
A Method for Situational and Guided Information System Design

Dalibor Krleža

Global Business Services

IBM

Miramarska 23, Zagreb, Croatia

dalibor.krleza@hr.ibm.com

Krešimir Fertalj

Department of Applied Computing

Faculty of Electrical Engineering and Computing

University of Zagreb

Unska 3, Zagreb, Croatia

kresimir.fertalj@fer.hr

Abstract—Model Driven Architecture is not highly used in

current information system development practice. One of the

reasons is that modeling languages are mostly used for

documenting of the information system development and

enhancement of communication within project teams. Without

guidance, an information system design results in models of

low quality, which cannot be used for anything more than

documenting pieces of the information system. When it comes

to model transformation, project team members usually reuse

predefined transformations included in a modeling tool.

Models of low quality that are not traceable and not complete

are hard to transform. Model quality cannot be high if

modeling activities are not guided and constrained. Guidance

and constraints can be imposed through project activities led

by a senior designer responsible for model quality. In this

article, a method for situational modeling guidance is

presented. This method is adaptable and situation dependent.

Implemented within a modeling tool, the method should allow

project team members responsible for model quality to give

guidance and constraints, and to ensure model quality through

the modeling tool.

Keywords-modeling; guidance; design; pattern;

transformation.

I. INTRODUCTION

The Model Driven Architecture (MDA), standardized by
the Object Management Group (OMG) [1], is an information
system design approach based on models and model
transformations. Using MDA, an information system is
designed through several models of different abstraction
levels, from business oriented models to technical and
platform specific models. MDA defines three different types
of models having different levels: abstract and business
oriented Computational Independent Model (CIM),
technically oriented Platform Independent Model (PIM), and
very detailed Platform Specific Model (PSM).

Model transformation is a key procedure in MDA.
According to the specification [1], "model transformation is
the process of converting one model to another model".
Model transformation can be done manually or
automatically. Manual model transformation is more
common than we think. It is not unusual for a designer to
start modeling from scratch by using models delivered earlier
in the project. Such an approach is defined within various
design and development methodologies. Chitforoush,
Yazdandoost and Ramsin [2] are giving an overview of
MDA specific methodologies. Most of these methodologies

were developed for specific projects. Some generic design
and development methodologies, such as Rational Unified
Process (RUP) [3][12], also rely on model based design.
However, basic purpose of methodologies is to help organize
projects, giving guidance for project activities and
deliverables, leaving execution to project team members.

When a modeling language is structured and formal
enough, automatic transformation can be used. The Meta
Object Facility (MOF), standardized by the OMG and
described in [5], is a metalanguage for modeling languages
that can be transformed automatically. Automatic
transformation takes artifacts of a source model and converts
them into artifacts of a target model by using transformation
mapping. Transformation can be additionally used to
establish relationships between models, or to check
consistency of artifacts between a source and target model.
Czarnecki and Helsen [4] elaborate a number of model
transformation approaches and basic features of
transformation rules. Most used are graph based
transformations and transformation languages.
Transformation languages can be declarative or imperative.
The OMG standardized group of MOF based transformation
languages named Query/View/Transformation (QVT) [7].
QVT Relational language (QVT-R) is a typical example of a
declarative approach with a graphical notation. QVT
Operational language (QVT-O) is an example of an
imperative approach.

The focus of this article is delivery of the models that are
of high quality. In order to understand what this means, we
can use one of the existing quality models. One example is
the quality model given by Lange and Chaudron [8]. Relying
only on methodology guidance will not necessarily produce
a model of high quality, because it allows designers to focus
on wrong aspects and details within the model. The result
can be a model of poor quality, problems with traceability
and inability to transform or analyze created model. One way
to solve these problems is by appointing a senior designer to
the design lead role. The design lead responsibilities are to
establish modeling guidance and constraints, oversee
modeling work, check delivered models and to ensure model
quality. According to the quality model [8], this means that
all models are traceable, complete, consistent and
correspondent to the information system. Establishing
modeling constraints means imposing patterns that need to
be used during the information system design.

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

In this article, a method for automated modeling
guidance and imposing constraints is proposed. The
proposed method utilizes existing specifications such as
MDA, MOF, UML and QVT to achieve a guided process of
an information system design, supported by model
transformation. The proposed method will be extensible in
order to naturally fit existing design and development
methodologies. The purpose of the method is to ease
communication between a design lead and his team members
and to enable management of an information system design
work through usage of a modeling tool.

