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Abstract—The ability to characterize and predict Internet
users behaviors in environments where only layer 2 statistics
are available can be very important for a network operator.
At network entry points, like Wi-Fi or WiMax access points
or UMTS or LTE base stations, the operator can perform a
low level monitoring of the communications independently of
the data encryption level and even without being associated
with the network itself. Based on this low level network data,
it is possible to infer the user behavior, optimize the access
service and offer new security threat detection services. The
user behavior inference consists in identifying the underlying web
application that is responsible by the layer 2 traffic at different
time instants and characterize the usage dynamics of the different
web applications. Many identification methodologies have been
proposed over the last years to classify/identify IP applications,
including port-based analysis, deep packet inspection, behavior-
based approaches and learning theory, each one having its own
advantages and drawbacks. However, all these methodologies
fail when only low level statistics are available or under data
encryption restrictions. We propose the use of multiscaling traffic
characteristics to differentiate between different web applications
and the use of a Markovian model to characterize the dynamics of
the user actions over time. By applying this methodology to Wi-Fi
layer 2 traffic generated by users accessing different common web
services/contents through HTTP (namely social networking, web
news and web-mail applications), it was possible to achieve a good
matching and prediction of the users behaviors. The results show
that the proposed multiscaling traffic Markovian model has the
potential to identify, model and predict Internet users behaviors
based only on layer 2 traffic statistics.

Keywords - User profiling; wavelets; multiscaling behavior; mul-
tivariate Gaussian distributions; Markovian modeling; behavior
prediction.

I. INTRODUCTION

Identifying different behaviors of Internet users by analyzing
the application types they are running is the key issue of many
crucial network monitoring and management tasks. Basic
network management functions such as quality of service
improvement, network equipment optimization and security
threats detection are all based on the ability to accurately
classify network traffic into the right corresponding application
and describe users behavior over time. Most existing ap-
proaches are based on static information about the applications
(such as the name and type of the application, its owner,
the execution time, or the host on which the application was
executed). However, such approaches are not applicable to
scenarios involving low level monitoring, traffic encryption or

under stringent confidentiality requirements, since they rely on
analyzing specific fields of the packet header.

So, this paper proposes the use of multiscaling traffic char-
acteristics to differentiate between different web applications
and the use of a Markovian model [1], [2] to characterize the
various dynamics of the user actions over time. This method-
ology will be able to identify and predict the different user
behaviors, even if this information is somehow hidden when
performing a classical statistical analysis of the generated
traffic.

Besides, the proposed methodology can be applied to sce-
narios where existing identification approaches are not appli-
cable or have limited efficiency, like low level monitoring and
service optimization at Wi-Fi [3] or WiMax [4] access points
and Universal Mobile Telecommunications System (UMTS)
[5], [6] or Long Term Evolution (LTE) [7] base stations.

One of the first and most common forms of traffic classi-
fication is port-based classification, which relies on the port
numbers employed by the application at the transport layer.
However, since many modern applications use dynamic ports
negotiation, port-based classification became ineffective [8],
[9], with accuracy ranges between 30% and 70%. Chrono-
logically, the next proposed classification technique was deep
packet inspection (DPI) or payload-based classification, which
requires the inspection of the packets’ payload: this classifier
extracts the application payload from the layer 4 data unit
and searches for a signature that can identify the flow type.
Although DPI is widely used by today’s traffic classifier
vendors, being very accurate [10], [9] for some scenarios, it
is unable to deal with low level or encrypted data. Very effi-
cient classification techniques that perform traffic identification
without accessing user data were proposed [11], but they also
rely on layer 3 and layer 4 traffic statistics that may not be
available for the operator at specific network entry points,
can be protected by encryption or restricted by confidentiality
requirements.

