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Abstract!With the advent of low cost high powered computing,

cameras need not just be used to record multimedia data.
Cameras become sensors as we process waveforms of gait signals

from the video content of humans walking towards these cameras.

This sensory data allows cameras to be incorporated into

networks that monitor humans and their movements. This work
introduces a novel analysis of gait for human recognition which

uses and can be used for surveillance. Current approaches in

human gait analyses employ linear signal decomposition

techniques to obtain features such as frequency and phase. In
contrast, we establish the nonlinear nature of fronto-normal (FN)

gait. This motivates for the use of nonlinear analyses on FN gait

as a biometric and opens up new avenues for research in gait

recognition. Using these nonlinear analyses to derive features, we
show that by themselves they may not provide sufficient

discriminating ability. But by a novel combination of two

different nonlinear measures, one exploiting chaosity and another

representing regularity, this can be used to identify a person using
gait. We apply this in a multi-biometric experiment to

demonstrate its effectiveness. 

Keywords-gait, nonlinear; chaos; Hilbert Huang Transform;
EMD

I.  INTRODUCTION

Due to the current security climate, the presence of multimedia
devices such as low cost webcams and security cameras are

well nigh ubiquitous, whether in points of access or traffic. But
these cameras may not just be used to capture image and video

data as the information can be used to sense the environment
and be processed to produce sensory data. This is important as

cameras are being deployed in networks to so that multiple
views and interpretations of a scene can provide a more robust

analysis of the same. For example, the static images that come
from a camera can be used for face recognition which in effect,

senses the presence of a particular person. Considering the
video component of the data, it is  more than just a stream of

static images. They incorporate a temporal dimension which
can be used to derive time-based features such as frequency of

the movement of the limbs while walking which comprises  the
gait of a person. Effectively, this makes the camera a gait

sensor, which does not require attachment to a person. Gait or
the manner of walking of a person, is a biological feature - its

fundamental properties have been established in medical

studies. 
Recently, gait has been considered as a biometric which is

a registered biological trait, used in human identification. Gait
includes static features such as height, stride length and

silhouette bounding box lengths. Some dynamic features of
gait are frequency domain parameters like frequency and phase

of a walk. As a biometric, gait has desirable properties,
primarily because it is hard to disguise, as in normal

circumstances gait movement is involuntary. Furthermore, it
can be used at long distances, and it is non-intrusive and non-

invasive. In the literature, the main gait recognition approaches
analyze walking which proceeds in a plane parallel to a

camera, the so-called fronto-parallel (FP) view. This gives the
largest variation in a silhouette from which time series data is

obtained for analysis. From a far distance, this is advantageous.
However, being able to obtain these silhouette images from a

far distance require a clear, uncluttered  field of view.
As a contrast, a very common scenario is when people

queue up to access a facility. In a corridor like structure, we
assume that a subject is approaching a camera. In such

situations gait can be used as a supporting biometric because
as the subject draws nearer, other biometrics such as face or

iris can be used for robust recognition. Motion in this plane
which is perpendicular to the FP view, is the fronto-normal

view (FN) which is considered as a special case of FP gait.
Depending on the type of analysis need, in a FP walk, at least

two cycles or four steps are needed. For more robust
estimation of the period of walking, about 8 m is recommended

[1]. To capture this movement,  the camera distance required
is about 9 m [2]. This is because current video cameras

typically have a focal length and sensor size of 8 mm and 1/2"
respectively.  Practically, having such a wide uncluttered space

is difficult, since whenever we want to measure a person’s gait,
many people and objects will be present.

In a FN view, we can still use the 8 m. But this time, we
cover twelve steps and we only need a corridor-like structure,

the width being about that of a human body. Therefore, a
considerable amount of space is saved as shown in Figure 1 in

this case, by 2/9. Besides the considerable advantages in
savings of physical space and better viewpoint, Lee et al. have

put forth the advantages of the monocular FN non-silhouette
approach as [3]:
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Figure 1. FP vs FN - physical dimensions for video capture

i)  Smaller physical space is needed.
ii) Multiple subjects can be tracked.

iii) Other biometrics can be easily combined.
iv) Wide variety of time analysis including non-periodic

motion analysis can be used.

This approach has its own unique challenges when fast and
reliable recognition is necessary. There are some recent

surveys on gait recognition such as that done by Lee et al. [4]

Most gait recognition approaches use a combination of static

and dynamic gait features. Dynamic features are usually linear,
like frequency of walking. Using time series parametric models

for gait recognition is fairly recent, for example by
Veeraghavan et al. in [5]. Lee et al. showed that chaotic

measures may be used to help identify people by their gait [6].
In another paper, they show that FN gait data is mainly

stationary [7]. Recently, they have also combined nonlinear
measures to provide a more robust gait recognition process [8].