In Section II, a modeling space is defined. The modeling
space is a way how to combine all models of an information
system together, giving them relationship and defining their
purpose. In the same Section, a relationship between pattern
instances and models is given. In Section III, current
modeling practice in the context of methodologies is
discussed, which helps understand how the pattern instances
are created during the project. In Section IV, an overview of
the pattern instance transformation is given. The pattern
instance transformation is essential for the method proposed
in this article. In Section V, the tracing and transformation
language is defined. This language is used to bind pattern
instances together and help to establish tracing between
model artifacts. In Section VI, an overview of the method for
situational and guided information system design is given.

II. MODELING SPACE

A modeling space can be represented as a three
dimensional space containing all possible models of a
designed information system. The modeling space must
follow MDA philosophy, support different levels of
abstraction given in MDA specification, and classification of
the containing models.

The proposed modeling space presented in Figure 1 is in

three dimensions because it contains different layers
representing respective aspects or viewpoints of the designed

information system. The modeling space contains four
layers. The application layer is comprised of models with the
business logic. The information layer is comprised of
information and data models. Models containing architecture
details and infrastructure nodes are placed in the
infrastructure layer. And finally, there needs to be a specific
layer for transformation and tracing models. Of course, a
number of layers and their purpose depend on a set of
models representing an information system design. One
model can belong to multiple layers. For example, a model
containing requirements can easily be considered for
application, information and infrastructure related. The
proposed modeling space must also support a clear
distinction between abstract and detailed models. Abstract
and computing independent models are placed on top of each
layer. Models with more details are closer to the bottom of
the layer. Figure 1 shows the placement of different MDA
model types in the proposed modeling space.

Each model is a set of artifacts. These artifacts originate

from a modeling language, such as UML. A set of models
together represent a design of an information system.
However, there are building blocks between single artifact
and a whole model that are meaningful for designers. These
building blocks are patterns. Example of repeating patterns
within different models is given in Figure 2. CIM1 contains
repeating sets of model artifacts that can be interpreted as
requirements, CIM2 contains business processes, PIM1 use
cases, PIM2 components, and PSM1 implementation of
components defined in PIM2.

Which patterns will appear in the modeling space
depends on the design of an information system.
Computational independent patterns are usually created early
in the project and they depend on used architecture as well as
how business analysis is performed. These high level
abstract patterns have the biggest impact on the design of an
information system. Platform independent patterns are
derived from architecture and computational independent
patterns. They represent an elaboration of computational
independent patterns within an architectural context. The
most detailed are platform specific patterns that represent the
implementation of platform independent patterns for a
specific infrastructure yielded by the previously determined
architecture.

In order to establish the method proposed in this article, a
library of modeling patterns and transformations must be
established. Modeling patterns can be determined in several
different ways. Gamma, Helm, Johnson and Vlissides [9]

Figure 2. Models and pattern instances placed in the application

layer of the modeling space

Figure 1. Structure of a modeling space

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

propose a list of basic object-oriented patterns visualized in
the UML. Hohpe and Woolf [10] propose a list of enterprise
integration patterns. Enterprise integration patterns are more
abstract than object-oriented patterns.

Collecting modeling patterns from existing models of the
already developed information system is another way. It can
be done manually or automatically by detecting repetitions in
existing models. Detection itself can be done by the graph
matching method [11]. However, this is just a part of a
collection process. Rahm et al. [15] propose graph matching
method for detection of cloned fragments in graph based
models. According to their definition, repetitive fragments
that are similar enough can be considered for clones or
patterns. A similar approach can be applied to UML models.

And finally, as already mentioned, modeling patterns can
be a great way how to give a sense of direction and
cooperation to a team of designers. A pattern is a class, a
blueprint that binds one or more modeling artifacts together.
Application of a pattern means his instantiation within at
least one model in the modeling space. Applying the
modeling pattern does not mean that the modeling is
completed. Adding details and further elaboration of the
pattern instance is needed, in order to give it enough details
to fit an information system design.

Figure 3 presents a pattern that is comprised of an empty

interface and a component. After applying this pattern a
pattern instance is created. Further elaboration of the pattern
instance must add interface details, operations and attributes,
subcomponents and additional interfaces.

