
Software Vulnerability vs. Critical Infrastructure - a Case Study of Antivirus
Software

Juhani Eronen∗, Kati Karjalainen, Rauli Puuperä
Erno Kuusela, Kimmo Halunen, Marko Laakso, Juha Röning

Oulu University Secure Programming Group
Department of Electrical and Information Engineering

P.O. Box 4500
90014 University of Oulu
Email: ouspg@ee.oulu.fi

∗Finnish Communications Regulatory Authority FICORA
P.O. Box 313

00181 Helsinki
Email: juhani.eronen@ficora.fi

Abstract

During the last decade, the realisation of how vulnerable
critical infrastructures are due to their interdependencies
has hit home with more gravity than ever. The abundance
of vulnerabilities in the software that is widely used in crit-
ical systems could have escalating consequences. In this
paper, we used the PROTOS MATINE model to systemati-
cally examine the scope of software systems used in critical
infrastructure. Dependency analysis methods indicated an-
tivirus software as a critical subject to study, as its use is
mandated and as it processes data from malicious sources.
We determined that antivirus software is by nature suscep-
tible to various risks and has exhibited significant vulner-
ability, but the issue is neither widely recognized nor re-
ported. Awareness on the drawbacks of AV software should
be spread among the planners of the critical infrastructures.
Due to inherent risks, the suitability of antivirus software
in critical systems should be reconsidered on a system-by-
system basis.

Keywords: Vulnerabilities, critical infrastructure, de-
pendency analysis, antivirus software

1 Introduction

According to NATO, critical infrastructure is defined as
"those facilities, services and information systems which
are so vital that their incapacity or destruction would have
a debilitating impact on public and governmental security,

economy, public health and safety and the effective func-
tioning of the government" [32]. The need for critical in-
frastructure protection (CIP) has become paramount in re-
cent years with the advent of new asymmetric threats, both
physical and cyber.

While the physical risks have been manifested by the
threats of natural disasters and terrorism, awareness of cy-
ber risks has also been increased by cases of cascading fail-
ures in electrical networks and cases of premeditated dam-
age by disgruntled employees. Warning signs have been
raised by authorities on attacks against the supervisory con-
trol and data acquisition (SCADA) systems controlling crit-
ical systems [41]. However, there is much more to the cyber
risks than SCADA.

Computerisation and ubiquitous network connectivity
have been leading trends in the services of society dur-
ing the last few decades. Systems comprising the critical
infrastructure are no exception. Previously, control sys-
tems of critical services have been custom-designed soft-
ware and hardware systems situated in dedicated networks.
For reasons of synergy, efficiency and increased function-
ality, commercial off the shelf (COTS) hardware, networks
and operating systems have frequently superseded the con-
ventional wisdom in building critical systems. For simi-
lar reasons, control systems are increasingly interconnected
with production and office networks and even the Internet.

Besides from offering a number of self-evident benefits,
the transition of control systems into the realm of traditional
computing predisposes critical systems to a number of risks,
e.g. the growth of system complexity increases its failure

72

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

modes, and interconnections constitute vectors for attack-
ing the system. The major risks that have been identified
in CIP research are generally the loss of a major asset, or a
cascading failure of multiple assets due to their interdepen-
dencies. These interdependencies are generally classified as
physical, geographical, logical or cyber [35]. The cyber in-
terdependencies are among the most complicated and varied
of these interdependencies [4].

In previous research, we have created the PROTOS MA-
TINE model [19] for deciphering technical dependencies
of the critical infrastructure. The model includes reviews
of specifications and other technical facts, as well as ex-
pert interviews to capture the tacit knowledge regarding the
deployment and use of systems. Media and market share
analyses enable prioritising of further study. Visualisation
is used to present the results of the study in a quickly under-
standable and concise manner.

In this paper, we employ the PROTOS MATINE model
to extend upon a study on a type of cyber dependencies re-
ported in our earlier paper [2]. We analyse the cyber de-
pendencies on multiple levels, including software vulnera-
bility and interdependency due to factors such as data prop-
agation and shared protocols, code, and libraries. In recent
years, the use of antivirus (AV) software, whose goal is to
keep malicious programs (malware) at bay, has become a
widely adopted procedure among critical infrastructure sys-
tems. We selected AV software as our target of study, and
explore some of their dependencies, as well as their vulner-
ability history. AV software vulnerabilities are not in gen-
eral reported by the media, even though the number of AV
vulnerabilities has expanded rapidly in recent years [40].
Although the overall vulnerability numbers seem to have
decreased, the future progression of AV vulnerabilities is
unpredictable.

As a part of our previous research, we scrutinised the
vulnerability of AV software with a robustness test set [34].
We used a responsible vulnerability co-ordination process
to ensure that any vulnerabilities found would be fixed by
the vendors whose products they affect. The results of our
robustness testing indicate that there is still much work to
be done to counter the mounting complexity of current soft-
ware. While bugs were found and eliminated, new ones
continue to emerge at a constant rate. In this paper, we fol-
low up the results of the vulnerability co-ordination process,
and investigate whether affected AV vendors had actually
fixed the vulnerabilities reported to them.

The current status of the AV use of software is a com-
plex phenomenon. AV software does not automatically in-
crease security, but may be a source of unnecessary risk, es-
pecially for information infrastructure. In addition to added
complexity, dependency and vulnerability, there are issues
related to vulnerability disclosure and reliability of AV soft-
ware.

Recent studies on the efficiency of AV software raise
concern about their effectiveness in the current threat land-
scape. In a test by the security company Team Cymru, only
37% of 1,066 pieces of current malware were detected by a
sample of 32 antivirus software [17]. Another recent study
by the AV vendor Panda Security observed the infection rate
of unprotected systems at 33%, and that of protected sys-
tems at 23% [30]. The observed low detection rates com-
bined with a mere ten percent point reduction in infection
risk might not warrant for the usage of software with inher-
ent risks.

Despite the stated problems, AV software is at present
commonly considered as a basic element of safe computer
use. For example, FICORA (Finnish Communications Reg-
ulatory Authority) recommends that AV software should be
installed on computer systems in order to protect them from
malware. HIPAA [25] and Sarbanes-Oxley Act, (SOX) [39]
have extended these security requirements to laws. The
same conception of security produced by AV software is
popularized by security policies, user education and media.
There is a considerable lack of controversial opinions in all
of these areas.

The current security paradigm is the main reason for
problems in the context of AV software use. Although AV
software may be a necessity to fight off specific malware
threats, its de facto and de jure use should be reconsidered
in critical infrastructure systems. In many cases, the use of
AV software may expose the system to unnecessary vulner-
abilities and cause needless dependencies.