With respect to that publication [8] this paper renders a more
complete treatment of the approach. 

Many analyses of gait data assume the property of linearity
without testing for it. Linearity refers to how the data may be

generated by the scaled linear sums of input signals.
Elaborating on this concept leads ultimately to convolution, a

linear operation much used in signal processing. In the main,
dynamic features of gait have been obtained by linearly

decomposing gait signals via the Fourier transform, which is
extensively used and has a good mathematical foundation.

However, most analyses do not check that the signal is linear
and stationary in nature. The gait signal is assumed to be

statistically stationary. However, most biological signals are
not so well specified, many studies showing that they are

nonlinear and nonstationary especially in the FN. Based on
biological evidence and using our FN gait dataset, Lee et al.

have shown that dynamic gait data is in fact nonlinear and thus
should be analyzed using nonlinear methods [9]. Applying

Fourier-based decomposition to nonlinear and nonstationary
signals produce mathematically correct functions, but these

may not have any physical meaning at all. These signal
constituents serve only to accommodate the lack of linearity

and stationarity. This limits the use of such analyses in
processing the signal. There are many methods to decompose

data so it can be expressed in terms of components that
combine in a linear way. For each of them, there are much

more ways to do so nonlinearly as described by Tong, which
gives rise to a rich source of features to be used in pattern

recognition [10]. In this paper, we look at two of the more
prominent methods of nonlinear analyses to derive features for

recognition. We combine these features to increase their
robustness for this task. The novelty of our approach lies in the

use and fusion of nonlinear features for the recognition task.
We demonstrate the efficacy of our approach in an experiment.

In Section II, we look at the current state of temporal gait
analysis. Section III covers our setup and preliminary results, 

Section IV describes the theory behind using Chaos Theory
and the Hilbert Huang Transform (HHT) for analyzing FN

gait. Section V shows some results with preliminary analysis
and we conclude with Section VI.

A. Overview of temporal Gait Analysis

Psychophysical experiments using Moving Light Displays
(MLDs) attached to humans have shown the possibility of

using gait for identification purposes. Some time ago,
Johansson showed how the patterns traced by MLDs can be

perceived as that of people walking [11]. Cutting and
Kozlowski showed that identification was possible from MLDs

[12]. Recently, Troje has shown that the task of recognizing
gender from MLDs has a lower error rate using a frontal view

[13].
Gait as a biometric can be used at long distances, is non-

intrusive, non-invasive, and is hard to disguise. From the
medical literature (such as [1]), gait information is obtained via

sensors directly attached to the body. With image processing,
gait is derived from the 2D image projected on a camera

sensor. In this section, we provide a brief overview of human
recognition using gait with time-based features. Gait includes

static features such as height, stride length and silhouette
bounding box lengths. Some dynamic features of gait are

frequency domain parameters like frequency and phase of a
walk, which also includes the bounding box of the walking

silhouette. In the literature, the area of gait analysis and
recognition has involved medical analyses looking for exact

movement of body parts to detect pathological conditions.
Rather than standard  approaches  which  use  body silhouettes

as ably described  by Nixon et al., we  consider  the  motion 
of  individual  body  parts like hands and feet [14]. These

produce biologically based spatio-temporal signal features
which can be used as a biometric. 

Much of the current gait analyses use silhouettes in the  FP
view because of the large changes in shape and most of these

analyses assume that the signal derived from gait are linear and
stationary for the sake of simplicity. Linearity refers to how the

data may be described by the scaled, linear sums of input
signals. In what follows, we consider a signal, which can be

iconsidered a set of time series data {x(t )} for i = 1..N sample
points. In general, we say s is in a linear signal space if :

(1)

where h(k) are constants and the inputs x(t) may be generated
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by  functions f(t). That is, the data may be generated by the
scaled, linear sums of input signals. The equation is cast as a

convolution which is a common linear operation.
Stationarity entails having the statistical properties of the

signal up to the second order to be constant in time. That is,

p                        where k  is a constant, E[@] is the statistical

expectation operator and p is the order. Usually the first order
statistic is the mean, and the second order statistic the variance

but sometimes the autocovariance or autocorrelation function
of the signal. These measures have been used to analyze gait

by decomposing the signal into its constituents. A common
linear example, which has been well developed is the Fourier

expansion, where the f(t)’s are sinusoidal functions. Current
approaches have used this successfully because the FP view of

gait is particularly amenable to linear analysis in contrast to the
FN gait, as shown by Lee et al. [8] This motivates a search for

nonlinearity and nonstationarity in descriptions of data which
can be used as biometrics. In this work, they show that FN gait

can be characterised by nonlinear measures. A variety of time
series analyses from the fields of econometrics and physics

may be employed to further characterize the gait. In contrast,
FP gait yields mainly periodic measures.