III. MAPPING BETWEEN METHODOLOGY AND PATTERN

USAGE

CIMs are usually created very early in the project. In the
RUP, business models are created in the Inception phase. It
means that selecting and applying CIM related patterns and
further elaboration can be done very early in the project.
These patterns will be classified as functional requirements,

non-functional requirements, business processes, or business
use cases. Idea is to have these patterns and related
transformations ready for use in the modeling library that is
used for the project. Elaboration of newly created pattern
instances in CIMs can be done in the Inception phase.

PIMs, part of the PSMs, architecture models and
infrastructure models, are created in the Elaboration phase.
In this phase, we do most of an information system design
and take the most important decisions. In the Elaboration
phase, patterns used in CIMs are guidance for choosing
patterns that will be used next. For example, usual patterns
that could be used here contain use cases, components and
nodes.

The PSM is usually the last step in the design of an
information system. The ultimate goal is to get the source
code and deployment units. Therefore, the PSM must contain
pattern instances that define a sufficient level of details for
transformation into the source code, in a way that there is
less work as possible for programmers. Pattern instances in
the PSM are mostly implementation of pattern instances in
the PIM. For example, in the Component Based Modeling
(CBM), the PSM contains platform specific implementations
of components defined in the PIM.

As the design of an information system advances through
the project, designers can create new pattern instances or
elaborate existing ones, as presented in Figure 4. A new
pattern instance can be created to document business need,
reflect already existing functionality that will be reused, or
by transforming from already existing pattern instance in the
modeling space. Transformation between pattern instances
will probably be the most used option. Elaboration of the
existing pattern instances is also very important. Once a new
pattern instance has been created, it must be elaborated in
subsequent project activities.

IV. PATTERN INSTANCE TRANSFORMATION

In the MDA specification [1], various different model-to-
model transformation examples can be found.
Transformation can be done within the same model, between
two different models, for model aggregation, or model
separation. Grunske et al. [6] are presenting important notion
of "horizontal" and "vertical" transformations. Horizontal
transformation is done between models of the same
abstraction level. Typical horizontal transformation is PIM to
PIM, or PSM to PSM. Any transformation within the same
model is also a horizontal transformation. Vertical
transformation is done between models of different

Figure 3. Example of a simple modeling pattern: component and

interface

Figure 4. RUP and advancement through a design of an information system

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

abstraction levels, or from a model to the source code. A
transformation from PIM to PSM, or from PSM to the source
code is vertical transformation.

Model transformation is the procedure for translating
source model into target model. A modeling space can be
defined as a finite set of models 𝑀𝑆 = {𝑀1,𝑀2 ,… ,𝑀𝑛} .
Each model is a finite set of artifacts 𝑀𝑖 = {𝑎1 , 𝑎2 ,… , 𝑎𝑚 }.
A transformation is a function 𝑡𝑟:𝑀𝑆 → 𝑀𝑆 that takes a set
of artifacts 𝑎𝑟𝑆𝑜 from a set of source models 𝑆𝑜 ⊆ 𝑀𝑆 such
that 𝑎𝑟𝑆𝑜 ⊆ 𝑆𝑜, analyses this set of artifacts and translates
them into another set of artifacts 𝑎𝑟𝑇𝑎 in a set of target
models 𝑇𝑎 ⊆ 𝑀𝑆 , such that 𝑎𝑟𝑇𝑎 ⊆ 𝑇𝑎 . Transformation
can be done within the same model 𝑆𝑜 = 𝑇𝑎 = 𝑀𝑖 , or
between two disjunctive sets of models 𝑆𝑜 ≠ 𝑇𝑎 . Since a
transformation can have multiple models from source and
target side, these sets do not need to be disjunctive 𝑆𝑜 ∩
𝑇𝑎 ≠ ∅, meaning that the transformation can include same
model 𝑀𝑖 on source and target side, or 𝑀𝑖 ∈ 𝑆𝑜 ∧ 𝑀𝑖 ∈ 𝑇𝑎.
A transformation can use the same source and target
artifacts, meaning that 𝑎𝑟𝑆𝑜 ∩ 𝑎𝑟𝑇𝑎 ≠ ∅ when 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅,
or it can use two disjunctive sets of artifacts 𝑎𝑟𝑆𝑜 ∩ 𝑎𝑟𝑇𝑎 =
∅.