The next section presents background on the context of
antivirus vulnerabilities in critical infrastructures, as well as
an explanation of the PROTOS MATINE model and sup-
plementary models for dependency analysis. The third sec-
tion presents the results gathered by the dependency analy-
sis and the ensued robustness tests. The paper concludes
with observations on the results and on areas of future
improvement.

2 Background

In this section, we present a definition for vulnerability,
and list the unique aspects of AV software with respect to
vulnerabilities. Next, we define our concept on different
levels of technical dependency, and how it can be used to
augment dependency analysis in traditional CIP perspec-
tive. This is followed by an explanation of the PROTOS
MATINE model, as well as a short review of complemen-
tary dependency analysis methods.

73

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

2.1 Vulnerabilities and Antivirus Soft-
ware

All software contains bugs due to various factors, such as
inherent difficulty in translating the requirements to code,
complexity of the requirements or the underlying system,
immature programming practices and methods [21, 6]. An
old maxim of the quality control industry states that the
number of flaws in a system is generally proportionate to
the complexity of the system. This can be restated as "the
number of flaws in a system is roughly proportionate to the
extent of its functionality". All modern COTS software sys-
tems are very complex, which raises the number of their
bugs to towering amounts. Bugs with security implications
are called vulnerabilities.

Although AV software is commonly thought to increase
security, it is produced by the same programming processes,
which can result in insecure programs in general. As a rule,
all software is breakable [6]. By definition, AV software
must process potentially malicious input in a wide variety
of data formats. As parsing different protocols and formats
have historically been proven error-prone, AV software is
particularly susceptible to programming errors.

Current malware employs a variety of methods to thwart
detection, such as packing, polymorphism, obfuscation,
anti-analysis and anti-unpacking. Some malicious code has
even been reported to exploit vulnerabilities in analysis soft-
ware. The defence methods force AV systems to employ
emulation, deobfuscation, unpacking, and other functions
in order to successfully detect malware. As these oper-
ations are very sophisticated and handle potentially mali-
cious input, the error-sensitivity of AV software is further
highlighted.

Many AV software share the same integral scanning en-
gine or engines [8, 46]. The scanning engine, responsible
for identifying malicious files using signature databases, is
the main component of an AV software. Homogeneity facil-
itates the design process of malware, as it is relatively quick
to test the malware in development with all of the most com-
mon AV software [44]. This may be reflected in the recently
observed low detection rates of current malware [17, 30].

AV software population is quite homogeneous, which in
itself is a warning sign: it enables the spread of malware [5]
that targets against dominant AV products. The market is
dominated by a few leading vendors and using more than
one AV program at a time is usually impossible [23], which
may be fortunate since each vulnerable AV program would
add to the attack surface by exposing more code to exploita-
tion attempts. AV software requires high access rights in
order to monitor the system, which makes them attractive
attack vectors for systems compromise.

2.2 Dependencies and Critical Infrastruc-
ture in the Antivirus Vulnerability
Context

During the last decade, the importance of critical infras-
tructure has been realised more acutely than ever. Depen-
dencies between different infrastructures have been recog-
nised as a major cause for escalating consequences for er-
rors in point components. In critical infrastructure, depen-
dencies can be identified on multiple levels, including tech-
nology, functions, people, processes and location. Failures
of infrastructure components have been identified to induce
immediate or delayed problems or failures in dependent
components, which may in turn lead to cascading failures.
Electricity and energy in general are prime examples of this
behaviour, as practically all other infrastructure elements
depend on these. Thus, different dependency tracking mod-
els have increasingly been taken into use in the context of
critical infrastructure. A good rundown of these models is
the CRN International CIIP Handbook, which presents na-
tional policy approaches to critical information infrastruc-
ture protection and the methods and models used to assess
the vulnerability and security of these structures [26].

In this paper, a dependency is defined as a linkage be-
tween entities or common metadata among them. Depen-
dencies are discovered by forming descriptive metadata and
links from given information and then analysing common
features and differences of this semantic data. As an ex-
ample in the critical infrastructure context, the dependency
of a communications network on electricity could be por-
trayed as a link between a power plant and a cell phone
tower, whereas their location in the same building could be
described with location metadata containing GPS coordi-
nates. The concepts of links and metadata can be considered
equivalent to RDF [48] triplets with nodes and literals, as
defined by the W3C semantic networks initiative. Similarly,
the dependency graphs essentially form a semantic network.
However, many of the concepts of semantic networks, such
as data types and strict ontologies, have not been identified
as beneficial for the rapid analysis of dependencies in pre-
vious research [21]. Thus, the approach to semantic data
used in the scope of this paper is that of lightweight tagging
and folksonomies rather than the stricter and more formal
semantic approach.

The case presented in this paper is that the dependency
of critical infrastructure components on the robustness of
AV software may induce risks to those components, which
may lead to wider infrastructure-level risks through cascad-
ing failures. Measuring the threat that software constitutes
is quite impossible without understanding it in a detailed
level. Identifying the technical dependency of software may
serve as a decent first aid for this purpose, while bestowing
multiple benefits such as increased understanding of the ac-

74

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 1. OUSPG metalevels

tual reason for and the scope of different kinds of failures.
Technical dependencies span multiple levels of abstrac-

tion, and thus, need to be examined in an iterative fashion.
First, the boundaries of different software systems and their
interfaces are enumerated, contributing to the basic under-
standing of the composition of the system. Communication
via interfaces is performed by protocols, and thus, the used
communication protocols need to be identified. Analysis on
the data flows of these protocols sheds light on the propa-
gation of data among systems, and possible attack vectors.
Once the critical avenues of attack are attained, the analysis
can be prioritised on the code that handles them. As most
current systems are modular, this analysis can be broken
down further in examinations of libraries and software sub-
systems that handle distinct inputs, use cases, and so forth.
The data gathered by this method can be used for discern-
ing the impact of vulnerabilities in system components of
different granularity.

The concept of meta levels (see Figure 1 on page 4 is
applicable to any context with inherent dependencies. Meta
level is an attribute of a vulnerability, which describes its
level of abstraction as well as its scope. Information on the
structure of different systems and their relations highlights
elements, which are highly connected or common between
multiple systems. Vulnerabilities in these elements are typ-
ically of a higher meta level, as they can result in epidemic
failures due to their wide implementation base, or cascad-
ing effects due to the failure of a high number of dependent
elements [19].

Meta level zero describes the case where a vulnerabil-
ity only affects a single implementation (a software ver-
sion). Meta level one vulnerabilities affect a whole class of
systems (all software that implements a certain interface).
Meta level two vulnerabilities affect a super-system con-
sisting of multiple classes of systems (all software having
any interface that includes a certain subsystem). Meta level

three affects an element that is used for widely disparate
purposes, perhaps by a great number of systems (all sys-
tems that use a certain notation, encoding, or other function)
[19].