Ibrahim et al. have used Empirical Mode Decompostion
(EMD) (described in Section III.C) to detect the type of gait of

a subject using a 3D accelerometer using the energy of its
Intrinsic Mode Functions (IMF) [15]. From the same research

group, Wang et al. have looked into various features based on
IMFs and the features associated with Hilbert spectra for

clinical gait analysis [16].
Kuchi et al. have used EMD for gait recognition. But we

note that they use motion capture equipment, where the
coordinates of markers attached to the body are computed in-

camera at data rates of 120 samples/s [17]. Thus, the cameras
are not designed to give video information. They analyze the

signal for one walk cycle and for one marker, giving
encouraging results. However, they do not analyze their data

to provide justification for using nonlinear, nonstationary
analyses. We also feel that extending the results to ordinary

video cameras that can be used in security checkpoints is
difficult.

II.  EXPERIMENTAL SETUP

We used a commercial video camera with a capture rate of
25 frames/s at 720 by 480 resolution. In gait recognition from

video, we use feature points that have more motion in the
camera plane. This would be the hands, feet, and knees for a

FP walk. For a FN walk this is also true, although the motions
are smaller in magnitude. For the two kinds of walk, we show

the coloured marker set up in Figure 2. The marker
designations are: lh/rh - left/right hand: lf/rf - left/right foot and

lk/rk - left/right knee. Two additional discs of the same colour
are attached at the waist and face level which are used for

distance normalization. They are: tm/bm , the top/bottom
markers. The markers are tracked using the CAMSHIFT

algorithm [18]. We take video clips of twelve subjects and a
further three for testing. Since in a FN walk, there is the

looming effect caused by the subject approaching the camera.
This causes the movements to grow larger and show a definite

trend in the data as will be seen in Figures 3 and 4. The data
trend is immediately removed and normalized in the following

way:

i) Use the coordinates of the bm  marker as the origin of the
markers.

ii) The length between the tm/bm  markers are used to divide
the distance between the bm  marker and the other marker

coordinates.

Thus every subject will have 12 time series associated with the
x and y movements of the 6 markers attached to the body, for

a FN walk. We have 12 subjects giving a total of 144 time
series. In a FP walk, we have only 6 time series from 3 markers

and 2 sequences, giving 12 time series. This is because
analysis using FP data are well documented in the literature.

Of the gait datasets currently available, most are of the FP
view taken at low resolution. Features for recognition include

frequencies of motion from Fourier-based decomposition of
the motion signal. As described by Lee et al. [19] these gait

datasets are not suited for our use and there are few substantial
video sequences of FN gait available. Thus we create and

explore the use of a dataset that focuses on and exploits the
advantages of the FN view. The experience gained in using this

smaller dataset will serve to prepare for larger scale work. We
have FP gait sequences which are used for confirmatory tests

of linearity only. 

III. THEORETICAL CONSIDERATIONS OF NONLINEAR SIGNAL
ANALYSIS AND DATA ANALYSIS PROCEDURE

This section looks at the theory used to analyze the
linearity of gait signals. The plot of the autocorrelation

function (ac.f) gives a quick visual indicator of the nature of
the signal. Of the several analytical methods available, there

are those based on frequency domain approaches like that of
the bispectrum or higher order moments which do not need

parameters. In the time domain, Autoregressive (AR) and
Moving Average (MA) models are popular. These methods

model the human walk using a set of computed parameters.

A. Testing for nonlinearity using nonparametric methods

The nonparametric method of surrogate data introduced by

Theiler et al. [20] uses a more general form of statistical
hypothesis testing where we postulate the null hypothesis of

Figure 2. Marker positions: Left - FN view Right - FP view
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(2)

linearity. Then simulated data are generated from the processes
which are known to have linear and stationary properties. A

discriminating statistic is computed on the simulated data and
a critical value determined, based on various levels of

significance for which the hypothesis holds.
Using the experimental data now, the discriminating

statistic is again computed and compared with the critical
values which now act as threshold values. We seek to reject the

null hypothesis so that the alternative is true - i.e., the presence
of nonlinearity. Surrogate data is one way to obtain simulated

data conforming to the null hypothesis. The steps are:

i. A Fourier transform (FT) is applied to the data. 
ii. In the transformed data, the phase is randomized.

iii. The data set is converted back to the time domain. 