From a pattern point of view, each pattern instance is a
set of model artifacts. This definition is valid for cross model
pattern instances as well. All pattern instances in the
modeling space 𝑀𝑆 form a finite set of pattern instances
𝑀𝑃 = {𝑃𝑖 : 0 < 𝑖 ≤ 𝑚 ∧ 𝑃𝑖 ⊆ 𝑀𝑆} . In this context,
transformation is a function 𝑡𝑟:𝑀𝑃 → 𝑀𝑝 . Such

transformation takes a set of source pattern instances
𝑝𝑆𝑜 ⊆ 𝑀𝑝 , analyses all artifacts in these instances and

translates them into artifacts that form a set of target pattern
instances 𝑝𝑇𝑎 ⊆ 𝑀𝑝 . Figure 5 shows an example of

transformation application to a cross model pattern instance.

Every transformation can be encapsulated in a black box

implementation. Such an approach is used in [7] along with
the QVT specification. However, taking a step back and
observing the QVT specification as one of the transformation
approaches, every transformation can be defined as a black
box having an interface that depends on the context of
transformation usage.

A. Transformation rules

Czarnecki and Helsen [4] are giving important features of
transformation rules. Since a transformation can be
implemented in many different ways, we must observe it in
more abstract and generic way. No matter if we use a
declarative or imperative approach, each transformation is a
set of rules that creates a relationship between a set of source
artifacts and a set of target artifacts. Features and principles
given in [4] can be applied to these transformation rules.

A transformation written in QVT-R [7] has two different
modes: checking mode and enforcement mode. In the
checking mode, transformation rules can be used to validate
correctness and completeness of involved pattern instances.
In the enforcement mode, transformation rules can be used
for creating, updating, or deleting artifacts in target pattern
instances, in order to reflect all the details found in source
pattern instances.

1) Validation of pattern instances and imposing

constraints
When the transformation is applied, execution of the

transformation must perform several different tasks.
As the first step, transformation must validate that

supplied source pattern instances are matching expected
source side of the transformation. A set of mandatory
transformation rules must validate source pattern instances.
If all mandatory transformation rules are satisfied from the
source side then the transformation can be applied to a
supplied source, i.e., the transformation can be applied to the
source pattern instance that contains all artifacts needed by
the mandatory transformation rules.

The second step is the creation of the target pattern
instances. Transformation rules must create all target pattern
instances and their artifacts. Every pattern is characterized by
the mandatory artifacts that define the essence of the pattern,
or what makes this pattern different from other patterns. Not
all artifacts created by the transformation must be considered
for mandatory. Mandatory artifacts in the target pattern
instances are created by the mandatory transformation rules.
However, not all mandatory transformation rules must create
mandatory artifacts in the target pattern instances.

The last step is to create a set of constraints that will
disallow designers to change some of the artifacts in the
involved pattern instances. Transformation binds involved
pattern instances together by imposing constraints on their
artifacts. Each pattern instance can be bound with other
pattern instances through several different transformations.
Constraints are imposed by the mandatory transformation
rules.

Imposed constraints are used to limit designer changes in
the modeling space to prevent:

1. Violating correctness and completeness of the
pattern instances by changing their mandatory
artifacts. Obviously, all mandatory artifacts must be
constrained.

2. Breaking transformation binding by changing
artifacts that are satisfying source and target side of
the mandatory transformation rules. In this case,
constrained artifacts do not need to be mandatory.

If we observe a target pattern instance made of 𝑙 artifacts
𝑃𝑖 = {𝑎1 , 𝑎2 ,… , 𝑎𝑙}, a subset 𝑀𝑃𝑖 ⊆ 𝑃𝑖 is considered for a
set of mandatory artifacts of the pattern instance 𝑃𝑖 . If we
have a finite set of applied transformations 𝑇𝑃𝑖 =
{𝑡𝑟1 , 𝑡𝑟2 ,… , 𝑡𝑟𝑘} having 𝑃𝑖 as an involved pattern instance,
we can derive a mapping function 𝐶:𝑇𝑃𝑖 → 𝑋, where 𝑋 ⊆ 𝑃𝑖
is a set of artifacts in 𝑃𝑖 constrained by a transformation
𝑡𝑟𝑥 ∈ 𝑇𝑃𝑖 . In the context of the previous definition about

Figure 5. Cross model pattern instance and transformation

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

difference between mandatory and constrained artifacts, we
can conclude that 𝑃𝑖 can be in a situation where 𝐶(𝑡𝑟𝑗) ∩
𝐶 𝑡𝑟𝑘 = ∅ ∧ 𝑗 ≠ 𝑘 , and 𝐶(𝑡𝑟𝑗) = 𝑀𝑃𝑖 ∧ 𝐶 𝑡𝑟𝑘 ∩ 𝑀𝑃𝑖 =

∅. Finally, 𝑀𝑃𝑖 ⊆ 𝐶(𝑡𝑟𝑗)
𝑘
𝑗=1 means that not all constrained

artifacts need to be mandatory, but all mandatory artifacts are
constrained since we want to preserve a pattern definition.