In our previous paper [2], we have given some prelim-
inary results of our research and a brief explanation of the
methods used in this research. Our research was focused on
the file formats that different AV software handles, as they
form a common public interface. Side-by-side comparison
of the exposure of AV software to file format vulnerabilities
is not straightforward, as the support for different formats
varies considerably among AV software.

Uncovering dependencies in the handling of archive file
formats may be difficult due to a number of implementation
details. A file format implemented in two software products
can cause similar but unrelated problems in them, which
could constitute a dependency false positive. Files of some
archive formats may embody files in other archive formats,
which may lead to the use of different algorithms in dif-
ferent parsing implementations of these files. Analysis of
cases such as these is difficult, as specifications or source
codes for commercial AV software are not available.

2.3 The PROTOS MATINE Model

The research method is based on an earlier OUSPG
(Oulu University Secure Programming Group) project,
PROTOS MATINE. The project focused on the interdepen-
dencies of network protocols and produced the PROTOS
MATINE model [19] (see Figure 2) and the semantic tool
Graphingwiki [20], which are now put into use in the con-
text of AV vulnerabilities. The model presents an iterative
method for rapidly gaining an insight into a field of study.

The PROTOS MATINE model was originally developed
to illustrate protocol dependencies in critical infrastructure
from multiple angles. Understanding protocol dependen-
cies has been seen beneficial for the assessment of the wider
technical dependencies of infrastructure, and the impact
vulnerabilities would have on it. The method was devel-
oped to collect protocol specific data, which is spread out
in multiple sources, e.g. newspapers, mailing lists, tech-
nical documents, protocol specifications and experts, who
have tacit knowledge of protocol usage. During the devel-
opment of the model, we noticed that tracking only one or
two sources gives a biased picture of protocol’s history, us-
age and prevalence, and by combining several data gather-
ing methods, the accumulated data coincides better with the
real situation.

The different data sources, such as specifications, liter-
ature, media and experts, work towards a common goal -
understanding a technological subject on multiple levels.
These levels include contents and structure of the subject,
its history as well as projected future, its use cases and areas

75

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

of usage and its environment and relations to other subjects.
With this kind of knowledge, the weight of a subject can be
determined in the desired context, such as a system, a net-
work, a corporation or a sector of the critical infrastructure.
As an example, various data gathering methods were used
to perform analyses of the effects of vulnerabilities found
in parsers of the prevalent ASN.1 notation [21, 19]. The
analyses were conducted with heavy emphasis on systems
used in critical infrastructures, and resulted in a number of
test suites to test the robustness of different protocol imple-
mentations [19].

The results of the PROTOS MATINE model are pre-
sented by visualisations that aim to portray different aspects
of the protocol. Visualisations were also used as a commu-
nication method between researchers, managers and other
operatives. The first views that we created, depicted the
protocol’s specification history (protocol view), its techni-
cal linkage (technological view), and its usage scenarios or
general usage in different sectors of society (organisational
view). These views were constructed using various data
sources and methods: experts (interviews), public attention
(media follow-up), protocol definitions (standards, techni-
cal specifications) and the prevalence of protocol imple-
mentations (historical data, usage environments). The main
views were adapted according to a specific target group or
usage scenario. However, we quickly discovered that more
versatile and automatically generated views were needed.

We started to develop Graphingwiki, a semantic wiki
tool that enables the deepened analysis of the Wiki data,
by augmenting it with semantic data in a simple, practical
and easily usable manner. Graphingwiki can be used to au-
tomatically present the semantic data as tables and to visu-
alise it as graphs. These visualisations are used to clarify
the resulting body of knowledge so that only the essential
information for a usage scenario is displayed [21]. The key
aspects of the workflow are automated gathering of base-
line data, augmenting the data by experts and manual data
gathering, and generating automated visualisations.

AV software was selected as our target because such soft-
ware has an extensive attack surface due to a wide variety of
file formats it must handle, they are run with high privileges,
and their usage is mandated in many cases. Vulnerable AV
software would be tempting attack vectors for systems com-
promise. We wanted to visualise AV vulnerabilities and,
with the help of the dependency graphs, find out if there are
any linkages between file formats, AV vendors and software
vulnerabilities. Preliminary results helped us to focus PRO-
TOS Genome robustness test set on archive formats and of-
fered a context for the vulnerability co-ordination process.

In the context of AV software, vulnerability databases
represent the main data sources of the PROTOS MATINE
model. Media tracking and review of the market situation
were performed in the year 2006 and the following results

were also represented in the previous paper [2]. Media
tracking and review of the market situation lay out the pri-
orities of later data gathering and the relative importance
of different AV software. Expert interviews and publicly
available specifications were only used to discern the usage
of archive formats.

The semantic information on AV vulnerabilities, for ex-
ample impact type and file format, was gathered from the
U.S. National Vulnerability Database (NVD) [31]. NVD’s
descriptors of vulnerabilities are categorised and presented
a in specified standard format. Additional information was
gathered as a media follow-up, which was focused to na-
tional level. The media follow-up consisted of regular
observation of Digitoday Finland [16], commercial news
database focusing on IT sector, throughout the year 2006.
News considering AV issues was classified and analysed
with content analysis. The focus of media follow-up was
on how the AV software and vendors are presented in the
media.

2.4 Previous Work

Dependency analysis methods span disparate fields, such
as graph theory, social network analysis, computing and
natural language processing. Some methods of relevant
fields are examined in the light of the PROTOS MATINE
model, and their suitability for use in the context of antivirus
software is evaluated.

In graph theory, dependencies are naturally defined by
the links between nodes in the graph. The links usually do
not have other attributes than their direction and possibly
a numeric value signifying the strength of the link. Graph
theory analyses graphs with measures such as cliques, con-
nectedness and centrality [15]. Social network analysis is
a closely related field that studies specifically graphs repre-
senting relations among people. The basic realisation be-
hind social networks is that weak ties in social networks
are more significant that stronger ones. Many sophisticated
analysis methods have been developed in this field [37].
However, efficient use of these approaches requires research
on which analysis methods and aspects of graphs are the
most relevant in the desired context.

Conceptual graphs extend the basic graph model by in-
troducing attributes to the dependencies, which are defined
as links between dependent and antecedent [13]. The con-
ceptual graphs model attempts to form a generalised ontol-
ogy of dependencies, i.e. the set of attributes that apply
to every dependency regardless of context: sensitivity, sta-
bility, need, importance, strength and impact. The model
is very versatile, but its rigorous definition of dependency
may represent a hindrance rather than an aid in the context
of rapid knowledge discovery. It is also noteworthy that
the conceptual graphs model considers only the attributes

76

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 2. PROTOS MATINE model

of nodes as a source of dependencies, which may limit its
usefulness.