In this work, we propose a methodology for the differ-
entiation of Internet applications based on the multiscaling
statistical analysis of low level traffic, together with a modeling
approach of the user preferences over time. It is known that
several frequency components are introduced by mechanisms
operating at different scales of analysis, including user inter-
actions, flow sessions and individual packets dynamics. This
creates characteristic multiscaling signatures that can be used
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to perform an accurate differentiation of the different web
applications. A wavelet scalogram [12], which describes the
signal energy simultaneously on a frequency and time domain,
is constructed based on the wavelet multiscale decomposition
of a traffic counting process and can be used to create
multiscaling statistical signatures for each web application.
The wavelet scalogram communicates the time frequency
localization property of the discrete wavelet transform, being
possible to capture the correlation that exists between the time
variability of the process and the different scales.

The results obtained by applying the proposed methodology
to layer 2 traffic promiscuously captured in the vicinity of
a Wi-Fi network access point (without authenticating) show
that it is able to achieve a good identification accuracy. It was
possible to identify, model and predict the behavior of users
accessing three common web applications: social networking
(without chatting and game interactions), news web journals
and web-mail.

For validation purposes, the ground-truth of the data was
created by asking a pre-determined set of users to replicate
their traditional Internet behavior using a controlled environ-
ment (user terminals and network).

The remaining part of this paper is organized as follows:
Section II presents some of the most relevant related work on
statistical classification of web applications and user behavior
modeling; Section III presents some important background
on multiscaling analysis; Section IV presents the details of
the proposed identification methodology and behavior model;
Section V presents the results of a proof-of-concept of the
methodology and, finally, Section VI presents some brief
conclusions about the presented model and identification
methodologies.

II. RELATED WORK

The statistical approach to classification is based on collecting
statistical data of the network flow, such as the mean packet
size, flow duration, number of bytes per time interval, number
of packets per time interval, etc. The statistical paradigm
relies on the assumption that each application has a unique
distribution of properties that represents it and can be used to
univocally identify it. This approach has been the subject of
intensive research in recent years.

First of all, Paxson et al. [13] established a relationship
between flow application type and flow properties (such as the
number of bytes and the flow duration). In [14], the authors
proposed a methodology for separating chat traffic from other
Internet traffic using statistical properties such as packet sizes,
number of bytes, duration and packets inter arrival times.
In [15], Mcgregor et al. explored the possibility of forming
clusters of flows based on flow properties such as packet
size statistics (e.g., minimum and maximum), byte count,
idle times, etc., using an expectation maximization (EM)
algorithm to find the clusters’ distribution density functions. A
study focusing on identifying flow application categories rather
than specific individual applications was presented in [16].
Although it was limited by a small dataset, the authors have

been able to show that the k-nearest neighbor algorithm and
other techniques can achieve good results, correctly identifying
around 95% of the flows. In reference [17], the authors were
able to obtain an average success rate of 87% in the separa-
tion of individual applications using an EM based clustering
algorithm. In [18], Moore et al. studied the basic Navie Bayes
algorithm, enhanced by certain refinements, showing that it is
able to achieve an accuracy level of 95%.

In [19], realtime classification was addressed by studying
the feasibility of application identification at the beginning
of a TCP connection: based on an analysis of packet traces
collected on eight different networks, the authors found that
it is possible to distinguish the behavior of an application
from the observation of the size and the direction of the first
few packets of the TCP connection. Three techniques were
applied to cluster TCP connections: K-Means, Gaussian Mix-
ture Model and spectral clustering. Crotti et al. [20] presented
a realtime classification mechanism based on three simple
properties of the captured IP packets: their size, inter-arrival
time and arrival order. Based on new structures called protocol
fingerprints, which express these quantities in a compact way,
and on a simple classification algorithm based on normalized
thresholds, the proposed technique showed promising results
on classifying of a reduced set of protocols. In [21], a traffic
classification approach based on Support Vector Machines
(SVM) was proposed: using a simple optimization algorithm,
a statistical traffic classifier was able to perform correctly
with only a few hundred samples for training. Note that these
algorithms were tested only against basic application proto-
cols. Encrypted applications communications add additional
constraints to the detection problem by making the traffic
packet headers and data inaccessible to network based moni-
toring systems. Therefore, the detection methods that rely on
packets headers/data information are completely inappropriate
in encrypted communications scenarios [8], [22].