Each pattern instance can be a result of several different
pattern instances done earlier in the same project, or it can be
a reason for creating several new pattern instances later in
the same project. Several good examples can be found in [9]:
a facade associated with a web service client can be used as a
mediator between two different subsystems. In this example,
the mediator is the pattern whose instance is bound by two
different transformations.

2) Pattern instance elaboration
A transformation can be used to perform changes on

involved pattern instances. This approach is used when new
pattern instances are created, or existing instances are
updated or deleted. Even when two pattern instances are
bound with a transformation, the source pattern instance can
be elaborated by adding new details and artifacts. A
transformation can be made so that these newly added details
automatically update target pattern instances. Artifacts that
are not constrained by one of the binding transformations are
handled by optional transformation rules responsible for
spreading of elaboration details. Bidirectionality is a very
important transformation aspect described in [7] and [13].
While transformation might constrain changes of some
artifacts in target pattern instances, changes of unconstrained

artifacts in pattern instances across the modeling space are
encouraged. Such changes must be propagated throughout
the modeling space, wherever transformation between
pattern instances allows it. This propagation must be
automatic and seamless.

3) Top-level pattern instances
Top-level pattern instances do not have predecessors.

These pattern instances can be modeled manually by a
designer without using any transformation, or they can be
created by using a transformation. Such transformation does
not need to have input source pattern instances. In order to
give the transformation some instructions, input parameters
can be used. Transformations that create only target pattern
instances can be used both for validation and enforcement
purposes. All transformation rules in this transformation are
mandatory transformation rules that create an initial version
of target pattern instances and impose constraints on them.
However, these constraints must allow elaboration of newly
created top-level pattern instances in order to allow adding
needed details. Functional or non-functional requirements
are typical examples of top-level patterns. An external
service definition is another example of such pattern.

In the example in Figure 6, pattern instance 𝑃1 is made of

CodebookComponent and related interface. All mandatory
artifacts are marked with red color. Artifacts added in the
elaboration of 𝑃1 are marked with brown color. Mandatory
artifacts within 𝑃1 are all we need to declare a component.
Transformation 𝑡𝑟1 mandatory rules are responsible for
translation of mandatory artifacts from 𝑃1 to 𝑃3. The artifact

Figure 6. Example of pattern instance transformation

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

created within 𝑃3 is EJB3 facade as realization of
CodebookComponent. Transformation 𝑡𝑟1 also created
relationships between mandatory artifacts of 𝑃3 and 𝑃1
pattern instances. An information system designer
additionally elaborated 𝑃1 and added
ProductCodebookSubcomponent and
ClientCodebookSubcomponent together with related
interfaces. Transformation 𝑡𝑟1 optional rules translated these
subcomponents from 𝑃1 into classes of 𝑃3 and created new
relationships between optional artifacts of 𝑃3 and 𝑃1. 𝑃1 and
𝑃3 are bound with transaction 𝑡𝑟1. It means that mandatory
artifacts of 𝑃3 are constrained by 𝑡𝑟1 and cannot be changed
unless corresponding artifacts in 𝑃1 are changed. Introducing
relationships between 𝑃3 and 𝑃1 , such as interface
realization, simplifies the propagation of interface changes
between these two pattern instances. Propagation of interface
changes is a matter of transformation 𝑡𝑟1!

The information system designer's final decision was to
reuse the existing service to read product data from a product
catalog information system. 𝑃2 is the pattern instance that
represents the product catalog service provider. This pattern
instance can be created by another transformation from
WSDL. Transformation 𝑡𝑟2 is used to translate mandatory
artifacts from 𝑃2 representing the service provider, into the
set of artifacts for 𝑃3 representing the product catalog service
consumer. 𝑃3 must be further elaborated in order to connect
CodebookComponent realization with the product catalog
service consumer.

4) Transformation applicability
As already defined, a transformation takes a set of

modeling space artifacts and translates them into another set
of artifacts. Earlier definition shows that the transformation
can include pattern instances as artifact containers. The size
of a pattern instance can be one artifact, up to a whole model.
A pattern instance can also be a set of artifacts coming from
different models within the modeling space. In order to use
transformation, source side of it must be satisfied. Precisely,
mandatory transformation rules source side must be satisfied
in order for the transformation to be able to create a set of
target artifacts and impose constraints on them. If the
transformation is applied to a set of pattern instances and a
set of source pattern instances satisfies source side of the
mandatory transformation rules, the transformation is
applicable to this set of pattern instances.