There has been a growing interest towards dependency
analysis in recent years in critical infrastructure manage-
ment. The papers on the subject range from studies on the
effect of a single event on one part of critical infrastructure
[27] to critiques of policies adopted by a whole nation state
[24]. We will describe some of the analysis methods that
we consider relevant for the purposes of this paper. A more
thorough review on the state of the art in critical infrastruc-
ture protection can be found in [4].

The Critical Infrastructure Modelling System (CIMS) is
a system and a method for modelling dependencies in crit-
ical infrastructures, and simulating related events regarding
its components. The dependency types used as the systems
include physical, informational, geospatial, procedural and
societal dependencies. Critical infrastructure systems are
modelled by graphs, where dependencies are manifested
through linkage or proximity of the nodes [18]. The CIMS
software visualises graphs as 3D visualisations that can be
layered on, e.g. satellite images or maps. Software-aided
support for what-if scenario building is mentioned as a sub-
ject for further research.

The use of intelligent software agents to integrate, model
and simulate infrastructure components has been suggested
in a paper by Tolone et al. [45]. The system proposed in
this paper is in many ways quite similar to CIMS, and it

also includes 3D visualisation and simulations on critical in-
frastructure failures. The simulations include what-if, goal-
driven, probabilistic, and discovery based analyses based on
events, i.e. agent state changes. The paper does not define
the dependency types used in the simulation, however, sim-
ply stating that dependencies vary based on the context of
the system.

Both of the systems described in the previous para-
graphs, as many other systems used to model dependencies
of the critical infrastructure, for that matter, are largely con-
strained into the physical setting and thus unusable in the
AV context. For example, the use of 3D models of may
work very well in the physical context, but are unneces-
sary or even inapplicable to many other contexts. However,
many of the ideas used in the models, such as automated
scenario building and node proximity as dependency, could
provide benefits to use cases such as AV. Similarly, stud-
ies that include a temporal dimension to dependencies and
fault propagation could be useful, e.g. in modelling attacks
to vulnerable systems [36]. We have not yet observed the
need for context-varied dependencies in our research, and
thus, only find the agent-based approach interesting in an
academic perspective.

Graph theoretical methods used in the context of criti-
cal infrastructures mostly focus on the availability, reacha-
bility or quality of service aspects of graph portraying the
infrastructure. Analysis of graph properties such as topol-

77

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

ogy and node proximity can be used to aid fault simulation
[38]. Fuzzy numbers can be employed to represent incom-
plete information about the resiliency and other properties
of the nodes [14]. Complexity analysis of the graph, in its
turns, can provide insight into how efficiently the graph can
be traversed in the event of failures [49]. Finally, social net-
work analysis has proven to find critical nodes in the infras-
tructure graph with simple centrality, degree and variance
calculations [7].

All of the above methods have the same goal, namely, to
present the dependencies in a highly visual and thus more
human readable form than mere documents and spread-
sheets. With the PROTOS MATINE method, we aim at this
very same goal, and to this end, we have used the Graph-
ingwiki visualisation tool. The nature of the PROTOS MA-
TINE method means that in order to be able to make vi-
sualisations with diverse types of information and multiple
levels of abstraction, the visualisations need to be quite sim-
ple. Many of the methods do not have support for multiple
levels of abstraction, whereas with Graphingwiki, we can
present visualisations from minute details (such as single
vulnerability and its impact) to greater schemes (dependen-
cies between protocols or even dependencies in critical in-
frastructure). Graphingwiki works well in this context, be-
cause there are essentially no restrictions on the type of data
that can be represented.

It should be noted that none of the other methods men-
tioned here have been used in the context of AV software.
To our knowledge, there are no other studies on the depen-
dencies in AV software.

3 Results

In this section, we present our review of the historic vul-
nerability data regarding AV software, and the results of re-
lated vulnerability co-ordination work.

3.1 Analysis of AV Vulnerability Data

This section contains the data in numbers and shares and
presents the picture gathered from the media during our re-
search. We use the SCAP [42] set of standards (including
CVE, CPE, and CVSS) to measure gathered vulnerability
data. The gathered data provided insight into the problem-
atic areas of AV software, and guided the development of a
test suite to exercise their robustness. The methods used in
the coordinating the fixing process are described, as well as
the results of the coordination.

In our previous analysis [2], AV vulnerability data was
gathered manually from the U.S. NVD database [31]. In
this paper, we parsed the data from NVD in XML for-
mat and uploaded all entries containing the words ’virus’
or ’malware’ to Graphingwiki with the help of automated

scripts, which were used to ease laborious data gathering
process and minimise errors and loss of data in data collec-
tion process.

As explained later in greater detail, we combined the
NVD data with data from the SecurityFocus database [43].
In this case, the main function of the scripts was to convert
the freeform vulnerability descriptions to structural data.
The data from different sources can be seen to represent
different expert opinions on the vulnerability. Our approach
was not to combine these opinions in any way, though dif-
ferent opinions can be formed into a single dependency by
considering the combination of various edges between two
nodes as a dependency. Currently, the views to the data are
generated automatically, but it is the analyst’s task to decide
on the most appropriate data points for his purposes. Algo-
rithmic or other formal methods to form dependency views
could be implemented as custom plugins. Our initial ex-
periences indicate that gathering and comparing data from
different vulnerability databases in this manner is a promis-
ing, yet largely neglected research area.

As the data gathered for this paper is more systematic,
uniform and wider in scope, direct comparison to our pre-
vious analysis is not meaningful. The gathered data is rep-
resented in the following formats: CVE [10] enumerates
unique vulnerabilities, CVSS [11] measures vulnerability
severity, CPE [9] enumerates products affected, and finally,
CWE Common Weakness Enumeration [12] provides a list-
ing of weakness types.

The total number of vulnerabilities was 346, and in-
cluded vulnerabilities in the products of practically all
known antivirus vendors. The data spanned from the year
1998, although the bulk of the vulnerabilities were from
the years 2004-2008, with a noteworthy peak in the year
2005. As can be seen in Figure 3), the number of AV vul-
nerabilities has expanded rapidly through these years. As
measured by their CVSS scores, the average severity of all
the gathered AV vulnerabilities is 6.56. This means that
antivirus vulnerabilities are generally quite severe, as the
NVD database considers vulnerabilities with a CVSS score
equal or greater than 7.0 to have a high severity. Further, the
severities of vulnerabilities have been in a slight rise during
these years, as can be seen in Figure 4. By combining these
two statistics, it is clear that after the year 2004 there has
been a significant increase of vulnerabilities with high or
medium severities.

