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Abstract—-The time-cost of today’s classification algorithms
are all too high: the use of existing algorithms makes it impossible
for cloud-based systems to provide decision-support for remote
sensors. Thus, there is a need to develop new algorithms
with sufficient accuracy, and with explainable outcomes.
Thereby, enabling improved utilization of industrial/physical
equipment through smart control. In this work we address
this requirement: this work presents a new methodology for
learning, and training, of classification algorithms. The results
indicate that the algorithm outperforms existing methods
by 10,000x. Importantly, the new algorithm has a memory
footprint considerably smaller than similar strategies, and is
straightforward to validate for trustworthiness. This makes it
possible to deploy the algorithm at both IoTs and in the cloud,
thereby ensuring its broad applicability.

Index Terms—Approximate Computing, performance, execution-
time, signal and image processing, segmentation and clustering,
machine learning, algorithms, correlation, similarity-metrics.

I. INTRODUCTION

Today, there is an increasing focus on autonomous reg-
ulation of sensors: in the energy sector, there is a direct
link between automated regulation versus the heating bill
[1]. However, the shift from systems with a high degree of
manual maintenance to automated sensor logic makes the
systems vulnerable to penetration attacks [2]. A recent lapse
in penetration security led to “the compromise of 1.9 billion
records” [3]. Examples of penetration attacks are:

1) malicious firmware upgrades parameters, e.g., to make
use of vulnerabilities in the remote device management
interface [4], [5];

2) reading of sensitive sensor data [5], [6];
3) manipulation of actuators through compromising raw or

processed sensor data [7].
This requires accurate, fast, and trustworthy algorithms.

The problem is that existing algorithms for AI can not be
used to control many of today’s industrial facilities. This is
due to the limited processing power of industrial equipment,
combined with issues in data bandwidth, and challenges in
certifying algorithms for AI. This paper seeks to address this

issue through the design of a new model for classification
algorithms.

The increased focus on AI has spurred approaches for
automated event detection and prevention [8]. The global
sensor market is expected to reach $287.00 Billion by 2025
[9]. Suppliers of industrial control systems are subjected to
the same technical challenges, as seen for issues in low data
throughput [10] and computational cost of algorithms [11],
[12]. Hence, addressing issues in data analysis is bound to
significantly increase the value of companies addressing this
challenge.

This argues for the design of algorithms applicable to
legacy Internet / Intelligence of Things (IoTs): if we transform
existing equipment into autonomous control units (e.g., to
control the heating of hospitals), the result is a reduced amount
of traffic on low-latency networks, hence reducing the impact
of malicious hacking. By proving existing sensor-components
with the flexibility of configurations, one reduces the fre-
quency of firmware updates. Through the use of explainable
AI, equipment owners (e.g., owners of real estate) get trust in
equipment, thus, enabling the certification (and application) of
the systems to environments requiring a high degree of uptime.
Therefore, if one manages to design a classification algorithm
based on these criteria, the result is an increased accuracy of
sensors, i.e., without introducing threats to cybersecurity.

To address these requirements, this paper explores a new
methodology for construction of AI. The scope of this paper
is as follows: Section II outlines the contributions of this
paper, Section III evaluates existing strategies for tuning
legacy equipment into smart IoTs, Section IV describes a new
O(n) algorithm for tuning dumb equipment into smart IoTs
(enabling a 10,000x+ reduction in execution-time), Section
V evaluates the accuracy and applicability of the guidelines,
Section VI relates the findings to requirements of autonomous
IoTs, while Section VII summarizes the findings.

II. CONTRIBUTIONS BY THIS PAPER

The paper presents a new algorithm for the learning and
training of classification algorithms. This work exemplifies
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how to apply Approximate Computation without loss in pre-
diction accuracy. The paper describes how the system may be
applied to industrial systems. The paper identifies a strategy
for Approximate Computing that is generalized for a wider
audience. The method seeks to intersect algorithms blind spots
with knowledge of usage patterns and the physical properties
of the data. From the results, we observe how the result is
a framework applicable to devices with low computational
power, such as IoT networks for control of energy systems.
The paper presents results focused on:

1) Approximate Computing: identify generic strategies to
simplify the calculation-steps in algorithms;

2) execution-time: identify an algorithm which correctly
classifies data in O(n) time (for a data-set with n
points);

3) accuracy and provenance: explore the new O(n) algo-
rithm through the classification of images, signals, and
generalized application to the MNIST data.