Bar-Yanai et al. [23] introduces a hybrid statistical algorithm
that integrates the k-nearest neighbors and k-means machine
learning algorithms. The proposed algorithm is fast, accurate
and is insensitive to encrypted traffic, overcoming several
weaknesses of the DPI approach (like asymmetric routing
and packet ordering). The strength of the algorithm was
demonstrated on encrypted BitTorrent, which is known to use
packet encryption, port alternation and packet padding (on
initial flow packets) to avoid detection.

The BLINC [11] approach is based on observing and
identifying patterns of host behavior at the transport layer,
analyzing the social, functional and application level patterns.
The fact that this approach relies on layer 3 and layer 4 traffic
statistics makes it impossible to be used by an operator in
certain entry points of the network where only low level data
is available.

Rocha et al. [24] presented a methodology for the detection
of security attacks and the classification of Internet flows that
relies on multidimensional Gaussian distributions [25]. In this
way, it is possible to account for the correlation between
the values that are obtained for the different dimensions,
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allowing to infer even more accurate probability distributions.
The proposed approach starts by performing a multiscale
analysis to the sampled IP data-streams, obtaining multiscale
estimators for all streams; the estimators are subsequently
processed by mapping a dimension to each timescale, so
that the multivariate distributions (for each protocol) can be
inferred; an algorithm will then find the dimensions where the
separation between the several distributions is most noticeable
and each of the traffic streams is then classified according
to the probability of belonging to each one of the inferred
distributions.

III. MULTISCALING ANALYSIS

The inability of conventional Fourier analysis to preserve
the time dependence and describe the evolutionary spectral
characteristics of non-stationary processes requires tools that
allow time and frequency localization. Wavelet transforms
can provide information concerning both time and frequency,
which allows local, transient or intermittent components to be
elucidated [12]. Such components are often obscured due to
the averaging inherent within spectral only methods, like Fast
Fourier Transform (FFT) [26], for example.

Wavelets are mathematical functions that are used to divide
a given signal into its different frequency components. They
consist of a short duration wave that has limited energy.
Wavelets enable the analysis of each one of the signal compo-
nents in an appropriate scale. Starting with a mother wavelet
ψ(t), a family ψτ,s(t) of ”wavelet daughters” can be obtained
by simply scaling and translating ψ(t):

ψτ,s(t) =
1√
|s|
ψ(
t− τ
s

) (1)

where s is a scaling or dilation factor that controls the width
of the wavelet (the factor 1√

|s|
being introduced to guarantee

preservation of the energy, ‖ψτ,s‖ = |ψ|) and τ is a translation
parameter controlling the location of the wavelet. Scaling a
wavelet simply means stretching it (if |s| > 1) or compressing
it (if |s| < 1), while translating it simply means shifting its
position in time.

Given a signal x(t) ∈ L2(<) (the set of square integrable
functions), its Continuous Wavelet Transform (CWT) with
respect to the wavelet ψ is a function of time (τ ) and scale
(s), Wx;ψ(τ, s), obtained by projecting x(t) onto the wavelet
family {ψτ,s}:

Wx;ψ(τ, s) =

∫ −∞
+∞

x(t)
1√
|s|
ψ(
t− τ
s

)dt (2)

By analogy with the terminology used in the Fourier case,
the energy components of the signal are given by the square
of the CWT components of the signal and the (local) Wavelet
Power Spectrum (sometimes called Scalogram or Wavelet
Periodogram) is defined as the normalized energy over time
and scales:

Ex(τ, s) = 100
|Wx;ψ(τ, s)|2∑

τ ′
∑
s′ |Wx;ψ(τ ′, s′)|2

(3)

Scalograms reveal much information about the nature of
non-stationary processes that was previously hidden, so they
are applied to a lot of different scientific areas: diagnosis
of special events in structural behavior during earthquake
excitation, ground motion analysis, transient building response
to wind storms, analysis of bridge response due to vortex
shedding, among others [27].