Most of the vulnerabilities (276 out of 346) were ex-
ploitable remotely according to NVD. This shows that, as
we speculated, the AV software has difficulties in robust
handling of the data it inspects. With antivirus software,
the type remotely exploitable means that data can be sent
to the system e.g. via email, after which the AV system
must inspect it. NVD classified most of the vulnerabilities
as having a low access complexity, which means that ex-

78

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 3. AV vulnerabilities of different severity per year

ploiting the vulnerabilities is not considered to be a difficult
task, which further emphasises their severity.

From our data, we noted that archive formats are asso-
ciated with a large portion of the vulnerabilities (see Figure
5). The most frequent archive formats were RAR, CAB and
ZIP. Vulnerabilities in parsing file formats are often trivial to
exploit, as well as relatively easy to discover by the means
of black-box testing, i.e. fuzzing. This hypothesis can be
ascertained by examining the type information of the vul-
nerabilities.

The NVD vulnerability database presents vulnerability
types with CWE identifiers. Only about a fifth of the vul-
nerabilities we gathered had error type information. There-
fore, we used vulnerability type information from the Se-
curityfocus vulnerability database, which has type informa-
tion about 262, or 76% of the vulnerabilities. The Security-
focus databases use an undocumented vulnerability taxon-
omy, which according to observations closely resembles the
widely used Aslam taxonomy [3] [28].

Our previous analysis showed that the most common er-
ror type in AV software is design error. An analysis with

more data indicates that boundary condition errors (60 vul-
nerabilities) and failure to handle exceptional conditions (46
vulnerabilities) are as prevalent as design error (59 vulner-
abilities). The yearly observation depicted in Figure 6 indi-
cates that the observed peak in the year 2005 correlates with
a similar peak with the vulnerability type failure to handle
exceptional conditions. Many of the vulnerabilities of this
type were due to problems in parsing.

The observations prompted research in PROTOS
GENOME -project, where malformed archive files were
generated to test the robustness of AV software. The results
of this research are reported in [34]. Our analysis suggests
that the biggest factors for the peak in AV vulnerabilities in
the year 2005 were related to different archive file formats,
mainly RAR and ZIP. The results of PROTOS GENOME
archive test set affected in turn the number of vulnerabili-
ties in the year 2008.

The media follow-up was performed in 2006 and gained
results of the analysis were also presented in a previous pa-
per [2]. The media analysis resource consisted of 92 news
items. The results can be seen in Table 7.

79

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 4. Average yearly severity of AV vulnerabilities

In general, AV software is presented in the news in a very
positive light as continuously developing industry, which
provides better solutions and increased security. The discus-
sion of more negative issues is neglected. As our analysis
of vulnerability data indicated, AV software have remark-
able amount of vulnerabilities that can have wide-ranging
effects. However, from the results of the media analysis,
it can be noted that only 11.9% of all the collected AV-
related newspaper articles dealt with AV software vulner-
abilities and malfunction. We think that awareness of AV
software vulnerabilities and their impact is not at the appro-
priate level and the usage of antivirus software should be
considered more carefully in critical systems.

3.2 Using the PROTOS MATINE Model
in AV Vulnerability Disclosure

Effective responsible vulnerability disclosure requires
that data about vulnerabilities is presented to all affected
vendors to enable them to repair the found vulnerabilities in
their software. In the case of the archive format tests, the
scope of potentially affected software is colossal. We used
the PROTOS MATINE model to form a technical view on
the usage of archive formats. The best sources of informa-
tion for constructing the view in a rapid fashion were ex-

pert interviews and sources of formalised data on software.
Archive formats have an extensive history, both in speci-
fication and implementation, which makes them a tedious
subject of study from the literature standpoint.

The first data source we employed was the APT package
management system [1], which we used to identify software
that used popular archive handling libraries. We visualised
this data in a technical view (Figure 8), which was aug-
mented with the help of expert interviews. The view shed
light on the scope of the potential problems - as we quickly
saw, the usage of archive formats ranged from basic operat-
ing system and network functionality to applications.

The technical view was further enhanced using the NVD
vulnerability database as a data source. We searched the
CVE entries with the help of automated scripts for mentions
of the archive formats comprising the archive test set. We
filtered the gathered CVE entries by hand to remove the vul-
nerabilities which were not actually related to archive for-
mats. We divided the vulnerable products gathered in this
manner in groups based on their type. We gave the resulting
list of products and categories to experts, who supplemented
it with products of similar function.

The resulting view presented a clear direction to the vul-
nerability coordination process, which was performed in
two phases. In the first phase, we contacted a small num-

80

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 5. Archive file formats associated with AV vulnerabilities

Figure 6. SecurityFocus vulnerability classification of AV vulnerabilities

81

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 7. News topics concerning AV

Figure 8. A simple technical view depicting the use of archive formats

82

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

ber of key vendors. The rationale for this decision was that
some of these vendors have quite extensive product lines
and they would require more time for testing. While the first
phase was in progress, we continued to enumerate vendors
and their contact addresses for the second phase. The coor-
dination process was performed in co-operation with CERT-
FI and CPNI (The UK Centre for the protection of National
Infrastructure) followed the constructive disclosure process
as outlined in [29]. Altogether, over a hundred vendors were
contacted by CERT-FI about the test suite. Approximately
25% of the contacted vendors wanted to test their products
with the test suite. The advisory stated 12 vendors vulnera-
ble, 8 vendors not vulnerable, and the status of 30 vendors
as unknown.

Published vulnerabilities represent only a small subset
of the actual vulnerability of software. For various reasons,
measuring the numbers of vulnerabilities is not simple [33].
Often, a bug is reported as a vulnerability only if a security
conscious developer has a look at it. Bugs and vulnera-
bilities found internally or as a result of an audit often do
not get reported. Many software vendors do not feel com-
fortable about sharing details about vulnerabilities in their
software. It is fairly common to omit mentioning fixed vul-
nerabilities in change logs, or to refer to them as "reliability
fixes". These factors make it difficult to measure the im-
provement bestowed by the archive test suite. In a more
general sense, they contribute to the difficulty of making
informed decisions about vulnerabilities.

Fixes were made by various vendors after the publication
of the test set. This was in part due to fixes in open source
products that were incorporated into commercial products
and open source distributions. There is some anecdotal ev-
idence on the fact that some vendors did not perform any
testing, and that some vendors had a silent disclosure of
patches to the archive set test cases.

In the test set documentation [34], we tested a sample of
five antivirus software for vulnerabilities and four of them
were vulnerable. We re-tested five of them for the purposes
of this paper, and the same four of them were still vulnerable
against the same test material.

