
Security Vulnerabilities in Hotpatching Mobile Applications

Sarah Ford, Aspen Olmsted

Department of Computer Science

College of Charleston

Charleston, SC

fordsr@g.cofc.edu, olmsteda@cofc.edu

Abstract— The need for developers to be able to update mobile

apps immediately on discovery of a critical bug is something the

Apple iOS software patching system does not allow through

their traditional app patching lifecycle. Two tools have been

developed to solve this problem, one commercial and one open-

source. Both employ JavaScript and dynamic code downloads

and provide a method for users to receive immediate updates,

but both have the potential to be abused and open the user to

multiple security vulnerabilities. This paper will discuss how the

tools JSPatch and Rollout.io, open-source and commercial

respectively, enable quick updates but also expose users to

multiple security vulnerabilities and argue for why Apple

should not allow them; it proposes a better solution using the

same technology that preserves security.

Keywords- Javascript; iOS; patching; mobile computing; open-

source tools; Apple; security

I. INTRODUCTION

There is a strong business need for developers to be able

to quickly and safely patch their iOS Apps. In the past, the

only option for developers was to submit their updated app to

the Apple store, who reviewed the changes and then allowed

the app to be included in the ‘Updates’ section of a user’s

phone for the user to download.

Though most apps still employ this method to update their

source code, some developers, wanting to patch apps

immediately, have begun to employ commercial and open

source tools, which allow developers to include a small

amount of code in the source code of their app upon its initial

submission to Apple’s App Store, which makes a call to a

remote server that returns executable JavaScript code. The

tool then converts the JavaScript to Objective-C or Swift and

adds it to the original source at runtime.

These tools provide a much-needed solution to developers

who find critical bugs or security vulnerabilities in their apps

after they have been deployed on the app store, but they also

create security vulnerabilities and allow malicious developers

to evade Apple’s strict app review process, which has

previously kept the iOS app environment relatively safe for

users and their information.

This paper examines how JavaScript hot patching works

and documents the vulnerabilities associated with both the

commercial and the open-source tool. We demonstrate the

dangers and conclude that Apple has an urgent need to change

its security policy but also a great opportunity to adopt this

technology into its app review process with its full security

measures.

The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. In Section III, we document three example use

cases as a motivating example. Section IV explains how the

hotpatching works technically. Section V explores the

commercial tool available for hotpatching. Section VI takes a

look at the open source tool available for hotpatching. In

Section VII, we explain our test implementation. Section VIII

looks at the policy of the Apple, the owner of the phone

operating system. Section IX looks at the core problem that

led to the situation we find ourselves in. In Section X, we

propose a solution. We conclude and discuss future work in

Section XI.

II. RELATED WORK

The need to enable users to have access to an app update

quickly is not just a need in iOS. More research, in fact, has

been done in the other chief mobile operating system,

Android. Previous work has formulated various solutions to

the need to patch apps quickly and prevent crashes.

Bissyandé et. al. [1] formulated a solution to the need for

app users to quickly have access to app updates through a

peer-to-peer, network-based update propagation system

using a middleware. They were able to demonstrate its

effectiveness at a large conference.

In a different approach to the update problem, Azim,

Meamtiu, and Marvel [2] propose a solution to allow

smartphone apps to “self-heal” by detecting when an app is

crashing and altering the byte code to prevent it from

interacting with the crashing part of the app and allow the

user to continue using other parts of the app.

Both solutions provide options to the need to update

quickly to preserve application functionality, but neither

allows for the developer to immediately patch their own code

as soon as the user opens the broken app.

III. MOTIVATING EXAMPLE

For our motivating example, we propose three variations

of the following scenario: a student developer develops a

simple game, which is accepted by Apple’s App Store.

In the first scenario, our developer is well meaning: she

simply wants to update her app if there are bugs quickly. She

includes the open-source hot patching tool: JSPatch. JSPatch

makes a call to a remote server every time the app runs and

downloads executable JavaScript code. Though her

intentions are good, she exposes her users to the danger of the

well-known Man-in-the-Middle attack (MitM) [3]. If her user

is using her app on an unencrypted or dangerous network, an

attacker could intercept and modify the JavaScript and

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

maliciously attack the game user’s phone or our developer’s

app functionality.

In our second scenario, our developer is also well-

intentioned, and also in need of income, because she is, after

all, a university student; therefore, she includes an advertising

software developer kit (SDK) in her app in order to make

some money from her app. The advertising SDK, however, is

from a malicious developer and includes JSPatch. When a

user runs the app, the advertising SDK may employ some

private iOS APIs, which make us of private APIs to steal

personal information from the user’s device [3] .