The surrogate data has linear properties and maintains the
stationary properties of the original data, like the variance and

autocorrelation. Various modifications on the basic algorithm
refine on how well the stationary properties are kept. Thus the

surrogate data are Gaussian, linear and stationary. Many sets
of surrogate data can be generated by changing the random

seed. Using surrogate data requires a suitable discriminating
statistic to be determined from both experimental and

surrogate data and a comparison made. Schreiber and Schmitz
showed that a statistic based on nonlinear predictor errors

(NPE) gives good results for detecting nonlinearity as
compared to several others [21]. The null hypothesis of

linearity postulates that the NPE computed from the original
data lies within normal variation limits with the NPE obtained

from sets of surrogate data [22]. Nonlinearity points the way to
novel methods of analysis such as that used in chaos theory. 

For the sake of completeness, we include a brief discussion
about the use of prediction as a test of linearity - a fuller

account may be found in [23]. Assuming a signal with a
deterministic structure, its predicted values in the short term

may be expressed as a linear weighted sum of its previous
values in the time domain as described in (1). Of course, we

will use values already in the time series to compute the
prediction error. If the previous values are shuffled around as

in the case of surrogate data, there will be a large variation in
the short term predicted values of the surrogate data. However

if we use a suitable nonlinear prediction method which does
not depend on linear computations, the predicted values should

not vary so much in the surrogate data. This approach uses
nonlinear prediction in phase space as explained in Section

III.B.
Of the many ways of characterizing nonlinear behaviour,

we select the most widely used from two major categories. The
first consists of examining its overall behaviour using phase

space approaches. A widely used method invokes deterministic
chaos theory.  Another set of approaches is similar to linear

analysis, but this time the signal is split into constituent
nonlinear functions. For the sake of completeness, we describe

an earlier work of ours using a measure of chaos, namely the

1Largest Lyapunov Exponent, or ë  to characterize gait [8].

B.  Measuring Chaos with Lyapunov Exponents

To test for nonlinear chaotic behaviour, a scalar time
series is subjected to dynamical analysis which assumes that

the time series data x is generated by a vector valued process.
The actual state vectors describing this process may never be

known. But we can create a  set of  phase space vectors which
are topographically equivalent, and can be considered to be a

reconstruction of them. Takens’ "method of delays" is an
established method for doing this [24]. He also shows that if

the dimension of the phase space vectors m  is larger than the
dimension of the chaotic attractor D , we can say that the phase

vectors embed the state vectors and m > 2D  + 1. Thus the
reconstructed trajectory of X is made up of several phase space

vectors as follows:

  

iwhere X  is the state of the system at sample i. Each row of X
is a phase-space vector with a length of the embedding

idimension m . That is, for each X ,

 

1 2 Nwhere ô is the time lag for a time series x = {x , x ,..., x } with

N points. So X is an M by m  matrix, and we have M the number
of phase space vectors being N ! (m  ! 1)ô. The set of phase

vectors describes a path or a trajectory in m  dimensional space,
and analyzing its behaviour gives a measure of chaos.

For parameter ô, the standard method is to take the time
when the autocorrelation plot first goes to zero. But in Figure

7 we see that it never reaches zero until the end of the walk, so
we use the time delayed mutual information measure as

proposed by Fraser and Swinney [25]. For parameter m , we use
the method of false nearest neighbours (FNN) proposed by

Kennel et al. in [26].
In characterizing chaotic behaviour, the largest Lyapunov

1exponent ë  is the most useful and commonly used measure. If
the system equations generating the data are known, it is quite

1straightforward to calculate it. ë  describes how quickly
trajectories approach or come together, given different initial

conditions. This comes directly from a definition of chaos.

1Then ë  is the mean exponential rate of divergence of two

0 iinitially close trajectories from an initial time t  to t . The

jdivergence d  between the j  set of points on the twoth

trajectories is the Euclidean distance between them.