F-Secure was the only antivirus vendor to publish up-
dates and a security bulletin based on the archive test set
at the time of publication [22], though ClamAV did publish
a bulletin and an update at a later date. When the grace
period before any public announcement of the danger spans
months or even years, there will be vendors who issue silent
fixes and move on without joining the public advisory.

4 Discussion

We set out to understand the dependency of critical in-
frastructure on the AV software, nature of AV software with
respect to information security, security of the AV software

itself both historically and presently and perception of the
media and thus general public on the role of the AV soft-
ware. In short, we aimed to disclose and understand any
risks that such security software may pose on the critical
infrastructure.

We experienced some difficulties in our data gathering
efforts regarding antivirus software. Highly competitive
fields do not encourage research, open standards, and open
publication of data in general, and the antivirus industry is
no exception. Information on the common scanning engines
and possible undocumented standards used by the AV in-
dustry would provide a significant advantage to deciphering
their dependencies in terms of vulnerability. As AV ven-
dors are naturally reluctant to reveal their trade secrets, we
are missing the data that would in many other cases be avail-
able via public metrics and expert interviews from the de-
velopers of products and standards. However, interviews of
the actors of the critical infrastructures could provide a fur-
ther insight into the criticality of applications, and hence the
effects of vulnerabilities.

As the amount of public information on AV vulnerabil-
ities leaves much to be desired, the significance of media
and other public sources is emphasised. Our observation on
the labour-intensiveness of the media follow-up as a data
gathering method prompts attention to it as a further field of
study. Still, additional sources such as social media could
significantly augment the scope of public information. In
this paper, we successfully used automatic data gathering
methods for vulnerability databases, but employing similar
methods for free-form news articles presents further chal-
lenges. The field of natural language processing has shown
some promising results, methods such as support vector
machines have proven useful for many tasks. It has been
suggested that some dependencies could be discerned from
textual structures alone. All in all, automated methods for
gathering public information and refining it to more useful
forms could require extensive research.

Selective aggregation of different data feeds also con-
stitutes a promising information gathering method. As
an example, package management software and the SCAP
project use different nomenclature for software packages,
which makes it harder to track vulnerabilities regarding
Linux software packages. However, most Linux distribu-
tions provide security advisories that include SCAP com-
pliant CVE vulnerability identifiers, which can be used to
find SCAP compliant CPE software identifiers. Combin-
ing these facts from, e.g. APT popularity contest, project
that attempts to map the relative popularity of Debian Linux
software packages could provide insight into the vulnerabil-
ity of some of the most popular Linux software. This is how
using the three sources in conjunction could provide other-
wise unattainable information.

The large amount of archive file format related bugs in

83

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

AV software suggests that software components used in crit-
ical infrastructure should be exposed to thorough testing –
for it seems that vendors’ quality assurance processes do not
guarantee a sufficient level of robustness. Finding bugs in
any software is not enormously difficult [47], however. As
the data gathered in AV case illustrates, most of the bugs
are of the same type. Whenever a bug is found, the focus is
on fixing the bug, not finding its causes. There is a need for
methods for understanding the bugs so that we could write
programs with fewer bugs. Also, the prevalence of com-
mon vulnerability types, such as boundary condition error,
in antivirus software indicates that they are largely created
with programming languages that are particularly suscepti-
ble to those types of error, such as C and C++. The usage
of programming languages that are inherently more secure
should be examined in security-critical portions of the code,
notwithstanding the possible performance penalties.

Even though the proportion of AV vulnerabilities to all
vulnerabilities is diminutive, we had great difficulties in di-
gesting the data. Although we used only one source of in-
formation on the vulnerabilities, manually trawling through
the relevant vulnerabilities and analysing them was chal-
lenging. Methods for analysing the gathered information
were sorely needed. Using graphs to visualise data helped
in understanding the big picture, but still left plenty of room
for development. For some example graphs, see Figures 9
and 10 Currently, we only analyse the graphs by visual ob-
servation. Graph theoretical and social networking analysis
methods for analysing different properties of the graphs re-
mains a future field of study.

As the summaries in the different fields of dependency
analysis showed, there are still a number of dependency
types we could study. Dependency through proximity and
other context-related dependencies could provide benefits
for analysis. The temporal dimension of dependencies is
another field of further study. In the current implementa-
tion, all historical data are stored, but have not been used
in analysis. Dynamic simulation of events and changes in
the dependency graph would constitute an interesting line
of future research.

Future research also includes related studies in other
types of security software. Dependency studies could direct
robustness testing efforts on the modules deemed to have
the most impact on critical systems. Further research into
the generation of test sets could improve their effectiveness
in finding vulnerabilities. The testing efforts could serve to
raise the bar for the security of critical systems.

5 Conclusion

The main goal for this paper was to examine AV software
vulnerabilities and the risks they bring to critical informa-
tion infrastructure systems. The PROTOS MATINE model

was used as a method for disentangling the untrodden field
of AV vulnerabilities in a rapid, iteratively expanding fash-
ion. This paper presents the results of our research, which
focused on AV software vulnerabilities and the picture de-
picted by the dependencies between these vulnerabilities.

By applying the PROTOS MATINE model through the
study of media follow-ups, expert interviews, specifica-
tions, market situation, historical data, public vulnerability
data and usage scenarios we found out that there are im-
plementation level security issues in AV software that not
only make it ineffective against malware, but also actually
open new ways to attack the system. There is a substan-
tial amount of information about such vulnerabilities in the
past. AV products are an attractive target due to mono cul-
ture and high access privileges involved.

AV software itself was discovered to share a meta level
one type of dependency risk exposure through the same
archive formats being implemented in all AV products. This
dependency risk spans beyond AV products, and when vul-
nerabilities related to archive forms are disclosed, then a
very large vendor base of more generic products varying
from consumer devices to network infrastructure have to be
considered.

We found that issues with handling archive files have
been the main reason for the fast rise of AV vulnerabil-
ities in recent years. Our observations prompted robust-
ness testing research of archive file formats in the PROTOS
GENOME project. The results and the followup results pre-
sented here demonstrate that archive file formats are still a
big issue in AV software. Ten months after public availabil-
ity, preceded by a year-long period of limited distributions
to vendors only, 4 out of 5 tested products were still vulner-
able.

AV vendors do not necessarily fix vulnerabilities uncov-
ered by published test sets. At least some AV vendors re-
act to disclosed security issues and improve their products,
but overall there is no significant trend for better or worse.
More vulnerabilities akin to the ones we observed can be
found by testing in a relatively straightforward fashion.

