
Building a General Pattern Framework via Set Theory: Towards a Universal
Pattern Approach

Alexander G. Mirnig, Manfred Tscheligi
Christian Doppler Laboratory for “Contextual Interfaces”

HCI & Usability Unit, ICT&S Center, University of Salzburg
Salzburg, Austria

Email: {firstname.lastname}@sbg.ac.at

Abstract— Patterns have been successfully employed for
capturing knowledge about proven solutions to reoccurring
problems in several domains. Despite that, there is still little
literature available regarding pattern generation or common
pattern quality standards across the various domains. We
present an attempt for a universal (i.e., domain independent)
pattern framework. Via basic set theory, it is possible to
describe pattern sets that are composed of several subsets
regarding pattern types, quantities, sequence, and other
factors. We can thus describe patterns as sets of interrelated
elements instead of isolated entities, thus corresponding with
the scientific reality of complex problems with multiple
relevant factors. The framework can be used to describe
existing pattern languages and serve as a basis for new ones,
regardless of the domain they are or were created for.

Keywords-patterns; pattern basics; pattern framework; set
theory

I. INTRODUCTION AND MOTIVATION
Patterns have been used as a tool for capturing

knowledge about proven solutions to reoccurring problems
in many domains. Most prominent among these domains are
architecture and software design [1][2][6]. Patterns allow
documenting knowledge about methods and practices in a
structured and systematic manner. Another major benefit of
patterns is that they can serve to “make implicit knowledge
explicit” [10], i.e., they can be used to explicitly capture
what is normally only acquired via experience after having
worked in a certain field or domain for an extended period of
time. The information contained in such patterns can then be
provided to others (researchers or other interested parties) in
a relatively quick and efficient manner. Despite this, there is
little general (i.e., domain independent) literature available
on patterns and pattern creation.

Having access to a structured collection of implicit and
explicit knowledge about research practices is useful when
conducting research in any domain. There is no How to
Generate Patterns in 10 Easy Steps or similar basic
literature. This is not an entirely new idea [8], and there has
already been a big push in that direction by, e.g., the work of
Meszaros and Doble [11] and Winn and Calder [13], which
we want to expand and build upon.

Two of the main benefits of patterns are that they
facilitate re-application of proven solutions and that they

serve to make implicit knowledge explicit. These benefits are
of particular importance to researches, who do not already
have this knowledge themselves, i.e., it is a way to draw
from a vast pool of knowledge. If working with patterns has
extensive domain experience as a prerequisite, then those
that would need that knowledge the most would benefit the
least from it. The final goal of this research is to arrive at a
structured but still easy to understand framework that
captures the essence of patterns and makes them
understandable as well as usable for practitioners and
researchers in any domain. The first step is to provide a basic
set theoretic analysis that allows to describe patterns and
pattern languages in a general manner. This later on serves as
a domain independent basis for reflections on how patterns
can or should be created and structured.

We argue for a general strand of research on patterns as a
means to capture knowledge about research practices. With
such a theoretical basis available, practitioners from any
domain could have a pool of knowledge to draw from, which
would help them create patterns suitable for their needs. This
should not mean that a variety in pattern languages and
approaches is not desirable. It makes sense to assume that
different domain requirements need different pattern
approaches. However, the basics of patterns should ideally
be similar for everyone and easily accessible, like with
general mathematics. A statistician needs and employs
different mathematical means than a fruit vendor. But both
draw from the same pool of general mathematics as their
basis. In our research, we take a step back, look at patterns
from a general point of view and describe them via basic set
theory [5]. A general analysis of patterns allows us to treat
them as separate phenomena, independent of the domains
they are created and used in. Set theory is one of the most
basic, but at the same time very powerful, mathematical tools
available. By using set theory, we can ensure consistency of
our framework, while still keeping things basic and relatively
easy to understand. An additional benefit of our approach is
that it permits the creation of pattern sets across different
pattern languages that address a similar purpose. This can
facilitate the consolidation of already existing knowledge
within the various domains. In this paper, we begin with an
overview of existing general literature on patterns in Section
II, followed by an outline of the initial proposed set theoretic
pattern framework in Section III. In Section IV, we present
our planned next steps for further iteration and finalization of

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

the framework and conclude with a few paragraphs on the
perceived advantages and possible future challenges of our
approach.

II. RELATED WORK
Patterns have been employed in a multitude of

application domains [1][6][12] and a good number of
extensive pattern collections [3][4][7] have been created in
the past. Literature on the pattern generation process itself,
sometimes also referred as pattern mining [4], is still scarce
[9]. Existing literature on pattern generation is mostly
focused on specific domains [3][6][8][12]. The work of
Gamma et al. [4] can be considered important elementary
literature, but it is still centered on software design. Although
covering a wide spectrum of software design problems, it is
arguably of limited applicability outside of the software
engineering domain. The same can be said about other
specialized pattern generation guidances [8], which would
require adaptation to be employed in other domains (e.g.,
biology or linguistics).

