PC2 PC1

1 9.10 22.0 12.9 113 46.5

2 18.2 31.6 13.4 112 64.8

4 36.5 49.7 13.2 112 82.4

8 73.0 86.2 13.2 112 95.1

12 109 123 13.1 112 100

16 146 159 13.0 112 103

24 219 232 13.2 112 106

32 292 305 13.2 112 107

48 438 451 13.2 112 109

Figure 4. Comparison of throughput for PC1

134

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processing period of the receiver threads, the four rectangles
marked “E#” show the processing period of the
encryption/scrambling threads, and the four rectangles
marked “S#” show the processing period of the sender
threads.

For example, the receiver thread received the first 1GB
data from the network during “R1” period. Then the receiver
thread passed the received 1GB data to the
encryption/scrambling thread. The encryption/scrambling
thread encrypted the first 1GB data during the “E1” period,
and passed this 1GB of data to the sender thread. Finally, the
sender thread sent the first 1GB data to the network during
the “S1” period. So, the “R1”, “E1”, and “S1” rectangles
form a row.

Looking at the process from a different perspective, the
receiver thread received the first 1GB data from network
during “R1” period, and passed the received data to the
encryption/scrambling thread. Then, the receiver thread
received the second 1GB data from network during the “R2”
period, and so on.

In the processing period of the encryption/scrambling
threads, the “USER” area of the CPU usage graph remains at
about 25%. In contrast, the first (leftmost) processing period
of the receiver thread and the last (rightmost) processing
period of the sender thread consist of “SOFTIRQ” and
“SYS” in the CPU usage graph.

From this CPU usage graph and the execution timing
chart, it can be seen that the I/O (“SOFTIRQ” and “SYS”) of
the receiving and sender threads form the main bottleneck of
the HS-DRT encryption core module. The proposed
encryption core module can achieve the wire speed of gigabit
Ethernet with half of 2.4GHz Quad-Core CPU power. So,
the proposed method can realize a low cost encryption
system with a commercially available cheap Dual-Core CPU.

We also examined the MPEG-2 (8Mb/s) video data

transmission performance of the HS-DRT by using a 2.4
GHz Core2 Quad processor. In this case we assumed that the
number of GOPs (Group Of Picture) is 15, and 30 frames/s
video data transmission (which is equivalent to 512 KBytes
per GOP) is imposed. We confirmed that the required
encoding time including the encryption and spatial
scrambling is 3ms, and the required decoding time including
the decryption and descrambling is also 3 ms. This means
that the total processing time of 6 ms, which corresponds to
the total transmission latency, is sufficiently small and is
within the specified standard field time (for example 16 ms).

V. PRACTICAL EXPERIMENTAL SYSTEM

In this section, we describe an application for secure
video streaming and an application example of the HS-DRT
core module used with a cloud computing system.

A. Application of HS-DRT for secure video streaming

HS-DRT is a versatile technology for secure data
transmission. One of the network applications of HS-DRT is
a secure video streaming service. Figure 6 shows an
implementation example of a secure camera monitoring
system using HS-DRT. In the streaming sender (on the left-
hand side of Fig. 6), the picture frames or GOP of the MPEG
video from the camera are encrypted, scrambled, and divided
into “m” pieces. Moreover, each of the “m” pieces is further
divided into “n” fragments. These (mn) fragments are sent
via (mn) TCP/UDP streams. At the time of sending, each
fragment is assigned the appropriate destination TCP/UDP
flow port number by using the shuffled table. In the
streaming receiver (on the right of Fig. 6), the “m” pieces are
assembled by sorting and merging (mn) fragments. The
receiver merges and descrambles them in the reverse order,

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

C
P
U
 U
sa
ge

Time[sec]

 IDLE

 SOFTIRQ

 SYS

USER

Figure 5. CPU usage on PC1 under practical performance conditions with 4GB data and thread execution timing chart

Receiver
thread

processes
1st 1GB

Sender
thread

processes
1st 1GB

4th 1GB 4th 1GB

3rd 1GB 3rd 1GB

2nd 1GB 2nd 1GB

E1
Encryption
Scrambling

thread

E4
E3

E2

R1
Receiver

thread

S1
Sender
thread

R4
R3

R2

S4
S3

S2

135

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and decrypts “m” pieces to recover the original captured data.
This implementation is considered to be a special case,
because the grid nodes and the supervisory server was
integrated in the streaming receiver on the right. In this
implementation, the sending side and the receiving side have
to share secret keys. These shared secret keys consist of the
encryption key, the information regarding fragmentation, and
the shuffle tables.