1One of the more recent methods to calculate ë  was formulated

by Rosenstein [27] and independently, by Kantz [28]. This
method is suitable for small and noisy data sets. Assume a

ifixed sampling time period Ät and that at t  the sample number

i 0 iis i so that t - t  = iÄt. We substitute the subscripted time t  by

its index i. Taking logarithms on both sides of (2), we have:

2 j 1 2 jlog  d (i)  =   ë iÄt + log  d (0)
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(3)

(4)

(5)

2 jThe initial separation log  d (0) is constant, so we have a group
of  j  = 1 to M  (phase space vectors) approximately parallel

lines for the sample number i. The main feature of this method

2 jis that we average the log  d (i) values for all j pairs of sample

points at each sample j. Then

where <A> is the average operator. We average further  by
fitting a line using Least Squares to the “average line” of (3)

1after which, ë  is the slope of the fitted lines. This will be
shown in Section V.

C. The Hilbert Huang Transform

Recently, the EMD technique has been used for signal
analysis and decomposition. Huang et al. pioneered its use in

ocean wave studies [29]. It was motivated by the need to study
nonlinearity and nonstationarity by obtaining the instantaneous

frequency and amplitude of a signal as defined in (5). These
allow us to see where the signal is changing, but the difficulty

lies in the scale of the change, for example intermittent
background noise in a larger say, audio signal. Traditional

time-frequency signal processing methods like the Fourier
Transform wavelet analysis do not provide a sharp distinction

between the various harmonic components of the signal [30]. 
The HHT attempts to overcome this problem in a two-step

process. Firstly, EMD decomposes a signal into a set of
constituent functions, which are the IMFs at suitable scales of

the signal. These functions are then subject to the Hilbert
Transform which gives amplitude and phase information over

the duration of the signal from which we obtain the
instantaneous frequency and amplitude.

1) IMFs and the sifting process

Assuming the signal is oscillatory, IMFs have two special
properties - firstly, the number of extrema and zero crossings

must be equal or differ by one. Secondly, the envelope of a
signal touching the local maxima and the envelope touching

the local minima of the IMF has a local mean value of zero.
The signal x(t) is decomposed into its IMFs through the

process of sifting. Rather than fitting a predefined
mathematical procedure, this works with the signal data

1directly. For the first function IMF :

i.   locate all the extrema of x(t)
ii.  generate the envelope signals touching the maxima and

max minminima e (t) and e (t) respectively

max miniii. obtain the mean signal m(t) = (e (t) + e (t))/2

iv. from the original and mean signal, obtain the residual 
     signal r(t) =  x(t) ! m(t)

v.  iterate steps i to iv by substituting r(t) into x(t) until a  

1     given criterion is met. The residual signal is IMF .

2The next function IMF  is derived by using x(t) ! m(t) in place

of x(t) above. The whole process stops when a monotonic IMF
is obtained. IMFs may or not have constant amplitude and

frequency and can be used to reconstitute the original signal,

or for further processing. In our case, the Hilbert Transform is
applied to each IMF obtain the instantaneous frequency.

2) The Hilbert Transform

The Hilbert Transform computes the conjugate function
y(t) of any real valued function x(t). By doing so, an analytic

function z(t) = x(t) + iy(t) is defined. In polar form:

where ù(t) and a(t) are the instantaneous frequency and
amplitude, respectively at time t. From this, other measures

like the mean instantaneous frequency (MIF) and the weighted
mean instantaneous frequency (WMIF) can be derived for each

IMF of the original signal. Then using quantities defined in (4)

for N samples, for a given IMF.

3) Analysis procedure

Since there is such a wide range of data, we perform a

simple data reduction operation for ease of analysis. We use
the simple average of the WIMFs of all the markers of a

subject, looking for those which remain relatively constant for
separate gait sessions. This is done to use as much

idiosyncratic information as possible.

 IV. RESULTS FROM PRIOR EXPERIMENTS

This section covers the waveforms obtained from tracking

body parts and the results required for nonlinear analyses of
signals from previous publications and have been reproduced

here for the sake of completeness. The results concern the tests
for linearity or the lack of it and the derivation of parameters

required for proper embedding of data as explained in Section
III.B.

As described earlier, the subjects in our dataset are
designated by symbols such as s01, s02, s04 and so on. Those

having the suffix ‘a ' are the second video sequence of the
subject, as s02a is the second video from s02. The

unnormalized and normalized plots for a FP walk are  shown
in Figures 3 and 5 respectively. In this figure, the x-axis

motion would seem to swamp out that of the y-axis. This can
be visualized for example, that the horizontal left to right

motion of an arm swing is larger than that of the vertical
motion.
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Figure 5. Plot of normalized FP walk 

Figure 4. Plots of the markers for an unnormalized FN walk

In Figure 3 we note the motion of the body parts, in particular

the x-axis coordinates which show an increase with a linear
trend, reflecting the steady walking speed of the subject. By

normalizing, we obtain the periodic waveform shown in Figure
5.  