Transformation and related transformation rules,
especially if they are written in a declarative programming
language such as QVT-R, are logic programs [14].
Transformation 𝑡𝑟 can be defined as a logic program 𝑃 ,
comprised of mandatory and optional set of rules on source
and target side. Applicability of a transformation can be
derived only from source mandatory rules. If we take a finite

set of the mandatory source rules
𝑀𝑆𝑅 = {𝑚𝑠𝑟1(𝑋),𝑚𝑠𝑟2(𝑋),… ,𝑚𝑠𝑟𝑛 (𝑋)} , where 𝑋 = 𝑝𝑆𝑜
is a set of terms, then the applicability of the transformation
can be expressed as Α(X) ← 𝑚𝑠𝑟1(X) ∧ 𝑚𝑠𝑟2(X) ∧ …∧
𝑚𝑠𝑟𝑛(X). Each mandatory source rule is comprised of atoms
for checking artifacts within a source pattern instance set
𝑚𝑠𝑟𝑖 𝑋 ← 𝑎1 𝑦1 ,𝑋 ∧ 𝑎2 𝑦2 ,𝑋 ∧ …𝑎𝑚 𝑦𝑚 ,𝑋 , where
𝑦𝑖 ∈ 𝑋 . The applicability defined this way can only
determine whether a transformation can be applied to a set of
source pattern instances or not. Another way is to define a
measure of the applicability by expressing percentage of
mandatory transformation rules that are satisfied. A finite set
of satisfied rules is 𝑀𝑆𝑅𝑆 = {𝑟(𝑋) ∈ 𝑀𝑆𝑅: 𝑟(𝑋) = 𝑡𝑟𝑢𝑒} ⊆
𝑀𝑆𝑅 . The measure of the applicability can be defined as
𝐴𝑚 = 𝑀𝑆𝑅𝑆 𝑀𝑆𝑅 ∗ 100 , or percentage of satisfied
mandatory source transformation rules. This measure can
help a designer to see which transformations in the modeling
library are close to being applicable and what are the
differences. Consulting the measure of the transformation
applicability is one aspect of the design guidance.

Validation of involved pattern instances is a similar
concept to the applicability of the transformation, but it must
involve both source and target pattern instances.

V. TRANSFORMATION AND TRACING LANGUAGE

Relationship between model artifacts and a pattern
instance is not established within the UML. Although there
is the Package element defined within the UML, its purpose
is not the same as "pattern instance" defined earlier in this
article. Also, application of transformation and imposing
constraints on target pattern instances must leave some trail.
Creation of a Transformation and Tracing Model (TTM),
automatically or manually, can help to resolve before
mentioned issues. Every time a new pattern instance is
created, new artifact is added into TTM representing this
pattern instance. All model artifacts belonging to this pattern
instance are automatically bound to it. It can be the result of
the transformation, or it can be done manually meaning that
a modeling tool must have capabilities for it. Also, each time
when a transformation is used, this transformation is added
to TTM including all relationships between pattern instances
and used transformation. Each time a transformation is used,
and this transformation is imposing constraints on involved
pattern instances, these constraints are added to pattern
instances in TTM and bound to the transformation that
created them, since these constraints are the result of the
transformation. In order to do this modeling, a
Transformation and Tracing Language (TTL) must be
defined. The UML and the TTL must be compatible,
meaning that they must have a common M0 ancestor [13].
Therefore, the TTL must be a MOF metamodel. An
overview of the TTL is presented in Figure 7.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

The TTL is having the following elements:

 Pattern - A pattern type. Allows classification of
pattern instances.

 PatternInstance - An element similar to the UML
Package element. Represents a container for model
artifacts. This element is defined by its name and
type. Pattern type (or class) can be very helpful when
constructing transformation rules and it can impact
the transformation applicability since
transformations can be applied to the pattern
instances of specific types.

 Transformation - An element defined by its name
and type, representing applied transformation. It
contains transformation rules used in the
transformation. The transformation must be
connected to a set of source and target pattern
instances, being connected to at least one target
pattern instance. Connector direction is determined
by the TransformationConnectorType enumeration.