Meszaros and Doble [11], developed a pattern language
for pattern writing,	 which serves to capture techniques and
approaches that have been observed to be particularly
effective at addressing certain reoccurring problems. Their
patterns for patterns were divided into the following five
sections: Context-Setting Patterns, Pattern Structuring
Patterns, Pattern Naming and Referencing Patterns, Patterns
for making Patterns Understandable, Pattern Language
Structuring Patterns. Another interesting approach being
quite similar in its aims to the one presented in this paper, is
the Pattern Language for Pattern Language Structure by
Winn and Calder [13]. They identified a common trait
among pattern languages (i.e., they are symmetry breaking)
and built a rough, nonformal general framework for pattern
languages in multiple domains. These ideas are similar in
concept to what we pursue in our research. The difference is
that we want to provide a purely formal framework without
or minimal statements regarding its content (such as types or
traits). We want to focus on the basics behind patterns and
structure these, so that they can be applied as widely as
possible, although we intend to incorporate the work of
Meszaros and Doble, and Winn and Calder at a later stage
(see Section IV).

Another interesting aspect of patterns is that one single
pattern is usually not enough to deal with a certain issue.
Alexander et al. [2] already expressed this by stating the
possibility of making buildings by “stringing together
patterns“. The pattern itself, however, does not include the
information of which other pattern might be relevant in a
particular case. This information is only available once the
pattern is part of an actual pattern language. Borchers [3]
introduced the notion of high level patterns, which reference
lower level patterns to describe solutions to large scale
design issues. This hierarchy is expressed via references in
the patterns themselves, which is a good way of
understanding and describing patterns as interconnected
entities. A suitable framework for patterns and pattern
languages should ideally be able to capture these relations
between patterns.

III. THE GENERAL PATTERN FRAMEWORK

A. Patterns and Pattern Sets
Before starting to build the framework, we first need to

take a look at patterns, pattern languages, and the concepts
behind them. Alexander [2] characterized patterns in the
following way: “Each pattern describes a problem which
occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a
way that you can use this solution a million times over,
without ever doing it the same way twice.” So on a basic
level, patterns can be understood as a structured assortment
of statements. A pattern language is a complete hierarchy of
patterns, ordered by their scope [12]. We will translate these
concepts into a basic set theoretic structure by employing
regular sets, ordered sets, and subsets, via the following
example based on a Contextual User Experience (CUX)
pattern structure by Krischkowsky et al. [8] (see Tab.1).
Please note that this analysis would work for any pattern
language that is or can be structured in a similar way, such
as, e.g., the design patterns template laid out by Gamma et al.
[6], but we wanted to give a more current and not software-
centered example to prove our point.

TABLE I. CUX PATTERN STRUCTURE [8]

Instructions on Each Pattern Section

Section
Name

Instruction on Each Section

1 Name
The name of the pattern should shortly describe the
suggestions for design by the pattern (2-3 words
would be best).

2 UX
Factor

List the UX factor(s) addressed within your chosen
key finding (potential UX factors listed in this section
can be e.g., workload, trust, fun/enjoyment, stress...).
Please underpin your chosen UX factor(s) with a
definition.

3 Key
Finding

As short as possible - the best would be to describe
your key finding (either from an empirical study or
findings that are reported in literature) in one
sentence.

.
.
.

8 Key-
words

Describe main topics addressed by the pattern in
order to enable structured search.

9 Sources Origin of the pattern (e.g., literature, other pattern,
studies or results)

We now want to generate an actual pattern language set,

let us call it CUX Language (and refer to it as CL for
brevity’s sake), based on the structure outlined in Tab. 1. We
can do so by introducing nine subsets (i.e., sets of the set CL)
CL1 to CL9, each subset corresponding to one of the nine
categories (from Name to Sources, respectively) described
above. To actually generate a pattern for CL, we need to
assign statements to each of the nine subsets. We do that by
assigning a yet undefined set of statements S to CL, making

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

sure that none of the subsets remains empty. Note that
‘statement’ in this regard not only refers to full sentences,
but also to single words or sequences of words which are not
full sentences. We can generate n-number of CL-patterns P1
to Pn this way.

Of course, simply arranging patterns into sets and subsets
does not in itself guarantee that any of these patterns are
actually useful or reasonable. What this analysis can tell us is
(a) the pattern language (CL) the patterns are generated in,
(b) how many statement categories a successful pattern
generated in that language must contain, and (c) which
statements can be found in which category, i.e., the patterns
themselves. So, this elementary analysis has already yielded
a powerful starting framework, via which we can express in
a domain-independent manner how patterns and pattern
languages stand in relation to each other, regardless of
domain they were generated in.