IV. MULTISCALING BEHAVIOR MODELING

A. Multiscale traffic data

Let us assume that process x(t) represents a counting statis-
tic of a layer 2 traffic trace to and from a specif user terminal
(e.g., number of frames on the upload direction, number of
bytes in the download direction, etc.). The user is identified by
a layer 2 address depending on the underlying communications
technology. It is possible to apply a multiscaling analysis to
process x(t) by calculating the scalogram using equation (3).
We characterize the multiscale user behavior by the estimator
of the standard deviation of that user’s traffic energy within
a time window for a set of timescales. Therefore, a traffic
process energy standard deviation at time interval k and time
scale s using a sliding time window of width W can be defined
as:

D̂x(k, s) =

√√√√ 1

W − 1

∑
τ∈[k−W,k]

(
Ex(τ, s)− Ex(k, s)

)2

(4)
with k = {W,W + 1,W + 2, . . .} and

Ex(k, s) =
1

W

∑
τ ′∈[k−W,k]

Ex(τ ′, s) (5)

Choosing J timescales ({s1, s2, . . . , sJ}) of interest, it is
possible to define a vector Bx,k that describes the inferred
localized multiscaling characteristics (at time interval k) of
the traffic process x:

Bx,k = {D̂x(k, sj), j = 1, . . . , J} (6)

B. Markov Modulated multivariate Gaussian Processes Model

The proposed discrete time Markov Modulated multivariate
Gaussian Process (dMMGP) model characterizes position and
mobility of a subject based on the following assumptions: (i)
the multiscaling behavioral metrics for the use of a specific
web application can be described by a multivariate Gaussian
distribution, (ii) the time scales of importance can be pre-
determined, (iii) a ground truth for the web applications usage
multiscaling characteristics can be pre-established and (iv)
the transition between applications can be described by an
underlying (homogeneous) Markov chain where each state
maps the multiscaling behavior characteristics of a specific
web application usage.

The dMMGP can then be described as a J-dimensional
random process (B) with a multivariate Gaussian distribution
that characterizes the behavior of a user in an universe of A
possible applications in a J-dimensional environment (for J
time scales of importance), whose parameters are a function
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of the state (S) of the modulator Markov chain (B,S) with
A states. The dMMGP model states will map the applications
multiscale characteristics and the dMMGP model transitions
will define the user behavior/dynamics on the usage of the
different applications. The former will be inferred based on
pre-established ground truth (set of known flows) for the web
applications multiscaling characteristics and the later will be
inferred based on the dynamics of the mapping of a set of flows
of specific users to the application multiscale characteristics
(i.e. model states).

More precisely, the (homogeneous) Markov chain

(B,S) = {(Bk, Sk), k = 0, 1, . . .}

with state space IRJ × U , with U = {1, 2, . . . , A + 1}, is a
dMMGP if and only if for k = 0, 1, . . .,

P (Bk+1 = b, Sk+1 = n|Sk = m) = pmnΓn(b) (7)

where b ∈ IRJ is a generic multiscale component in a J-
dimensional environment, pmn represents the probability of a
transition from state m to state n of the underlying Markov
chain in time interval [k, k + 1], and

Γa(b) = (2π)−
J
2 Σ
− 1

2
a e−

1
2 (b−ma)T Σ−1

a (b−ma) (8)

is the multivariate Gaussian distribution of the multiscaling
characteristics of application a flows, it is centered in ma and
has covariance matrix Σa.

