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Abstract— Obfuscation techniques degrade the n-gram 

features of binary form of the malware. In this study, 

methodology to classify malware instances by using n-gram 

features of its disassembled code is presented.  The presented 

statistical method uses the n-gram features of the malware to 

classify its instance with respect to their families. n-gram is a 

fixed size sliding window of byte array, where n is the size of 

the window. The contribution of the presented method is 

capability of using only one vector to represent malware 

subfamily which is called subfamily centroid. Using only one 

vector for classification simply reduces the dimension of the n-

gram space.  Experimental results are performed over a fairly 

large data set, which is being collected through  Computer 

Emergency Response Team (CERT) activities in the National 

Research Institute of Electronics and Cryptology, to illustrate 

the effectiveness of the proposed malware classification 

methodology. 
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I. INTRODUCTION 

The basic definition of malware (malicious software) 

may be presented as follows: piece of software code that 

works for the attacker. Malware has great popularity 

amongst cyber criminals since it offers attractive income 

opportunities. This popularity makes the malware an 

important threat for the computing society. 

The presented classification approach uses the centroid of 

the subfamily which is constructed from its samples. 

Therefore unknown malware classification can be achieved 

by using low dimension centroid vector which requires less 

computational work. Experimental study is performed to 

validate the accuracy of the presented centroid-based 

approach.  Used data set is constituted by the national 

activities of CERT Coordination Center, which is the 

national consultation center for computer security incidents 

[1]. 

The representation of malware by using n-gram profiles 

has been presented in the open literature, see for example 

[2], [3] and [4]. In these studies some promising results 

towards malware detection are presented. However malware 

domain has been evolving due to survivability requirements.  

Malware has to evade anti-virus scanners to perform its 

functions. Obfuscation techniques have been developed in 

order to avoid detection by anti-virus scanner. And these 

techniques disturb n-gram features of binary form of the 

malware used by the previous work. Similar methodologies 

have been used in source authorship, information retrieval 

and natural language processing [5], [6]. 

The first known use of machine learning in malware 

detection is presented by the work of Tesauro et al. in [7]. 

This detection algorithm was successfully implemented in 

IBM’s antivirus scanner. They used 3-grams as a feature set 

and neural networks as a classification model. When the 3-

grams parameter is selected, the number of all n-gram 

features becomes 256
3
, which leads to some spacing 

complexities. Features are eliminated in three steps: first 3-

grams in seen viral boot sectors are sampled, then the 

features found in legitimate boot sectors are eliminated, and 

finally features are eliminated such that each viral boot 

sectors contained at least four features. Size of feature 

vectors in n-grams based detection models becomes very 

large so feature elimination is very important in these 

models. The presented work has been limited by the boot 

sector viruses’ detection because boot sectors are only 512 

bytes and performance of technique is degraded 

significantly for larger size files. 

As a historical track, IBM T.J. Watson lab extended boot 

virus sector study to win32 viruses in 2000 [8].  At this 

stage, 3 and 4 grams were selected and encrypted data 

portions within both clean files and viral parts were 

excluded due to the fact that encryption may lead to random 

byte sequences. At the first instance, n-grams existed in 

constant viral parts were selected as features and then, the 

ones existed in clean files more than a given threshold value 

were removed from the feature list. In this study, along the 

use of neural networks boosting was also performed. 

Results of this study shown that the developed method 

performance was not sufficient. Schultz et al. has used 

machine learning methods in [9]. Function calls, strings and 

byte sequence were used as the feature sets. Several 

machine learning methods such as RIPPER, Naive Bayes 

and Multi Naive Bayes were applied, the highest accuracy 

of 97.6%  with Multi Naive Bayes was achieved.  

Abou-Assaleh et al. [3] contributed to the ongoing 

research while using common n-gram profiles. k nearest 

neighbor algorithm with k=1 instead of the other learners 

was used. Feature set was constituted by using the n-grams 

and the occurrence frequency, where the occurrence 

frequency is denoted by L. Tests have been done with 
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different n (ranging from 1 to 10) and L (ranging from 20 to 

5000) values. Data set used in these experiments was kept 

fairly conservative of 25 malware and 40 benign files. With 

this set, test results shown 98% of success. Using the data in 

[3], the accuracy slightly dropped to the 94% level. 

Kolter et al. [2] used 4-grams as features and selected top 

500 n-grams through information gain measure. They used 

instance based learners, TFIDF, naive bayes, support vector 

machines, and decision trees and also boosted last three 

learners. Boosted decision tree outperformed all others and 

gave promising results such as ROC curve of 0.996. 