As a comparison, the corresponding plots for the FN walk
are shown in Figures 4 and 6. In Figure 4 the coordinates

increase with a nonlinear trend, a consequence of the physics
of a thin  lens. Here the dimensions of an object in the lens’

focal plane varies inversely with the object distance from the
lens [31]. However, the normalized plot in Figure 6 gives a

semblance of a periodic waveform.

A. Linearity tests

In this section we show the results of the tests for signal

linearity. The first is the autocorrelation plot for FP gait in
Figure 9 which shows strong periodicity in movement,

especially in the x-axis which due to its large amplitude
swamps out - that is obscures - the “non-periodic” signal in the

y-axis when considering the total movement of the hand. In
contrast, the autocorrelation plot for the FN gait in Figure 7

does not show any periodicity in any of the twelve marker
trajectories. This is an indicator of nonlinear dynamics or

chaotic behaviour. However, it is interesting to note that the
motion of a FN walk silhouette is periodic [32].

Figure 3. Unnormalized plot of a FP walk

  Figure 6.  Plots of the markers for a normalized  FN walk 
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TABLE 1 

NONLINEAR PREDICTION ERROR FOR A TYPICAL FN   WALK

T-TEST RESULT

We now look at the results for nonparametric testing of
nonlinear behaviour as discussed in Section III.A. The

nonlinear prediction error is a discriminating statistic which
gives a good test of linearity. 

It is generated from surrogate data and compared with that
from the experimental data. An embedding dimension m  = 2

was used, with a time delay ô = 5. These values are determined
experimentally in Section IV.B. A total of 19 surrogate data

series were computed from the movement of one body part.
For example in Table 1, lhy denotes the values of the

movement of the left knee, y axis.
  

Here, sMean, sSTD are the mean and standard deviation
of the values in all the 19 surrogate data series, dMean is the

value for the actual data. We use the t-test to see if dMean lies
within the variability of surrogate data described by sMean and

sSTD. The probability column indicates the probability that

0dMean can be described by the null hypothesis H  being true.

0We see that for the first entry the data probably fits H , and

0more weakly for the third entry, but the rest reject H . Thus the

null hypothesis can be rejected and the data can be considered
nonlinear. In Figure 8 we show the plot of the lhx marker of a

subject and two of its surrogates.

0 sMean dMean sSTD probability H

lhx 0.176 0.174 0.009 0.814 accept

lhy 0.182 0.119 0.016 0.00 reject

rhx 0.162 0.159 0.009 0.07 accept

rhy 0.145 0.122 0.008 0.00 reject

lfx 0.259 0.227 0.014 0.00 reject

lfy 0.134 0.090 0.011 0.00 reject

rfx 0.231 0.221 0.010 0.00 reject

rfy 0.146   0.109     0.008 0.00 reject

lkx 0.166 0.152 0.009 0.00 reject

lky 0.123 0.104 0.011 0.00 reject

rkx 0.172 0.158 0.010 0.00 reject

rky 0.118 0.090 0.009 0.00 reject

In Table 2, for the FP walk, we include the t-statistic instead of
the standard deviation. This is because we see the x-axis

values, those marked with an ‘*” in the last column, having

0high t-statistic values (indicating rejection of H ) even though

they seem strongly periodic. This phenomenon has been
described by Stam et al. [33], and is actually an indication of

0the strongly periodic signals and thus an acceptance of H .

Figure 7. Autocorrelation plot - FN walk of 12 markers

Figure 8. Segmenting the original data and two surrogates for computing

 statistics

Figure 9. Autocorrelation plot of 6 body markers for  FP walk
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TABLE 2 

NONLINEAR PREDICTION ERROR FOR FP  WALK

T-TEST RESULT

0* denotes special non rejection of H

Figure 11. False Nearest Neighbour (FNN) plots for the markers of one

person in a FN walk. Arrow marks point where fraction of FNN goes to

zero for ô = 2.

1TABLE 3 Values of ë  for 12 markers of 3 subjects for ô =2 and m = 5

0sMean dMean t-statistic Probability H

lhy 0.063 0.045 22.24 0.00 reject

lhx 0.184 0.047 19.97 0.00 accept*

lky 0.064 0.064 1.80 0.64 accept

lkx 0.268 0.037 29.91 0.00 accept*

lfy 0.059 0.064 -6.01 0.00 reject

lfx 0.158 0.087 12.84 0.00 accept*

Since we have evidence of the nonlinearity of FN gait, we have
justification for using nonlinear measures on the data from FN

gait.