In the following sections, the above perspectives are out-
lined. The paper relates the concepts of algorithms shortest-
paths, combined with Approximate Computing, and knowl-
edge of algorithms Pareto Boundary, to identify a strategy ap-
plicable to legacy IoTs, hence enabling existing systems (e.g.,
sensors controlling heating-systems) to become autonomous.

p(1)         p(2)         p(3)        p(4)           p(5)         p(6)         p(7)         p(8)

Comparison

Fig. 1. Why the classification strategy is fast and trustworthy. This figure
exemplifies domain-simplifications which makes it possible to reduce the cost
of algorithms.

III. RELATED WORK

This paper seeks to identify a strategy for turning legacy
equipment into autonomous units. The motivation is to enable
autonomous decision-support of infrastructure-critical equip-
ment, for which legacy equipment needs to be updated with
new functionality. To reduce the cost of infrastructure (e.g.,
the heating-bill) there is a need to turn dumb equipment
into smart systems, which requires situational awareness of
how systems are used [13]. This implies a shift from an
analysis of isolated components (e.g., actuators, the pressure
of refrigerants, etc.), and into a bird’s-eye understanding; if
the issues in the performance of classification-algorithms are
not resolved, then this task is impossible.

A. Classification Algorithms

There exist numerous clustering-algorithms to use for data-
classification:

1) clustering and categorization: a classification algorithm
needs to relate clusters of points to an organization
reflecting a particular shape (e.g., the shape of letters,
the traits of a particular cancer type, etc.);

2) generic algorithms versus domain-application: algo-
rithms are designed towards generic use-cases (e.g., to
randomly subdivide points into ’k’ number of clusters,
as applied in K-means), which results in high error-rate
(of generic applications for specialized use-cases);

3) accurate predictions: the specificity of particular use-
cases (e.g., interpretation of large versus small feature-
differences) makes it important to tailor generic
classification-algorithms towards each domain-specific
application.

For applications tailored towards IoT and Big Data, the clas-
sification algorithm needs to run fast, while having sufficient
accuracy. The importance of this requirement is found in how
the computers are tightly glued to the physical equipment. A
use-case is seen for Winns (a producer of energy systems):
Winns reports that the utilization of heating equipment is
tightly related to the situational awareness [1].

B. Strategies for Cyber Security in Industrial Systems

When automating infrastructure-critical systems (e.g., heat-
ing of hospitals), we need to ensure that the system’s behavior
(under different circumstances) is correct. Otherwise, the sys-
tems can fail spectacularly, as seen at the height of the cold
war in 1982 [14]. This involves paying attention to:

1) Penetration Security and System Integrity: certification
of algorithm correctness and consistency; application
of rules to avoid erroneous changes (in system con-
figurations), handling both intentional and functional
configuration-errors;

2) Disaster recovery and business continuity: use of
fallback-routines for the handling of system outage;

3) Endpoint protection: Firewalls, Identity and access man-
agement (IAM), Intrusion prevention systems (IPS/IDS),
Encryption tools, etc.

In this work we focus on addressing these aspects by reducing
the expressive power, hence, reducing the number of failed
states. This is motivated by the properties of mechanical
systems. In mechanical systems there is a limited number of
possible combinations, hence, making it necessary to support
complex grammar.

C. The design of cyber-secure classification algorithms

The main challenge in the design of accurate and fast
heuristics concerns the interception of tacit patterns used by
human experts to deduce answers from complex data-sets.
This requires a classification algorithm with the following
key-features [15], [16]. Therefore, a prerequisite for safe and
sound AI algorithm predictions is a strategy for capturing this
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TABLE I
ASPECTS OF CYBER-SECURITY. THE BELOW TABLE EXEMPLIFIES HOW THE PROPOSED METHODOLOGY ADDRESSES ISSUES IN CYBER-SECURITY AND

EXECUTION-TIME.

Non-Heterogenous AI Heterogeneous AI

Definition Definition
What When How Issue How Benefit

Data compression
Handling of large

data streams

Subsampling,
data-reduction,

algorithms Trust Partial Computing Known variance

Limited data bandwidth
Communication
between devices Subsampling Provenance Partial Computing Known Variance

Calculation of AI Data from sensors
Assumptions of

distributions Undocumented assumptions Semantics Trust
Configuration
of algorithms

Computers with
limited resources Simplified algorithms Handling of Outliers Partial Computations Provenance, Accuracy