B. Integration with a cloud computing system

1) System Implementation
Figure 7 shows the configuration of one of the practical

experimental systems to realize a hybrid HS-DRT processor
by making use of a cloud computing system at the same time.
As shown in Fig. 7, the system mainly consists of the
following four parts: thin clients, a web applications server
(Web-Apps Server), an HS-DRT processor, and Storage
Clouds. Thin Clients are terminals which can use the web
applications in the SaaS (Software as a Service) environment.
Thin Clients can make use of the application services which

are provided by the web applications server. The HS-DRT
processor is considered to be a component of the hybrid
cloud computing system, which can also strengthen the cloud
computers’ security level at the same time. The data center
and the supervisory server can be integrated in the HS-DRT
processor. The HS-DRT processor can effectively utilize the
storage clouds as grid node facilities.

For example, when a user wants to make use of the Web
application function for storing specific individual items of
data automatically, the user selects the corresponding
function, such as “store”, or “automatic store”, as shown in
(2) in Fig. 7.

When the user wants to store the data using the specific
HS-DRT processor, the corresponding operation can also be
handled by the corresponding user operations, by using well
defined GUI operations as shown in (3) in Fig. 7.

In the HS-DRT processor, the HS-DRT-engine, which
also has a function related to a web application, executes the
encryption, spatial scrambling, and fragmentation of the
corresponding files. It sends the corresponding encrypted
data fragments to the public or private storage cloud
computing system, where they are stored. The choice of
whether to use a private cloud or a public cloud follows pre-
determined criteria depending on the type of the web
application.

2) HS-DRT Processor structure
Figure 8 shows the data processing model inside the HS-

DRT processor. In Fig. 8, the HS-DRT processor is
connected to web applications server on the left, and
connected to some cloud computing storage systems on the
right. The saved data flows from left to right via the HS-
DRT encryption core in the upper half of the HS-DRT
processor, and the user data provided in response to a load
request flows from right to left via the HS-DRT decryption
core in the lower half of the HS-DRT processor.

The data from the web application is first received at the
engine, which is equipped with a distributed cache. This
cache enhances the response time of the HS-DRT processors
to the web applications server in both saving and loading
operations. The data which is to be stored is sent to the HS-
DRT encryption core and thereafter, encrypted, spatially
scrambled, and divided into fragments. Following this, the
HS-DRT distributes the data by transmitting the fragments.

encryption,
spatial scrambling,
& fragmentation

fragmentation

shuffling

multiple
TCP/UDP

streams

sorting

merging,
inverse

spatial scrambling,
& decryption

merging

Figure 6. Secure video streaming with HS-DRT

(1) Using Services
(2) Saving Data

(3) Saving Data
to HS-DRT Processor

(4) Saving Data
to Storage Clouds

User networkInternet

Network

Thin Clients
(using web-apps)

Web-Apps
Server

Web Applications

HS-DRT
Processor

Storage Cloud
(public)

Storage Cloud
(private)

Figure 7. System implementation of HS-DRT processor with

 cloud computing system

Write/Save

Read/Load

Read/Load

Write/Save

Network

Web Applications

HS-DRT raker

Cache

HS-DRT decryption core

HS-DRT encryption core

HS-DRT Processor

HS-DRT distributer

Figure 8. HS-DRT Processor structure

136

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When there is a request from the web applications to load
data, the cache engine first processes the data. The HS-DRT
decryption core engine indicates that the HS-DRT-raker
should collect back the distributed data from the relevant
storage clouds. The engine then sends the collected data,
which can be used for file data recovery if required.

3) Characteristics of HS-DRT processor integrated with
the cloud computing system

It is very important to note that the processing efficiency
of the HS-DRT processor can easily be improved by
increasing the amount of the web cache memory.

 We need to consider the scalability of the engine, since it
may become a bottleneck in a very large system, owing to
the number of clients and the amount of storage. In such
cases, the HS-DRT processor may use a key-value database.
As the HS-DRT processor can easily work with other HS-
DRT processors, the system can be extended. The secrecy of
the system can easily be assured because there is no plain
raw data stream appearing anywhere in the entire data
processing procedure.

On the other hand, we should take the following
disadvantageous points into account.

 In order to fully utilize the HS-DRT processor, the
web applications need to be well adjusted to be used
by the HS-DRT engine itself.

 If the number of replicated copies of file data
increases, the corresponding processor performance
for executing the web applications will be degraded
accordingly.

As for the HS-DRT processor, it can include the function
of the web application server in addition to the encryption,
spatial scrambling, and fragmentation of the corresponding
file data. Scalability can also be easily attained by making
use of conventional technologies for load balancing and
multiplexing of the processor.

VI. CONCLUSIONS

We have presented an experimental evaluation of the
encryption and the spatial scrambling performance of the
proposed data recovery system, and found that the average
response time in terms of the file data size is sufficiently
practical to realize the corresponding network services.