B. Measures of chaosity

Recall in Section III.B, that in order to characterize chaos,
a first step is to embed the data into vectors, which require the

parameters m  and ô, For ô and using the mutual information
measure, we show a sample plot in Figure 10 for one person.

The point at which the first minimum of the plot is taken to be
the best value for ô which is 2 in this case, for all twelve

marker trajectories. For m , we use the method of false nearest
neighbours (FNN) as described in Section III.B. A typical plot

is shown in Figure11. Taking the average of all the largest
values where the FNN goes to zero, we find the nearest integer

value to be six.

 V. RESULTS

In this section, we present the results of our experiments on

characterizing gait using nonlinear measures of determinstic
chaos and also quantities derived from the HHT. 

A. Characterizing gait using measures of deterministic chaos 

As we have also discussed in Section III.B, the slope of 

1the line fitted to the trajectory will be ë . In Figure 12 we see

1a plot of ë  for the twelve marker trajectories of a person. We

1see that the data is mildly chaotic as ë  is positive. As a data

1 1reduction measure, we compute the average 'ë  of all the ë  of
the markers for a subject. An interesting observation in Table

13 is that subjects having similar 'ë  are s02, s03 and s10. We
now employ a similar approach for the HHT.

ô2m5 s02 s02a s03 s03a s10 s10a

lhx 1.801 3.710 1.781 2.073 2.242 2.026

lhy 3.726 4.853 2.506 3.572 2.614 1.770

rhx 3.629 2.633 4.016 3.811 2.975 2.582

rhy 3.869 3.333 4.431 3.027 2.962 2.230

lfx 2.495 2.332 2.347 2.112 1.535 1.760

lfy 2.745 1.740 2.256 2.864 2.233 2.219

rfx 2.280 3.145 2.391 2.185 1.985 2.024

rfy 2.832 3.352 3.680 4.267 1.103 3.181

lkx 2.710 2.490 1.988 1.882 2.308 1.644

lxy 4.088 2.641 1.888 2.472 1.912 2.450

rkx 3.395 3.361 2.505 2.173 1.561 1.293

rky 2.877 3.361 3.168 2.538 1.605 2.453

avg 3.037 3.079 2.746 2.748 2.086 2.136

var 0.67 0.76 0.84 0.74 0.56 0.48

Figure 10. Mutual Information plots - markers of one person in FN walk.

Position of first minimum shown in top left subplot.
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3TABLE 4 Weighted mean instantaneous frequency for IMF  of markers

of 3 subjects

(6)

B. Characterizing gait with HHT

The decomposition of the waveform of the lhx movement

of a subject in Figure 8 (marked “original data”) using EMD
is shown in Figure 13.  Here we show the plots for the IMF and

WMIF. As we see from the top of the left column of Figure 13
the first few IMF’s have a lot of high frequency content

accounting for the fine movements of the marker. The
frequency decreases with increasing IMFs. While the similarity

to frequency decomposition methods like Fourier and wavelet
analysis is there, note that the IMF waveforms do not have

analytical expressions, hence the empirical nature of EMD. In
the right column we see the normalized instantaneous

frequency and amplitude at each sample point.
Through experimentation, we found that the third IMF

gave the best results, leaving out the knee markers lkx/y, rkx/y
and using WMIF instead of the MIF. In Table 4, we show the

WMIF for only the 3 subjects with an extra video sequence. As
in the case of chaosity we use as a feature the simple average

of all the WMIFs of the markers of a subject, excluding the
knee markers. This is indicated by the avg wimf row at the

bottom row of Table 4.

C. Class separability

We apply statistical pattern recognition techniques to our 
data set even though it is small, to check the feasibility for

when a suitable corpus of data is available. We assume that the
subjects belong to a class and we examine the separability of

the classes and if needed, to see if using other features can
help. The values of a feature for a subject are assumed to be

normally distributed, the prior probabilities of each class are

the same, and we use the pooled variance as the variance of the
data for all the subjects. Since there are only three subjects

with a test video, we will use the variance from these groups.

ijThe Bhattacharyya distance B  between classes, defined as:

where ì and Ó are the mean and variance of the classes is used

extensively used for measurements of class separability. 