The results from media follow-up draw a quite desolate
picture from the viewpoint of equal communication. Media
(and the public) mostly do not recognise or discuss the risks
related to dependency on the AV products. The AV vulnera-
bilities are seldom reported, and there truly is a lack of open
discussion and controversial opinions, e.g. on the reliability
of different AV software. Media concentrates on reporting
new malware and fusions of AV enterprises.

Traditionally, AV software security has been measured
by its ability to detect malware. However, some recent stud-
ies, even by the AV industry itself, have shown that the ef-
ficiency of malware may be of suspect. Nevertheless, AV
is widely used despite this criticism on the effectiveness of
the very approach. The use of AV software in critical in-

84

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 9. Comparison of CWE and Securityfocus vulnerability types in some serious vulnerabilitie

85

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Figure 10. Some recent serious AV vulnerabilities in Symantec products

86

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

frastructure is wide spread and sometimes even mandated
by laws and regulations

Our research indicates that AV software and AV vulnera-
bilities should be considered in the context of critical infras-
tructures. Firstly, awareness on the drawbacks of AV soft-
ware should be spread among the planners of the critical
infrastructures. Following this, the suitability of the soft-
ware should be reconsidered on a system-by-system basis,
along with the planning of divergent defences and defence
strategies. Information on the interrelationships of different
formats and products, and the vulnerability histories (track
records) of the products can prove to be valuable decision-
making tools in this process.

The context of AV software vulnerabilities and critical
information infrastructure is still to be conceptualised by
grounded theory. The graphs created in Graphingwiki could
be analysed by means of graph theory to gain more insight
into the dependencies. In order to do this, the semantic
analysis should be further investigated. This would then
provide the meaning for the mathematical results. Consis-
tent and planned media follow-up as well as expert inter-
views would provide enough material for qualitative analy-
sis. At the same time, a more thorough statistical analysis
and graph theoretical approach could add more quantitative
information. This future work should provide more in depth
understanding of dependencies in AV software. More re-
search should also be done in the field of automated data
gathering methods since the media follow-up is laborious
to perform manually. Automated data gathering would gen-
erate fewer errors, and on a large scale, it would give more
reliable results.

This study on the vulnerability dependencies in AV soft-
ware showed us that the PROTOS MATINE model is well
suited for gathering information on a previously unknown
subject, organising and analysing that information, finding
points of interest for further, more focused research, and
finally, extrapolating on the impact of the discovered vul-
nerabilities. The data gathering part of the method benefits
from the use of multiple sources of information. The or-
ganising and analysing did benefit from the Graphingwiki
visualisations, which pointed to the direction of archive file
formats as the source of many vulnerabilities. Finally, ex-
pert interviews gave a wider perspective to the impact of
these vulnerabilities and enabled the responsible vulnerabil-
ity disclosure coordination effort, as we realised that these
vulnerabilities could be present in various software beyond
our initial target.

By applying the model, we collected antivirus preva-
lence, mandate and vulnerability track record data, we iden-
tified antivirus related risk factors and disclosed new infor-
mation about media perception of antivirus, new vulnera-
bilities and handling of these vulnerabilities. In short, we
disclosed and now understand better the risks that the an-

tivirus software may pose on the critical infrastructure.

6 Acknowledgements

The authors would like to thank MATINE (Scientific Ad-
visory Board for Defencce in Finland) and infotec Oulu for
Financial support of the research. The authors express their
gratitude also to Jani Kenttälä of Clarified Networks for
valuable help on creating some of the pictures in this pa-
per.

References

[1] Advanced Packaging Tool http://en.
wikipedia.org/wiki/Advanced\
_Packaging_Tool, May 8, 2009

[2] Askola, K., Puupera, R., Pietikainen, P., Eronen, J.,
Laakso, M., Halunen, K., and Röning, J., Vulnera-
bility Dependencies in Antivirus Software, SECUR-
WARE 2008, The Second International Conference
on Emerging Security Information, Systems and Tech-
nologies, pages 273-278, 2008

[3] Aslam T., Krsul I., and Spafford E. H., Use of a tax-
onomy of security faults, 19th NIST-NCSC National
Information Systems Security Conference, pages 551-
560, 1996.

[4] Bagheri, E. and Ghorbani, A. A., The State of the Art
in Critical Infrastructure Protection: A Framework
for Convergence, International Journal of Critical In-
frastructures, Vol.4, no. 3, pages 215-244, 2008.

[5] Bassham, L. E. and Polk. W. T., Threat Assessment of
Malicious Code and Human Threats (NISTIR 4939)
http://csrc.nist.gov/publications/
nistir/ir4939.txt, May 8, 2009

[6] Beizer, B. Software Testing Techniques, Second edi-
tion. (1990). International Thomson Computer Press.
ISBN: 1-850-32880-3

[7] Chai, C-l., Liu, X., Zhang, W. J., Deters, R., Liu, D.,
Dyachuk, D., Tu, Y. L., and Baber, Z., Social Network
Analysis of the Vulnerabilities of Interdependent Crit-
ical Infrastructures, International Journal of Critical
Infrastructures, Vol.4, no. 3, pages 256-273, 2008.

[8] Christoderescu, M., Jha, S., Seshia, S. A., Song, D.,
and Bryant, R., Semantics-Aware Malware Detection,
IEEE Symposium on Security and Privacy (S&P’05),
pages 32-46.

[9] Common Platform Enumeration http://cpe.
mitre.org/, May 8, 2009

87

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

[10] Common Vulnerabilities and Exposures http://
cve.mitre.org/about/index.html, May 8,
2009

[11] Common Vulnerability Scoring System http://
nvd.nist.gov/cvss.cfm?version=2, May
8, 2009

[12] Common Weakness Enumeration http://cwe.
mitre.org/, May 8, 2009

[13] Cox L. and Delugah H.S., Dependency Analysis Us-
ing Conceptual Graphs, Proceedings of the 9th Inter-
national Conference on Conceptual Structures, ICCS
2001.

[14] De Porcellinis, S., Setola, R., Panzieri, S., and Ulivi,
G., Simulation of Heterogeneous and Interdependent
Critical Infrastructures, International Journal of Crit-
ical Infrastructures, Vol.4, no. 1/2, pages 110-128,
2008.

[15] Diestel, R., Graph Theory, 3rd edition, Graduate Texts
in Mathematics, Vol. 173, Springer-Verlag, Heidel-
berg, 2005.

[16] Digitoday Finland, http://www.digitoday.
fi/, May 8, 2009

[17] Dixon, J., How Good Is Your Network Neighbor-
hood Watch, http://media.techtarget.
com/searchFinancialSecurity/
downloads/How_Good_Is_Your_Network_
Neighborhood_Watch.pdf, May 8, 2009

[18] Dudenhoeffer, D. D., Permann, M. R., and Manic,
M., CIMS: A Framework for Infrastructure Interde-
pendency Modeling and Analysis, Proceedings of the
2006 Winter Simulation Conference, pages 478-485.