Whenever (7) holds, we say that (B,S) is a dMMGP with
a set of modulating states with size A and parameter matrices
P, M and S. Matrix P is the transition probability matrix of
the modulating Markov chain S,

P =


p11 p12 . . . p1A

p21 p22 . . . p2A

. . . . . . . . . . . .
pA1 pA2 . . . pAA

 (9)

while matrix M defines the mean values of each multiscaling
Gaussian distribution:

M =
[
m1 m2 . . . mA

]
(10)

where ma is a J ×1 vector. Matrix S contains the covariance
(sub-)matrices of each multiscaling Gaussian distribution:

S =
[
Σ1 Σ2 . . . ΣA

]
(11)

where Σa is a J × J matrix. Moreover, we denote by Π =
[π1, π2, . . . , πA] the stationary distribution of the underlying
Markov chain.

Matrix P will be unique for each user, and will characterize
his/her behavior on the usage of the applications characterized
by matrices M and S. The overall multiscaling behavior of a
user can be statistically described by a stationary probability
density defined by a weighted sum of A multivariate Gaussian
distributions:

f(b) =

A∑
a=1

πaΓa(b),b ∈ IRJ (12)

where b is a multiscale component that belongs to the J-
dimensional domain of chosen timescales.

C. Model Inference Procedure

Assuming that we have a ground-truth for a set of A web
applications, analyzed over F flows, over K time windows in
J timescales of interest, we can define the multiscale profile
of an application a(a = 1, . . . , A) as Ga,f,k, inferred using
equation (6) considering that process x(t) is the f -th flow of
application a, with a = 1, . . . , A, f = 1, . . . , F and k =
1, . . . ,K, i.e.:

Ga,f,k = Bx,k, x↔ flow fof application a (13)

The M and S matrices of the dMMPGP model can then be
inferred as

ma =
1

KF

F∑
f=1

K∑
k=1

Ga,f,k (14)

Σa =
1

KF − 1

F∑
f=1

K∑
k=1

(
(Ga,f,k −ma) (Ga,f,k −ma)

T
)

(15)
The final step of the inference procedure is to infer matrix

P, i.e. the transition probabilities between the states defined
in the first step. This task is achieved by probabilistically
mapping each multiscaling behavior of each unknown flow
trace x(t) Bx,k, k = 1, . . . ,K to one state/application and
then averaging the probabilistic transitions between states,
according to a probability vector:

qk = {Γ1(Bx,k), . . . ,ΓA(Bx,k)}, k = 0, 1, . . . ,K (16)

D. Behavior Prediction

Defining ck = {ck,a : a = 0, 1, . . . , A}, k = 0, 1, . . . ,K,
where ck is the probability vector defining that within time-
window [k −W,k] the user is using application a, and based
on equation (12) we can define the multivariate distribution
of the predicted multiscaling behavior of the user in a future
time-window (z observations in the future) as:

A∑
a=1

ck+zΓa (17)

with
ck+z = ckP

z (18)

where ck+z represents the probabilistic vector that quantifies
the probability of a web application to be in use k time
windows in the future.

V. PROOF OF CONCEPT

A. Data-set

The test data-set was obtained by capturing, in promiscuous
mode, the layer 2 traffic having as source or destination a
specific Wi-Fi network access point. The traffic capture was
performed without authenticating to the network and consisted
only of 802.11 frames. In a controlled environment, where
all terminals were using a bare installation of Linux with a
daemon that recorded all browse requests, a set of invited users
were asked to access and use their usual web applications,
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maintaining their typical behavior. This approach allowed us
to create the ground-truth of a mapping between layer 2
data traces and their originating users and web applications.
Within the context of this paper and this proof of concept,
we only used the data traces that were created by users
accessing three general web applications: social networking,
namely Facebook (without chatting and game interactions),
news web journals and web-mail access. The total number
of data sets was divided in two: the first half was used to
infer the underlying dMMGP model of the behavior of each
application and user, while the second half of the data sets
was used to validate the inferred models by comparing the
predicted multiscale behavior (and associated web application
usage sequence) of each user. The raw statistical process used
was the amount of bytes transmitted from the Wi-Fi access
point to each user, sampled every 0.1 seconds. Sampling the
raw statistics in 0.1 seconds allows our method to measure
and incorporate some of the most characteristic multiscale
dynamics of an application: (i) the lower timescales that are
strictly related with the way that specific application handles
the multiple data sessions, (ii) the medium timescales that
are related with the application algorithmic dynamics and (iii)
the higher timescales that reflect mainly the user interactions
dynamics [28]. For the purpose of the model inference, we use
time windows with a width of 120 seconds (W = 1200) and
considered time windows in 20 seconds interval. The choice
of these values is a tradeoff between the amount of (past) data
necessary to fully characterize the traffic dynamics and the
amount of data that can be process and analyzed in pseudo-real
time. The heavier computational task that it is the construction
and update of the behavior models which are made off-line
and is not an issue. However, to perform the application and
user identification the measured data must be matched with
previously inferred models in pseudo real-time. The interval
between windows of classification was chosen in order to
minimize the delay between the moment of an user application
change and its effective detection by our methodology. With
an appropriate choice of parameters, namely window size and
interval of processing, this methodology is fully scalable since
the computation power required is proportional to the amount
of traffic (number of users) under analysis.