While the battle between malware authors and anti-virus 

producers are continuing, our motivation is to find the 

statistical method to classify the malware instance by using 

n-gram features (profiles) of disassembled malware. In our 

methodology, we use n-gram feature of the malware to 

classify the malware instance with respect to their family. n-

gram is a fixed size sliding window of byte array, where n is 

the size of the window.  For example the “81EDD871” 

sequence is segmented (represented) into 5-gram as 

“81EDD”, “1EDD8”, “EDD87” and “DD871”. 

This paper is organized as follows: Section 2 proposes 

the methodology. Section 3 elaborates and computes the 

accuracy of the proposed methodology. Finally, concluding 

remarks and future works are presented in Section 4. 

II. SYSTEM DESIGN 

As stated in the introduction, current malware samples 

cannot be analyzed easily based on their statistical features’ 

as in the previous decade because of the increasing use of 

the obfuscation techniques by the malware authors.  

The proposed algorithm consists of preprocessing, 

training and testing phase. Malware samples are collected 

through TR-CERT [1] activities in The National Research 

Institute of Electronics and Cryptology. We classified our 

dataset by using Microsoft Security Essential (MSE) 

antivirus tool [17]. In other words, naming of the malware 

instance is performed by the MSE tool. Malware naming is 

not a well standardized area where all vendors, players can 

name and classify malware according to their intentions, and 

common sense in naming cannot be achieved among the 

stakeholders [16]. After that preprocessing step, PEid as a 

useful tool to inspect PE files, is used to dissemble malware 

instances [18]. We extract a malware instance’s n-gram 

profile through opcode sequences obtained from PEid. We 

are using opcode sequences instead of byte sequences of the 

malware. 

In our study, machine codes to extract malwares’ n-gram 

profile instead of byte sequences are considered and the n-

gram feature space is considerably reduced. In this manner 

calculations are performed faster and efficiently. Each 

malware sample is used to determine its subfamily vector 

which is named as the centroid of the subfamily. 

Family of the malware is a descriptor of the malware 

used to classify malware samples according to their features  
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Figure 1. Architecture of the malware classification system 

 

especially in terms of the tasks performed and the purpose 

of the creation.  Subfamily is the specialized version of the 

family that describes malware samples definitely. For 

instance if a malware labeled as Win32-Ramnit.F by an 

anti-virus scanner, this means the malware belongs Win32-

Ramnit family and Win32-Ramnit.F subfamily. 
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Centroid of the subfamily comprises the most frequent   

n-gram of the subfamily instances. In other words, n-grams 

(words or terms), which occur with higher document 

frequency in the subfamily instances, are used to construct 

the centroid vector. So the subfamily is represented by its 

centroid vector. For instance, centroid of the subfamily is 

presented by   
⃗⃗  ⃗ as follows: 

 

  
⃗⃗  ⃗  
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where df is the document frequency. 

To classify an instance, similarity function is calculated 

by counting the number of matching n-gram (term) for each 

centroid of the subfamily.  
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where m denotes malware whose family is unknown and it 

will be determined via presented method.  ⃗⃗  is the n-gram 

feature vector extracted from unknown malware instance 

denoted by m. Subindice is the subfamily indexing for 

s=1,2…15. The function, denoted by       , returns 1 if 

malware n-gram profile ( ⃗⃗   consists i-th  n-gram of the 

centroid of taken subfamily(  
⃗⃗  ⃗  denoted by    

 otherwise 

return 0. Equation (2) gives similarity measure between the 

unknown instance and the subfamily centroid. Similarity 

measure is the sum of the common n-grams. In Equation 

(3), after all similarity measures are calculated, the unknown 

instance is classified as the closest centroid’s subfamily. 

Process flow is illustrated in Figure 1.  When an instance 

has two or more equal similarity value for two different 

subfamilies, an error occurs. However this error will be 

named as the small error because these two or more equal 

similarity values for subfamily may belong to the same 

family.  As we know, the subfamilies sustain their common 

family feature. Other types of error are named as big error. 

III. EXPERIMENTAL STUDY 

In order to perform our experiments, we collect 

significantly large malware database as stated in the system 

design section. To obtain more accurate results we count in 

the subfamilies that contain maximum number of samples in 

our dataset. In this manner, experiments are carried out 1056 

samples belonging to ten families, five of them have two 

subfamilies, and therefore there exists 15 subfamilies in our 

dataset. TABLE I indicates how many samples were taken 

from which subfamily in our dataset. This data set consists 

only a 2% of the original database. The amount of the 

sample is sufficient to demonstrate whether n-gram centroid 

of the subfamily may be used to classify malware instance 

or may not. 