[19] Eronen J. and Laakso M., A Case for Protocol Depen-
dency, In proceedings of the First IEEE International
Workshop on Critical Infrastructure Protection. Darm-
stadt, Germany. November 3-4, 2005.

[20] Eronen J. and Röning J., Graphingwiki - a Semantic
Wiki extension for visualising and inferring protocol
dependency, Proceedings of the First Workshop on Se-
mantic Wikis (SemWiki2006 - From Wiki to Seman-
tics), co-located with the 3rd Annual European Se-
mantic Web Conference (ESWC). Budva, Montene-
gro, 11th - 14th June, 2006.

[21] Eronen, J., A collaborative method for assessing
the dependencies of critical information infrastruc-
tures M.Sc. (Tech) Thesis for the Department of
Electrical and Information Engineering at University

of Oulu. URL: http://www.ee.oulu.fi/
research/ouspg/protos/sota/matine/
method-thesis/di.pdf, May 8, 2009

[22] F-Secure Security Advisory FSC-2008-2, http:
//www.f-secure.com/en_EMEA/support/
security-advisory/fsc-2008-2.html,
May 15, 2009.

[23] Hicks, B., Network Anti-Virus Market Trends,
Faulkner Information Services, 2005.

[24] Hills, A. Insidious Environments: Creeping Depen-
dencies and Urban Vulnerabilities, Journal of Contin-
gencies and Crisis Management, Vol. 13, No. 1, pages
12-20, 2005.

[25] HIPAA http://www.cms.hhs.gov/
HIPAAGenInfo/Downloads/HIPAALaw.pdf,
May 8, 2009

[26] International CIIP Handbook 2006 (Vol. II), eds. Myr-
iam Dunn, Victor Mauer; Center for Security Studies,
ETH Zurich.

[27] Itzwerth R. L., MacIntyre C. R., Shah S., and Plant A.
J.,Pandemic influenza and critical infrastructure de-
pendencies: possible impact on hospitals, The Medi-
cal Journal of Australia, 185, pages S70-S72, 2006.

[28] Ko K., Jang I., Kang Y., Lee J., and Eom Y., Char-
acteristic Classification and Correlation Analysis of
Source-Level Vulnerabilities in the Linux Kernel, Lec-
ture Notes in Computer Science, Volume 3802, pages
1149-1156, 2005.

[29] Laakso, M., Takanen, A., and Röning, J., Introduc-
ing Constructive Vulnerability Disclosures, The 13th
FIRST Conference on Computer Security Incident
Handling, 2001.

[30] Malware infections in protected systems,
http://www.pandasoftware.jp/scan/
pdf/panda_lab_research_paper.pdf, May
8, 2009

[31] National Vulnerabilty Database, http://nvd.
nist.gov/, May 8, 2009

[32] NATO, The Protection of Critical Infrastructure,
Committee Report, 162 CDS 07 E rev 1, 2007,
http://www.nato-pa.int/Default.asp?
SHORTCUT=1165, May 15, 2009

[33] Ollman G., Counting Vulnerabilities,
http://blogs.iss.net/archive/
CountingVulns.html, May 8, 2009

88

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

[34] OUSPG PROTOS-Genome Test Suite c10-archive,
http://www.ee.oulu.fi/research/
ouspg/protos/testing/c10/archive/
index.html, May 8, 2009

[35] Rinaldi, S. M., Peerenboom, J. P., and Kelly, T. K.,
Identifying, understanding, and analyzing critical in-
frastructure interdependencies, IEEE Control Systems
Magazine, Vol. 21, no. 6, pages 11-25, 2001.

[36] Robert, B., de Calan, R., and Morabito, L., Model-
ing Interdependencies Among Critical Infrastructures,
International Journal of Critical Infrastructures, Vol.4,
no. 4, pages 392-408, 2008.

[37] Roivainen, H-L., Discovery of hidden social networks
in software companies, M.Sc. (Tech) Thesis for the
Department of Electrical and Information Engineering
at University of Oulu, 2008.

[38] Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., De
Porcellinis, S., and Setola, R. Modelling Interdependet
Infrastructures using Interactins Dynamical Models,
International Journal of Critical Infrastructures, Vol.4,
no. 1/2, pages 63-79, 2008.

[39] Sarbanes-Oxley Act http://www.
sarbanes-oxley.com/section.php?
level=1\&pub_id=Sarbanes-Oxley, May 8,
2009

[40] Secunia Vulnerability Statistics http://www.
secunia.com, May 8, 2009

[41] Cyber Assessment Methods for SCADA Se-
curity, http://www.oe.energy.gov/
DocumentsandMedia/Cyber_Assessment_
Methods_for_SCADA_Security_Mays_
ISA_Paper.pdf, May 15, 2009

[42] Security Content Automation Protocol http://
nvd.nist.gov/scap.cfm, May 8, 2009

[43] Securityfocus vulnerability database http://www.
securityfocus.com/vulnerabilities,
May 8, 2009

[44] St. Neitzel, M., Welcome to 2007: the year of pro-
fessional organized malware ... (HISPASEC) http:
//blog.hispasec.com/virustotal/
recursos/welcome_2007.pdf, May 8, 2009

[45] Tolone, W. J., Wilson, D., Raja A., Xiang W., Hao
H., Phelps S., and Johnson E. W.,Critical Infrastruc-
ture Integration Modeling and Simulation, Lecture
Notes in Computer Science, vol. 3073, pages 214-225,
Springer Berlin Heidelberg, 2004.

[46] Turner, D., Entwisle S., Fossi M., Blackbird
J., McKinney D., Conneff T., Whitehouse O.,
Symantec Internet Security Threat Report vol. X,
http://www.symantec.com/business/
theme.jsp?themeid=threatreport,
September 2006, May 8, 2009

[47] Viide, J., Helin, A., Laakso, M., Pietikäinen, P., Sep-
pänen, M., Halunen, K., Puuperä, R., and Röning, J.,
Experiences with Model Inference Assisted Fuzzing,
Second USENIX Workshop on Offensive Technolo-
gies (WOOT’08’), 2008.

[48] World Wide Web Consortium, Resurce Descrption
Framework http://www.w3.org/RDF/, May 8,
2009

[49] Zio, E., From Complexity Science to Reliability Ef-
ficiency: A New Way of Looking at Complex Net-
work Systems and Critical Infrastructures, Interna-
tional Journal of Critical Infrastructures, Vol.3, no.
3/4, pages 488-508, 2007.

89

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