B. Descriptors
CL does not yet fully qualify as a pattern language in the

actual sense of the word and there are two things that an
individual CL-pattern does not tell the reader at this stage.
These are (a) which other patterns might be useful or even
necessary for a given purpose, and (b) exactly at which point
during a given task or activity and in which order will they
be needed. Without knowing these, one can only guess what
else they might need upon being presented with only a single
pattern or depend on prior experience. It would be
undesirable and arguably defeat the purpose of patterns, if
extensive meta-knowledge were necessary to be able to use
them successfully. This is why we enrich the basic set
theoretic framework with specialized descriptor sets, which
serve to understand patterns in context with each other. We
shall again illustrate this via a simple example: Assume that
we have three patterns, P1 to P3, which would help us in
conducting a user study in the car. P1 and P2 are CL-patterns
to reduce user distraction, whereas P3 is a pattern about
processing the data gained from the study. P3 was created in
a different pattern language, let us call that one DL. We can
now specify which of these patterns we want or need and in
which order by introducing an ordered set D. Let us further
assume that we want to express that we need only one CL-
pattern as well as the DL-pattern and that the DL-pattern will
be needed after the CL-pattern. We can express all of this via
the following example descriptor set D1. Please note, that
angle brackets (‘<’ and ‘>’) denote an ordered set, as
opposed to an ordinary set, which would be denoted by curly
brackets (‘{’ and ‘}’).

 D1: <CL1, DL1> (1)

Instead, if we need both CL-patterns, we can express this via
the following modification to D1:

 D2: <CL2, DL1> (2)

Considering the fact that D1 in (1) does not tell us which of
the two CL-patterns is needed, we could also specify a
pattern directly, if not any of them would do:

 D3: <P2, DL1> (3)

But how do we now specify which of these descriptors

(D1-D3) is the appropriate one for a given scenario? Patterns
are created for a certain purpose, and in most cases that
purpose is how to deal with a certain reoccurring problem.
We can specify which descriptor fits a certain purpose better
than another. To properly express this, we introduce the
notion of targets T that contain the general purpose of a
certain activity (e.g., car user experience). This is different
from the problem-field of a pattern, since a given high level
pattern could very well reference a lower level problem that
addresses a different problem, while both serve the same
general purpose. We can now map descriptors to targets,
depending on what is needed. In this example, a target that
does not require both CL-patterns would be assigned either
D1 or D3, whereas one that does would be assigned D2. So, in
addition to being able to specifying the relations between
patterns in a single pattern language, we are not confined to
that single pattern language. This means, that we can also
describe hierarchical pattern sets from different domains and
pattern languages in the same framework. By adding one
additional layer (targets and descriptors) to what was already
available before, we have arrived at a highly modular and
flexible pattern framework. Fig. 1 provides an overview of
the interrelation of pattern languages, patterns, descriptors,
and targets.

Figure 1. The Pattern Framework – Overview

Currently, one problem of this proposed structure is that
any sets of statements can be made into a set and called a
pattern language. This is hardly acceptable, of course, and
needs to be rectified. We are currently still working on
identifying requirements, that any set of statements should
fulfill in order to be called a pattern language and what the
respective descriptors should look like. Descriptors are
ordered sets themselves, so each of their elements have a
clearly defined spot in a concrete sequence. This rigid
structure also means that it can be difficult to express that
particular patterns could be relevant at any point in the
sequence or at several fixed points. But it cannot be assumed
that all patterns would only ever be relevant at one very
specific point. Even if that were the case, it could similarly
not be assumed that these specific points were always
known. A refinement of the descriptor sets will be in order,
to permit more numerous and less cumbersome expression
possibilities with regard to sequences.

 Target Descriptor

Pattern language

Patterns

specify

assign

create from

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

IV. NEXT STEPS
The framework outlined in this paper is still a work in

progress. To arrive at a sufficiently detailed and refined
framework, we are currently working on the following:

A. Refine the Framework: Pattern Languages,
Descriptors, Targets
We intend to pursue a refinement of pattern language

requirements similar to Winn and Calder’s approach [13]
and introduce symmetry breaking (or a similarly suitable
property) as a necessary property of descriptors. We will
then research the requirements a descriptor and its subsets
need to fulfill in order to acquire that property. A more
detailed analysis of pattern languages as hierarchical
structures and how this translates into concrete descriptor
sets is being worked on. Descriptors permit specifying
patterns directly, via specifying the language they are part of,
or with regard to other additional factors. The type of a
pattern could be regarded as one such relevant factor. We
will, therefore, incorporate the notion of pattern types into
the framework, in particular the pattern types put forward by
Meszaros and Doble [11]. We consider these as particularly
important in this regard, due to their general nature, but also
analyze domain-specific pattern types (e.g., the three types of
software design patterns put forward by Gamma et al. [6])
will have to be taken into consideration. In addition, we will
provide a more concrete structure for targets, with more
detailed information on what a target is and the information
it should contain.