Use of reference
data in algorithms State changes

Guesses based
on data-changes Unawareness of changes

Updates through
semantics Pareto Boundary

Handling of
Data distortions

Signalling noise
in the data-cable Generalized assumptions

Execution-time,
inaccurate assumptions Semantics, software Provenance

Classify actors
in an image

Object seen
from odd angles Training Data Loss of inferences

Algorithmic
Building
Blocks Cognitive radius

Analysis of external
data-sets sampled

from different data
resources with

unknown origin
distortion along

an unexpected axis Average normalization Unexpected behaviour Provenance, semantics
Flow of

documentation
Analysis never

completes
Data too large

for microprocessors Inaccurate algorithm Inaccurate predictions hpLysis software Accurate predictions

intersection: to map cognitive (or: philosophical) perspectives
of patterns to the design of fast and accurate algorithms
heuristics. This implies addressing the issues of:

1) data throughput: IoT equipment are interconnected
through multiple layers of networks with poorer band-
width, as seen for Fieldbus networks [17];

2) AI-algorithms: a need for accurate and fast classification
and ranking of equipment status, which may be gener-
alized into the tasks of cluster analysis for hypothesis
evaluation;

3) computing power: computers embedded on IoTs go
approx 102x slower than the microprocessors found on
sensors, and approx 104x slower than desktop computers
[10].

The observations argue for identifying algorithms that may
efficiently be applied to legacy IoTs. If successful, the ap-
proach is bound to have an impact on 200 billion+ computers
[18]: the global sensor market is expected to reach $287.00
Billion by 2025 [9]. Our earlier research reveals how the
cost of AI may be reduced by 100x+ while improving the
trustworthiness of predictions [19]. To summarise, the task of
redefining existing sensor networks into autonomous equip-
ment requires an AI algorithm with a high degree of prediction
trustworthiness and is feasible to integrate on existing Intel-
ligent / Internet of Things (IoT) microprocessors. In the next
sections, we outline the results of this strategy.

Algorithm 1 The proposed ultraFast algorithm.
Output: clusters = []

1: procedure TRAIN(Normalization, MergeMetrics, Similar-
ityMetrics, EntropyFunctions, Fe, FsS) . Task: learn
how to classify data:

2: Result . holds the result-function
3: for each n ∈ Normalization do
4: for each m ∈ MergeMetrics do
5: for each s ∈ SimilarityMetrics do
6: vec = []
7: for each f ∈ EntropyFunctions do
8: s = Fe(...) . Task: reduce dimension

from data = [rows, columns] to scalar
9: vec.push(s)

. Task: identify accuracy of training-paramters:
10: Fs(Result, vec, ...)
11: procedure CATEGORIZE(TrainedData, data) . Task:

Apply the O(n) algorithm:
12: class . Holds the answer
13: for each f ∈ TrainedData do
14: t = distance(f, data)
15: if ( thent.d < class.d)
16: class = t

IV. METHOD: A NEW CLASSIFICATION O(n) ALGORITHM
FOR ACCURATE CLASSIFICATION

This section describes a framework for construction of a fast
classification algorithm (Table I), which involves the design of
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TABLE II
THE APPROXIMATE TIME COMPLEXITY OF CLUSTER ALGORITHMS (SUBSET). IN THIS TABLE n DENOTES THE NUMBER OF FEATURE ROWS, f IS THE

NUMBER OF FEATURES, c IS THE NUMBER OF CATEGORIES AND I DENOTES THE MAXIMUM ITERATIONS.

Algorithm: Time Complexity: Relative Time [x] for n=1000 Relative Time [x] for n=1000,000
Proposed: classification (Section IV): O(n*f) 1x 1x

KD-TREE [20]: O(f* n log(n)) 10x 104x
DBSCAN and HP-CLUSTER [21], [22], [23]: O(n2 ∗ f) 104x 107x

Hierarchical Cluster Algorithms: O(n2 ∗ f) 104x 107x
Kruskals MST [24]: O(n2 ∗ f) 104x 107x

K-means [25]: O(n2 ∗ f + I ∗ c ∗ n ∗ f) 104x 107x
SOM [26]: O(n2 ∗ f + I ∗ c2 ∗ n) 104x 107x

Neural Networks []: O(f ∗ n5) 10004x = 107x 1010x

an algorithm where:
1) Approximate Computing: subsection IV-A identifies a

strategy to transform existing algorithms (which makes
use of multiple centroids, or: neurons) into a problem
requiring a single neuron;

2) execution-time: subsection IV-B describes an algorithm
which turns the observation from subsection IV-A into
an O(n) algorithm;

3) accuracy and provenance: subsection IV-C exemplifies
how the O(n) algorithm (subsection IV-A) applied to
image classification.