 TransformationConnector,
TransformationConnectorEnd,
PatternConnectorEnd - A connector is a directed
relationship between a pattern instance and a
transformation. Connector direction must have a
visual notation. If the connector is directed from the
pattern instance to the transformation, it represents
the source pattern instance in the context of the
transformation. If the connector is directed from the
transformation to the pattern instance, it represents
the target pattern instance in the context of the
transformation. Connector end elements represent
the point of touch between the connector and the
pattern instance, or the connector and the
transformation.

 TransformationConstraint - An element defined by
its name, representing a constraint on members of a
pattern instance imposed by used transformation.
This element is contained by the pattern instance and
connected to the transformation responsible for the
creation of the constraint. This element is the result
of the transformation and can be used to validate the
pattern instance correctness and completeness.

 TransformationConstraintConnector - A relationship
between resulting constraint and the transformation
that created it, directed from the transformation to
the constraint. Each constraint can be imposed by
only one transformation, but one transformation can
impose multiple constraints within multiple pattern
instances.

In the TTM example in Figure 8, brown artifacts were

created before 𝑡𝑟1 was applied. We can say that pattern
instances 𝑝1 and 𝑝2 were designed manually. Green artifacts
are produced by the transformation 𝑡𝑟1 . Actions taken
during an information system design are automatically stored
in a TTM for multiple purposes: preserving correctness and
completeness of the modeling space, reconstruction of
activities in the design process, and analysis of the resulting
design work.

VI. GUIDANCE

So far, this article gave only insights into elements
needed to establish the method for situational information
system design guidance. How to explain designers what is
preferred designing practice and how an information system
design should look alike? Many companies have well
established design practices, from methodology, project
activities and modeling point of view. Selection of
architectures, technology and practical experience gives a

Figure 7. TTL definition

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

company starting point. The method proposed in this article
simply takes this experience and allows the company to
document their design practices within a modeling tool.

A. Guidance given through a modeling library

We already mentioned that a modeling library is
comprised of patterns and transformations. Since
transformation binds two patterns instances together (as
described in the section III), selection of a transformation
imposes a selection of involved patterns. Similarly, selection
of patterns imposes a selection of potentially applicable
transformations.

Applicability and measure of applicability are important
transformation features that can be used to give guidance. A
designer can elaborate a model or pattern instance and
occasionally check for transformations that are applicable to
the model or pattern instance he is working on. If there is no
transformation currently applicable, the designer can check
transformations that are nearly applicable and the gap that
needs to be closed in the model or pattern instance in order
for this nearly applicable transformation to become
applicable. Of course, many designers have enough
experience to know which transformation would need to be
used next even before modeling of the pattern instance is
finished. If there is a problem with selected transformation,
and rules in the transformation are not correct, meaning that
the transformation will never become applicable, this
particular transformation can be changed as part of
company's design practice evolution.

As already stated before, some transformations can be
used exclusively to create new top-level pattern instances.
Such transformations are used to create mandatory and
optional artifacts in the target pattern instances. Optional
artifacts initially created in the target pattern instance can
fulfill requirements for the next transformation to become

applicable. Further elaboration of this pattern instance can
add needed details. It means that applying a transformation
can result in a chain of transformations and creation of new
pattern instances if a modeling tool is permitted to execute
applicable transformations automatically.

Another way is a selection of transformations from the
modeling library used in the project. A design lead can
manage a set of allowed transformations for his project,
limiting designer's choice of applicable or nearly applicable
transformations. For example, the architectural decision to
use JAX-WS web services will influence the choice of
transformations for the project. Similarly, the design lead can
manage a set of allowed patterns implicitly by imposing a set
of allowed transformations.

B. Guidance given through a model

More specific guidance can be given through a specific
model that predetermines patterns and transformations used
in an information system design process. Such model is
created a priori, before the start of the design activities.
Creation of the guidance model is an ongoing activity
through the whole project. The TTL can be used for this
purpose. This model must represent a selection of allowed
pattern types and related transformations. Such model can be
used by the designer to check guidance, or directly by a
modeling tool for selection of allowed transformation list for
particular pattern type. It is the same approach as in the
previous Section, with additional visualization of selected
design practice for the ongoing project.