Figures 1 and 2 depicted the 80% and 90% quantile frontiers
of the inferred multivariate Gaussian distributions of the mul-
tidimensional characteristics of each application (using just 3
timescales) for all users. These distributions reveal that the
multiscale characteristics of the three web applications are
distinct and have a small overlap in the universe of the three
dimensions/scales considered.

After inferring the underlying dMMGP model, we use
the test data traces to test the precision of the model in
identifying the current web application of an user every 20
seconds. In this test, we were able to obtain a precision of
72.4% of correctly classified windows and the identification
results presented in Table V-A. The results show a very good
agreement between the identified web application and the real
application, considering the reduced amount of information (in
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Figure 1. 80% quantile frontiers of the inferred multivariate Gaussian
distributions of the multidimensional characteristics of each application.
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Figure 2. 90% quantile frontiers of the inferred multivariate Gaussian
distributions of the multidimensional characteristics of each application.

terms of raw data and time span of the observation) used for
the identification.

Using the test data traces to test the precision of the
model in identifying the web applications that are in use 60
seconds in the future we obtained a precision of 55.3%
of correctly classified windows. The results show that the
identification/predicting results are still significantly above the
pure random guess.

The results show that our methodology was able to obtain
very good classification and prediction results considering the
reduced amount of information (only network layer 2 sampled
statistics) and that the web applications under consideration
may, in some particular cases, be very similar. Most of the

Web-Mail Facebook Web-news
Web-mail 69.95% 7.84% 22.20%
Facebook 4.12% 83.13% 12.74%
Web-news 7.08% 24.35% 68.55%

Table I
IDENTIFICATION OF THE CURRENT WEB APPLICATION RESULTS.
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errors can be explained by the fact that some Web-news
pages are very similar to social networking applications pages
and even incorporate social network features within its own
Web-pages. Also, when the Web-news web pages have less
content the user dynamics may get similar to Web-mail or
Facebook interactions (i.e., small data chunks exchanged at
small intervals).

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach that uses multiscaling traffic
characteristics to differentiate between different web appli-
cations and a Markovian model that is able to characterize
the dynamics of user actions over time. By applying this
methodology to Wi-Fi layer 2 traffic generated by users
accessing different common web services/contents through
HTTP (namely, social networking, web news and web-mail
applications), it was possible to achieve a good matching and
prediction of the users behaviors. Our methodology may be
applied to preallocate resources in network access points based
on past user behavior and pseudo real-time predictions of short
term requirements.

As future work, we plan to test our methodology incorporat-
ing more applications with completely different behavior (such
as video streaming, P2P file transferring, online games, etc.).
This will required the improvement of the inner algorithms
of the methodology to accommodate multiple and dynamic
timescales ranges. Moreover, our short term plans include the
developing of a prototype and test in a 3G/4G network base
station for optimal dynamic allocation of resources.
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