A. Problem transformation: application of Least Parsimony to
Neural Networks

To reduce the execution time of algorithms, it is of im-
portance to minimize the number of dimensions to evaluate.
Hence, to transform the evaluation problem through the prin-
ciple of Least Parsimony [15]. The idea is to compute entropy
by taking the distance from each midpoint to each color. SOM
organises the points based on similarities in RGB. The work
of [27] applies SOM to construct a two dimensional scheme
of entropy computations (Eq. 1):

signature =
∑
x∈C

min(Ck, d(x,Ck))x ∈ Ck (1)

where Ck denotes data-rows in cluster k, d(x,Ck) is the
feature similarity between the cluster versus the data-row x,
and where C holds the clusters, while |C| holds the set of all
data-rows (e.g., in the input image). From Eq. 1 we observe
how prediction inaccuracies arise when the within-distance is
not significantly greater than the between-distance (Eq. 2):∑

x∈C

mink∈C(min(d(x,Ck))) < Eq. 1 (2)

For cases where the between distance is smaller than the within
distance the splitting of points between clusters becomes
pointless (2), i.e., as the prediction specificity is not improved.
Hence, when SOM is applied for data outside the algorithms
Pareto Boundary then using multiple centroids (or: neurons)
increases the prediction error rate. This exemplifies how costly
algorithms may be redesigned into the use of a single reference
point, where the latter becomes equivalent to the direct use of
entropy metrics.

B. An O(n) algorithm for classification

The motivation is to design an effective algorithm for clas-
sification. This algorithmic learning-phase can be generalized
into:

1) ensemble data: a list of ranked (i.e., ordered) data; used
to determine in the selection phase to determine the best-
performing algorithm permutation;

2) algorithm permutation: uses a selection of building
blocks to construct a pipeline of algorithm-training; the
iterative sequence (of this feature-scaling) ensures that
the identified algorithm has a time complexity of O(n)
for n data-points;

3) selection phase: each algorithmic perturbation produce
a scalar number (e.g., number=2.0001); the number is
inserted into a vector; when all the data-sets (in a data-
ensemble) are calculated, the vector is compared to the
expected order (of data, as defined in the enamdale data
phase);

The above steps are formalised into an algorithm for value
selection (Alg. 1). The following subsection IV-C exemplifies
how Alg. 1 can be trained for image-classification, a task of
higher complexity than classification of sensor-data.

C. Automated Algorithm Configuration: training and evalua-
tion

To train the algorithm, we provide a tool-suite for the explo-
ration of algorithm combinations, and templates for mapping
the properties into implementation with low execution-time
and small assembly instruction size. Therefore, the approach
may be used for the training of algorithms applicable to legacy
IoT microprocessors. An example is to apply an automated
evaluation strategy considering the building blocks of:

1) entropy metric: explore 20+ metrics for capturing the
variance in a distribution of numbers;

2) down-sampling: condense numbers through compres-
sion, for which blocks of adjacent numbers are con-
structed;

3) blurring: include perspective provided by each number
through brushing, for which we explore the combina-
tions of unchanged, use a linear attenuation threshold,
etc.;

4) strategy for converting input image to histogram: none,
bins=[10, 100, 1000] x [raw, average, sum];
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5) RGB to scalar conversion: translate the “Red, Green,
Blue” scores in images into a singular channel (e.g.,
Hue);

6) normalization: explore the effect of normalization values
through different combinations of the midpoint (e.g., the
value of averaged score), signed, etc.;

7) combine data: determine how gold hypothesis is to be
used, e.g., to merge features based on relationships such
as: multiply, (maximum/minimum), etc.;

8) pairwise similarity metric: apply the 320+ metrics [28].
The results provide a proof of concept for the assertion that

entropy-algorithm supports re-invention, e.g., that it manages
to get results at-least-as-good as the SOM-method. The com-
parison of data with a known topology avoids the need for
complex iteration steps (Figure 1), which is in contrast to other
algorithms(eg as “SLINK” [29], “k-means” [25], etc.). Hence,
explaining why the proposed framework enables a reduction in
execution time by 104+ for data-set with 1000 points (Table
II).

V. RESULTS

The findings provide insight into the feasibility of trans-
forming Neural Networks into the Ultra-fast O(n) algorithms
(Alg. 1). The idea (which is explored) is to use a singu-
lar centroid to capture complexities (subsection IV-A), for
which a problem is rewritten through use of algorithmic
building blocks. The proposed algorithm enables fast and
secure communication over insecure networks: by reducing the
processing-time, and amount of data to transfer, users are able
to apply cryptography strategies (an overhead would otherwise
be unbearable). To validate the feasibility of the proposed
guidelines we explore:

1) accuracy and provenance: to measure the algorithm’s
feasibility, we investigate the algorithm through generic,
and specific, use-cases, e.g., the accuracy of image-
classification;

2) execution-time: to identify any overhead in execution-
time, the hpLysis software [30] is updated with Alg. 1,
where results are summarized in Table II;

3) approximate computing: to explore the effects, this paper
transform a set of complex classifications into a simple
comparison (Figure 1) through the use of Alg. 1 (Eq.
1), and then explores the difference in performance.