Discussion has also been provided on an effective
shuffling algorithm using Mersenne Twister and "Fisher-
Yates shuffle" to determine the dispersed location sites.

Finally, this paper has described a prototype system
configuration for several practical network applications, in
particular, implementing a hybrid structure by making use of
cloud computing facilities and environments which have
already been commercialized.

Further studies should address the optimum network
utilization technology. We are planning to verify the
essential characteristics necessary to fully utilize the network
resources to commercialize an ideal disaster recovery system.

ACKNOWLEDGMENTS

This work has been partially supported by the Grants-in-
Aid for Scientific Research (Issue number: 21560414), the

Research Institute for Science and Technology of Tokyo
Denki University (Q09S-10) and a grant of Strategic
Research Foundation Grant-aided Project for Private
Universities from Ministry of Education, Culture, Support,
Science, and Technology, Japan (MEXT), 2007-2011.

REFERENCES
[1] Y. Ueno, N. Miyaho, S. Suzuki, and K. Ichihara, "Performance

Evaluation of a Disaster Recovery System and Practical Network
System Applications," ICSNC 2010, pp. 195-200, Aug., 2010.

[2] N. Miyaho, Y. Ueno, S. Suzuki, K. Mori, and K. Ichihara, "Study on
a Disaster Recovery Network Mechanism by Using Widely
Distributed Client Nodes," ICSNC 2009, pp. 217-223, Sep., 2009.

[3] S. Suzuki, “Additive cryptosystem and World Wide master key,”
IEICE technical report ISEC 101(403), pp. 39-46, Nov., 2001.

[4] N. Miyaho, S. Suzuki, Y. Ueno, A. Takubo, Y. Wada, and R. Shibata,
“Disaster recovery equipments, programs, and system,” Patent.
publication 2007/3/6 (Japan), PCT Patent :No.4296304, Apr. 2009.

[5] Y.Ueno, N.Miyaho, and S.Suzuki, ”Disaster Recovery Mechanism
using Widely Distributed Networking and Secure Metadata Handling
Technology,” Proceedings of the 4th edition of the UPGRADE-CN
workshop, Session II: Networking, pp. 45-48, Jun., 2009.

[6] K. Kokubun, Y. Kawai, Y. Ueno, S. Suzuki, and N. Miyaho,
“Performance evaluation of Disaster Recovery System using Grid
Computing technology,” IEICE Technical Report 107(403), pp. 1-6,
Dec., 2007.

[7] NTT-East “Wide area disaster recovery services”, <http://www.ntt-
east.co.jp/business/solution/security/dr/> 23.05.2010

[8] Y. Kitamura, Y. Lee, R. Sakiyama, and K. Okamura, “Experience
with Restoration of Asia Pacific Network Failures from Taiwan
Earthquake,” IEICE Transactions on Communications E90-B(11), pp.
3095-3103, Nov. , 2007.

[9] S. Kurokawa, Y. Iwaki, and N. Miyaho, “Study on the distributed
data sharing mechanism with a mutual authentication and meta-
database technology,” APCC 2007, pp. 215-218, Oct., 2007.

[10] J. Yamato, M. Kan, and Y. Kikuchi, “Storage Based Data Protection
for Disaster Recovery,” The Journal of the IEICE 89(9), pp. 801-805,
Sep. , 2006.

[11] Shanyu Zhao, Virginia Lo, and Chris GauthierDickey, "Result
Verification and Trust-Based Scheduling in Peer-to-Peer Grids," p2p,
pp. 31-38, Fifth IEEE International Conference on Peer-to-Peer
Computing (P2P'05), 2005.

[12] K. Sagara, K. Nishiki, and M. Koizumi, “A Distributed
Authentication Platform Architecture for Peer-to-Peer Applications,”
IEICE Transactions on Communications E88-B(3), pp. 865-872, 2005.

[13] S. Tezuka, R. Uda, A. Inoue, and Y. Matsushita, “A Secure Virtual
File Server with P2P Connection to a Large-Scale Network,”
IASTED International Conference NCS2006, pp. 310-315, 2006.

[14] R. Uda, A. Inoue, M. Ito, S. Ichimura, K. Tago, and T. Hoshi,
“Development of file distributed back up system,” Tokyo University
of Technology, Technical Report, No.3, pp. 31-38, Mar 2008.

[15] Y. Deswarte, L. Blain, J.-C. Fabre, "Intrusion tolerance in distributed
computing systems," Research in Security and Privacy, 1991.
Proceedings, 1991 IEEE Computer Society Symposium, pp.110-121,
20-22 May 1991

[16] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural
and medical research (3rd ed.). London: Oliver & Boyd. pp. 26–27,
1948.

[17] D. E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical algorithms., 3rd edition, Addison Wesley. pp. 142-
146, 1998.

137

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