TABLE I.  NUMBER OF THE INSTANCES FOR EACH SUBFAMILY 

Subfamily Name Instance Number Subfamily Name Instance Number 

Win32-Vobfus.Y 13 Win32-Sality.AT 64 

Win32-Alureon.H 19 Win32-Small.AHY 69 

Win32-Ramnit.F 19 Win32-Renos.NS 95 

Win32-Virut.BG 19 Win32-Sality.AM 100 

Win32-Alureon.CT 22 Win32-Renos.LT 137 

Win32-Agent.ACF 23 Win32-Vobfus.gen!D 183 

Win32-Viking.CR 30 Win32-Ramnit.B 200 

Win32-Vobfus.AH 42     

 

To evaluate our methodology, five-fold cross-validation 

is used: the selected malwares’ subfamilies are randomly 

partitioned into five disjoint sets of approximately equal 

size, named as “folds”. Training and testing phases are 

performed five times. At each iteration step, one fold is 

selected as a testing set, and other four folds are combined 

to form a training set. Therefore, each sample is used five 

times for training and once for testing.  And the estimated 

error is computed as the total error generated from the five 

iterations, divided by the total number of the initial tuples. 

There are two main parameters in the experimental setup: 

the first parameter is the size of the n-grams and the second 

parameter is the number of the list size which is constituted 

by ranking the n-grams according to their df values in the 

subfamilies. The size of the n-grams, denoted by n, allows 

us to decide how long in bytes the n-gram will be. In the 

experiments, tests are run with n=3, n=4, n=5 and n=6. The 

second parameter, denoted by L, is chosen to express a 

subfamily in a simple way. Tests are run with L=40, L=50 

and L=60. 
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TABLE II shows the obtained training error over the 

parameters n and L as well as TABLE III shows the 

resulting testing error. As can be seen from the TABLE II 

and TABLE III, to increase the size of the n-gram does not 

produce accurate results every time. Because if the 

parameter n increases, n-grams cannot capture the subfamily 

features, in contrary the selected n-grams can only represent 

a feature specific of the sample. However, the opposite case, 

namely if the n is chosen very small, n-grams can mostly 

become the common feature of the all subfamilies as well as 

all samples.  

We achieved the highest success rate when n=4 as 

confirmed by the results in [2] also. Elaborating the 

parameter choice effects, if the parameter L is increased, the 

error rate decreases. Since the more common n-gram makes 

it easy to classify instance appropriately. As maintained in 

the previous section, the n-gram profiles are captured from 

the disassembled malware, therefore the space of the n-gram 

decreases dramatically. For all that, L could not be taken 

more than 60, due to having very small sized n-gram space 

(i.e., for Win32-Agent.ACF n-gram feature space is 74)  

As a result of the experiment, the most appropriate 

parameter pair is obtained when n=4 and L=60. The 

obtained training and testing errors rate for n and L pairs 

from our experiment are listed in the following TABLE II 

and TABLE III, respectively. 

TABLE II.  TRAINING ERROR 

N-gram 

Length 

Top L N-gram in the Subfamily Malwares 

L=40 L=50 L=60 

Total Error Without 

Subfamily Error 
Total Error Without 

subfamily Error 
Total Error Without 

subfamily Error 

n=3 0.231 0.101 0.150 0.058 0.090 0.024 

n=4 0.143 0.056 0.106 0.021 0.053 0.014 

n=5 0.124 0.041 0.109 0.024 0.058 0.015 

n=6 0.123 0.038 0.115 0.024 0.108 0.019 

n=7 0.151 0.031 0.115 0.031 0.098 0.019 

n=8 0.125 0.041 0.124 0.037 0.111 0.028 

TABLE III.  TESTING ERROR 

N-gram 

Length 

Top L N-gram in the Subfamily Malwares 

L=40 L=50 L=60 

Total Error Without 

Subfamily Error 
Total Error Without 

subfamily Error 
Total Error Without 

subfamily Error 

n=3 0.262 0.109 0.184 0.066 0.131 0.038 

n=4 0.169 0.069 0.141 0.037 0.082 0.023 

n=5 0.150 0.056 0.128 0.038 0.082 0.026 

n=6 0.143 0.043 0.140 0.027 0.134 0.023 

n=7 0.170 0.039 0.140 0.036 0.125 0.025 

n=8 0.139 0.042 0.148 0.040 0.138 0.034 

 

IV. CONCLUSION 

In this paper, a methodology for classifying malware 

instances from disassembled code by using n-gram 

feature is presented and it is implemented on a fairly large 

set. Empirical results demonstrate that the proposed 

methodology may show acceptable performance in 

practice. Experimental results show that the classification  

accuracy for training and testing when n and L are chosen 

4 and 60, is achieved at their highest success percentage  

 

 

 

 

of %99 and %98, respectively, which seem to be very 

promising versus the other methodologies. 

To improve the accuracy of detection, experiments by 

using large dataset while using variable length n-gram 

feature vector of the malware is underway. 
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