The results are summarized in Table II, which identifies
the relative execution-time for different algorithms. Winns (a
producer of heat-exchange pumps [1]) reports that sensor-
predictions need to be returned in less than 10 seconds,
which only Alg. 1 manages (Table II). When Alg. 1 is
evaluated through the above perspectives we observe how Alg.
1 outperforms the base-line algorithms in use:

1) Specific application: classification of image-data, here
exemplified through the Las Vegas data-set and the Lake
Mead dataset found in [31];

2) Signal classification: classify shapes with different
growth-ratios and ranomdation, i.e., y(r, a, x) =

r1a1x
0+r2a2x

2+ ...rnanx
n, where y(..) is the feature-

vector to evaluate, n is the number of combinations (to
construct a signal from), r is a constant randomization-
factor, a is a constant attenuation-factor (e.g., a = 1.5),
and x represents the polynomial variabel-part;

3) Generalized applicability: the hpLysis is updated with
generalized tests, each investigating the effects of Ap-
proximate Computing on Neural Network.

To exemplify, a comparison between SOM-strategy for low-
latency classification (undertaken by [27], [31]) versus Alg.
1 (as proposed in Section IV) indicates the transformation
of algorithms into using a singular centroid (Eq. 1) can
substantially boost the performance of analytical approaches.
Discussions with the authors of [31] reveal how data-specific
configurations of the SOM are required to get the algorithm
to produce correct results. The results reveal how the use of
a singular centroid (in data-classification) provides a simple,
yet effective, strategy for trustworthy control of classification-
tasks. Therefore, the algorithm may readily be used on existing
sensor networks, e.g., to control equipment for heat-exchange
in buildings.

VI. DISCUSSION

This paper has identified a low-cost method to classify
data with well-defined characteristics, which is the case for
sensors that monitor physical equipment (Table I). To reduce
the scope, the paper focuses on industrial control-systems
which a) are sensitive to delays in configurations, and b) where
certification of behavior represents a crux. The paper argues
that a holistic perspective of classification-algorithms results in
a cost-effective strategy to address issues in data-throughput.
The proposed methodology, and algorithm, differ from the
established strategy. To exemplify:

1) Approximate Computing: this work explores the benefit
of closely gluing compiler-optimization with the accu-
racy of algorithms, e.g., in contrast to “scikit learn” [32];

2) execution-time: we transform complex algorithms (into
their simplified counterparts) by merging the cluster-
centroids, e.g., in contrast to [31];

3) accuracy and provenance: the use of metric-training
(Alg. 1) a) relates to a system’s physical properties, and
b) captures the algorithmic behavior, e.g., in contrast to
[33].

This work exemplifies a methodology that is generalizable for
a wider audience; through an intersection between established
algorithms, use-cases, and configurations, the paper reveals a
strategy reducing the execution-time by more than 10,000x.
The paper argues that the approach can be applied to arbitrary
cases of classification, such as the classification of sensor
data from IoT, a ranking of satellite images, etc. A concrete
example concerns the effects of the accurate choice of pairwise
similarity metrics in the clustering algorithm.

VII. CONCLUSION

The paper proposes a parametric strategy to increase the
applicability of classification algorithms: observations relating
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to the approximate nature (of classification algorithms) are
used to derive a new O(n) algorithm. The algorithm is both
evaluated through generalized, and highly specific, datasets,
hence ensuring its broad applicability. The use of well-
defined metrics, reflecting the physical properties of sensor-
systems, makes the algorithm easy to certify: the seamless
use of off-the-shelf building blocks address issues in data-
throughput, the trustworthiness of predictions, and the speed of
microprocessors, i.e., without resulting in increased component
costs. Thereby, the paper provides a template addressing the
daunting challenges facing researchers, managers, and owners
of industrial systems. Hence, the proposed algorithm addresses
the conceptual challenges which currently hampers the devel-
opment of trustworthy applications of AI to the autonomous
control of industrial systems.

The findings presented in this paper indicate the need for
updating the requirements for the certification of sensors and
equipment. Hence, there is a need for a concerted effort in the
industry, i.e., to devise a formal protocol that ensures flexible
and safe AI for industrial sensor networks.
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