B. Apply the Framework
Once the framework has been completed, we will

demonstrate the suitability of the framework by actually
generating and describing sample pattern sets from two very
different domains (e.g., User Experience (UX) research and
Neuroscience).

V. CONCLUSION
The great advantage of the approach described in this

paper is that patterns are separate from descriptors, which are
themselves separate from the targets. This means that
patterns can be generated as usual, descriptors generated and
assigned on an as-needed basis. For the pattern user, this
means that they do not have to scour vast databases of
patterns for those they might need. All they need is to have a
look at the descriptor(s) that is/are assigned to the target they
have in mind. Thus, existing pattern databases can be
expanded with descriptors, which help make them more
usable and reduce the amount of domain experience and
previous knowledge required in order to employ patterns
successfully.

But even more importantly, descriptors can specify
patterns with regard to certain properties, such as pattern
language, context, etc. Descriptors functions similarly to
references are contained in the patterns themselves (as
suggested by Borchers [3]), but enable additional or
alternative references to other patterns at any time, since they
are not actual parts of a pattern. This means that descriptors

can be used to describe virtually any pattern set, regardless
of which domain(s) its patterns came from or when the
pattern was created. Not only is it possible to capture the
hierarchical order of existing pattern languages via
descriptors, but also reference patterns from other languages
that might fit a certain purpose. This means that the
framework is not tied to a single pattern language or even a
single domain and permits references to patterns from
multiple pattern languages. We therefore consider it a
suitable basis for domain independent pattern research.

ACKNOWLEDGMENT
We gratefully acknowledge the financial support by the

Austrian Federal Ministry of Economy, Family and Youth
and the National Foundation for Research, Technology and
Development (Christian Doppler Laboratory for „Contextual
Interfaces").

REFERENCES
[1] C. Alexander, The Timeless Way of Building, New York:

Oxford University Press, 1979.
[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King, and S. Angel, A Pattern Language: Towns,
Buildings, Construction, Oxford: University Press, 1979.

[3] J. Borchers, A pattern approach to interaction design, New
York: John Wiley & Sons, 2001.

[4] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
Critical Review,” HCI, Volume 21, January 2006, pp. 49-102.

[5] K. Devlin, The Joy of Sets: fundamentals of contemporary set
theory, 2nd ed., Springer, 1993.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Boston: Addison-Wesley Professional, 1995.

[7] S. Günther and T. Cleenewerck, “Design principles for
internal domain-specific languages: a pattern catalog
illustrated by Ruby,” Proc. 17th Conf. on Pattern Languages
of Programs (PLOP '10). ACM, New York, NY, USA, ,
Article 3 , pp. 1-35, DOI=10.1145/2493288.2493291,
retrieved: April, 2014.

[8] A. Krischkowsky, D. Wurhofer, N. Perterer, and M.
Tscheligi, “Developing Patterns Step-by-Step: A Pattern
Generation Guidance for HCI Researchers,” Proc.
PATTERNS 2013, The Fifth International Conferences on
Pervasive Patterns and Applications, ThinkMind Digital
Library, Valencia, Spain, May 2013, pp. 66–72.

[9] D. Martin, T. Rodden, M. Rouncefield, I.Sommerville, and S.
Viller, “Finding Patterns in the Fieldwork,” Proc. Seventh
European Conf. on Computer-Supported Cooperative Work,
Bonn, Germany, September 2001, pp. 39-58.

[10] D. May and P. Taylor, “Knowledge management with
patterns,” Commun. ACM 46, 7, July 2003, pp. 94-99,
DOI=10.1145/792704.792705, retrieved: April, 2014.

[11] G. Meszaros and J. Doble, “A pattern language for pattern
writing,” Pattern languages of program design 3, Robert C.
Martin, Dirk Riehle, and Frank Buschmann (Eds.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
November 1997, pp. 529-574.

[12] J. Tidwell, “Designing Interfaces : Patterns for Effective
Interaction Design,” O’Reilly Media, Inc., 2005.

[13] T. Winn and P. Calder, “A pattern language for pattern
language structure,” Proc. 2002 Conf. on Pattern Languages
of Programs - Volume 13 (CRPIT '02), James Noble (Ed.),
Vol. 13. Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, June 2003, pp. 45-58.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