marker/subj s02 s02a s03 s03a s10 s10a

lhx 4.16 3.42 3.36 3.5 5.45 3.44

lhy 3.32 4.06 3.52 3.5 2.78 2.55

rhx 3.56 3.91 3.19 3.45 3.26 5.33

rhy 3.86 4.05 4.00 3.35 3.39 3.79

lfx 5.72 4.94 3.78 4.07 6.95 5.19

lfy 3.62 3.21 2.98 1.72 3.2 3.46

rfx 3.19 5.36 3.97 4.48 4.08 6.42

rfy 3.36 3.11 3.36 3.04 3.32 2.26

avg wmif 3.85 4.01 3.52 3.39 4.05 4.06

Since we are using the pooled variance, the log term will be

1zero. This is more useful than showing the values of 'ë  for all
the subjects. The results of the calculation between pairs of

1classes are shown in Table 5 for the 'ë  measure. This is
reproduced from [6] for comparison and a more complete

discussion. Since the table has are symmetric data, in the
interests of clarity, we show only the upper diagonal values.

ijWe see that some classes are poorly separated with a B  value
(rounded) that is less than  or equal to 1. For example classes

s04, s06 and s07 cannot be disambiguated, between s08 and
s12, s02 and s11 as well.

Similarly, in Table 6 for the WIMF classes that cannot be
disambiguated are s01, s02, s06, s08, s11 between s10 and s11,

and s05 and s12. Making the assumption that the poorly

1separated classes are not separable, we fuse the 'ë  measure

mentioned earlier, so we can successfully classify members of
our data set. Now we combine both features to see if we can

achieve a better result. We combine both features using a
logical AND. For example, if the avg WMIF (HHT-based

feature) denotes the person being in the group s01, s02, s06,

1s08, s11 and the 'ë  (Largest Lyapunov Exponent based
feature) being in the group s04, s06 and s07, the person would
be s06. To save space, we now show the combined confusion

matrix in Table 7.

1Figure 12. Computation of ë  of trajectories of a person’s markers using 

Rosenstein's method as in (2). The y-axis are the log of the divergence and 

1x-axis are the sample numbers. The slope of the average line gives ë .
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1TABLE 5 Bhattacharyya distance betwen classes using 'ë  TABLE 6 Bhattacharyya distance betwen classes using HHT

s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s12
s01 0 85 11 25 11 22 27 3 31 78 75 5

s02 0 36 201 155 190 206 56 14 324 1 51
s03   0 68 43 62 71 3 6 146 29 2
s04    0 3 1 1 45 111 15 185 51
s05      0 2 4 2 2 2 141 29
s06      0 1 103 18 175 2 45
s07       0 48 115 14 190 53
s08        0 15 111 48 1
s09         0 206 10 12
s10          0 303 119
s11            0 43
s12            0

s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s12
s01 0 0 4 56 24 1 6 0 7 2 0 20
s02 0 0 8 45 18 0 3 1 11 0 0 14
s03  0 0 0 92 50 10 21 3 0 12 6 44
s04  0  0  0 0 6 40 25 60 104 36 50 8
s05 0 0 0 0 0 15 6 28 59 12 21 0
s06  0  0  0  0  0 0 1 2 15 0 0 11
s07  0  0 0 0 0 0 0 7 26 1 4 4
s08  0 0 0 0 0 0 0 0 6 3 0 23
s09 0  0  0  0  0  0  0  0 0 17 9 52
s10  0 0 0 0 0 0 0 0 0 0 1 9
s11 0  0  0  0  0  0  0  0  0  0 0 17
s12  0  0 0 0 0 0 0 0 0 0 0 0

Figure 13. Plots of the (left) first seven IMFs of the lhx movement of a subject. On the right is the normalized Instantaneous Frequency

(dotted line) and Instantaneous Amplitude (solid line) for the IMF. The Weighted Average IMF is shown as  well. The x-axes all denote

the sample number.
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A useful result is that we are able to separate all classes
successfully using these two nonlinear measures.

VI. CONCLUSION AND FUTURE WORK

We have used a camera as a sensor to derive the gait
signals of a person in a multimedia video data stream. The

objective is to see if the data can be used to identify a person.
We have shown by using several types of analyses that signals

derived from FN gait is nonlinear in nature. This is in contrast
to current approaches which impose linear analyses of gait

signals for convenience. This gives us a basis for using
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average of the nonlinear features by themselves are not able to
discriminate completely between the classes of subjects.

However, by combining them, we get a successful result. The
novelty of our approach lies in the evaluation and use of both
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While our dataset is small, we note that the number of

nonlinear features we can extract from the gait signals is
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of deriving new biometrics or improved recognition rates. So

future work will need to test this out for current biometrics in
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much scope for investigating other types of signal analysis that
is not based on linearity and stationarity assumptions. By doing

so, we capitalize on the ubiquity of video cameras, from which
we are able to obtain sensory data which can be used to

augment security networks.
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