VII. CONCLUSION AND FUTURE WORK

MDA is having two major practical problems: designers
have too much freedom while creating information system
design models and transformation scope can be very

Figure 8. TTM example

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

ambiguous. Usage of a pattern as the main building block for
an information system design is a well known approach. In
the context of this article, design of an information system is
done block by block, allowing the design lead to choose
blocks to be used. Such approach allows the design team to
use past positive experience to select or define best patterns
for the information system they are designing. Another very
important element of this method is the usage of
transformations to create pattern instances. Transformations
must be perceived as the behavioral part of the method.
Applicability and measure of the applicability are very
important features of the transformation given in this article.
They enable controlled application of transformations, which
represents guidance for the design team.

Of course, designers are still free to model according to
their preferences, as long as they are within boundaries
imposed by the proposed method, which is assured by an
optional part of each transformation helping team to keep
artifacts of bound pattern instances synchronized.
Bidirectionality feature of the transformation helps to reflect
changes in both directions. Chain of pattern instances can be
easily updated through transformations used to form the
chain. Since a pattern instance is supposed to have
significantly smaller scope than a model, keeping several
pattern instances synchronized during elaboration should be
much easier than with big models.

Current modeling tools are introducing a high level of
automation. This automation is mostly related to elements of
the modeling languages supported by a modeling tool.
Changing the modeling tool behavior to follow the model in
a modeling space is needed feature.

This article is giving only the main idea that can be
significantly improved and extended. There are still
opportunities for improvement of the mapping between
proposed method and methodologies. Also, the TTL defined
in this article can be extended with elements for interaction
with modeling tool, model analysis capabilities and model
quality assessment. Interaction between a TMM and a
modeling tool can be extended with modeling events,
allowing a design lead to define modeling tool actions
associated with patterns and transformations. For example, a
TTM can include an event handler on a pattern that can be
triggered by the modeling tool when a new subcomponent is
added into a pattern instance. The event handler initiates
execution of a specific transformation that automatically
adds interface and interface realization relationship for this
newly added subcomponent.

REFERENCES

[1] OMG, MDA. "Guide, Version 1.0.1, 2003." Object Management

Group.

[2] F. Chitforoush, M. Yazdandoost, and R. Ramsin, "Methodology
support for the model driven architecture." Proceedings of the 14th
Asia-Pacific Software Engineering Conference, IEEE, Dec. 2007, pp.
454-461, doi: 10.1109/ASPEC.2007.58.

[3] I. Jacobson, G. Booch, and J. E. Rumbaugh, "The unified software
development process-the complete guide to the unified process from
the original designers." Addison-Wesley, 1999.

[4] K. Czarnecki and S. Helsen, "Classification of model transformation
approaches." Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven
Architecture, vol. 45, no. 3, Oct. 2003, pp. 1-17.

[5] OMG, "Core Specification, Version 2.4.1, 2011." Object
Management Group.

[6] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp,
and D. Varro, "Using graph transformation for practical model-driven
software engineering." Model-driven Software Development,
Springer Berlin Heidelberg, 2005, pp. 91-117, doi: 10.1007/3-540-
28554-7_5.

[7] OMG, "Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT), Version 1.1, 2011." Object Management Group.

[8] C. F. J. Lange and M. R. V. Chaudron, "Managing model quality in
UML-based software development." 13th IEEE International
Workshop on Software Technology and Engineering Practice, IEEE,
Sep. 2005, pp. 7-16, doi: 10.1109/STEP.2005.16.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design patterns:
Elements of reusable object-oriented software." Addison-Wesley,
28th edition, 2004.

[10] G. Hohpe and B. Woolf, "Enterprise Integration Patterns." Addison
Wesley, 2004.

[11] M. Gupta, R. Singh Rao, and A. Kumar Tripathi, "Design pattern
detection using inexact graph matching." 2010 International
Conference on Communication and Computational Intelligence,
IEEE, Dec. 2010, pp. 211-217.

[12] P. Kroll and P. Kruchten, "The rational unified process made easy: a
practitioner's guide to the RUP." Addison-Wesley, 2003.

[13] A. G. Kleppe, J. B. Warmer, and W. Bast, "MDA explained, the
model driven architecture: Practice and promise." Addison-Wesley,
2003.

[14] A. Van Gelder, K. A. Ross, and J. S. Schlipf, "The well-founded
semantics for general logic programs." Journal of the ACM (JACM),
ACM, vol. 38, no. 3, Jul. 1991, pp. 619-649, doi:
10.1145/116825.116838.

[15] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen, "Complete and accurate clone detection in graph-based
models." Proceedings of the 31st International Conference on
Software Engineering, IEEE, May 2009, pp. 276-286, doi:
10.1109/ICSE.2009.5070528.

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