In our third scenario, our developer is malicious. She

wants to steal her user’s information to sell to interested third

parties. She includes JSPatch in her app with no malicious

code downloading at first, but once her app is already in the

app store, she modifies the JavaScript to include an iOS

private API, which accesses the user’s personal information

and stores it on her remote server to sell to third parties.

IV. HOW JAVASCRIPT HOTPATCHING WORKS

JavaScript injection at runtime is possible in the iOS

operating system because of the JavaScriptCore framework

and a technique called method swizzling [4].

The JavaScriptCore Framework “allows you to evaluated

JavaScript programs from within an Objective-C or C-based

program. It also lets you insert custom objects into the

JavaScript environment” [5].

The code to be excuted by the JavaScriptCore framweork

gets into the app through a call to a remote server, which

downloads the Javascript and then executes it with a

technique known as method swizzling. Method swizzling “is

the process of changing the implementation of an existing

selector. It’s a technique made possible by the fact that

method invocations in Objective-C can be changed at

runtime, by changing how selectors are mapped to underlying

functions in a class’s dispatch table” [6].

Both the use of the JavaScriptCore and method swizzling

are compliant with Apple’s development guidelines because

the JavaScriptCore is a public API and method swizzling

does not alter the binary of the app [7]. See Figure 1 for a

visual representation of the process.

V. THE COMMERCIAL TOOL: ROLLOUT.IO

Rollout.io is an Israeli startup company, which offers a

tool to implement all phases of hot patching [8]. They provide

not only the code to be put in the source code of the app but

also an interface and server from, which to push these code

updates to your app. Because they have direct control over

the server pushing the code, they also have fewer security

vulnerabilities than the open-source tool (described below).

The most major vulnerability in Rollout.io is the ability to

load an “arbitrary public framework” and use the associated

APIs with malicious intent [9]. For example, to access

sensitive user data and export it without the user’s

knowledge. Though many apps access sensitive user data

(photos, contacts, etc.) with a clear purpose, Apple’s review

ensures that these apps do not export private user data or

access user data without a legitimate reason [7].

After security researchers at Fire Eye [9] identified that

Rollout.io could be used maliciously through the use of

private APIs, Rollout.io responded that they would be

preventing users from accessing private APIs when

submitting patches through their system article. Developers

do not need to use private APIs to gain access to sensitive

user information and abuse it, however, so this is not a perfect

solution.

VI. THE OPEN-SOURCE TOOL: JSPATCH

JSPatch is an open source project created by a Chinese

developer in 2014 [10]. It is regularly updated and has more

than 30 contributors. It is similar in functionality to its

commercial equivalent (discussed above). However, it has

two additional security vulnerabilities, which Rollout.io does

not.

The first major problem occurs when the developer is

malicious. The developer can invoke a private Apple API in

the JSPatch code without Apple’s knowledge [3]. Apple does

not allow for private APIs to be invoked in any app that is on

the app store, but they only check for it in the app review

process [3].

Figure 1. How JSPatch works.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

A non-malicious developer could still be put at risk by

using JSPatch if they do not “protect the communication from

client to the server for JavaScript content” and thus open

themselves up to a man-in-the-middle attack (MITM) [3].

The attacker could then modify the JavaScript and attack the

host app and the user’s device in a variety of different ways.

VII. IMPLEMENTATION

To test the usability of these tools, JSPatch was chosen to

test the ease of implementation, since, because it is open-

source, it is more accessible to the normal developer, and

more widely used in the App Store. We found it relatively

easy to implement JSPatch using its documentation (though

it should be noted that the Chinese documentation is more

detailed, so it would probably be easier for a native Chinese

speaker).

The exploit we chose to replicate was adopted from

researchers at FireEye [3] who provided multiple compelling

examples of the dangers of JSPatch. The exploit chosen was

trivial one but emblematic of the problems, which can occur

in JSPatch. We were able to load an arbitrary public

framework which, once loaded, grants the script access to any

private APIs which the framework has access to. Thus,

without going through any review by Apple, privacy

violations or bad practices, which would be grounds for an

application to be rejected by official Apple reviwers, can be

carried out without their knowledge.

VIII. APPLE’S POLICY

Rollout.io and JSPatch claim their tool is being accepted

by Apple. JSPatch does not make an explicit legal claim, but

in a GitHub issue thread, one user complains their app was

rejected based on its inclusion of JSPatch, they include text

from their rejection notification: “app contains an SDK

designed to update the app outside of the App Store process.

It would be appropriate to remove this SDK before

resubmitting for review” [11]. In the same thread, user

bang590, creator of JSPatch, claims Apple has been accepting

apps, which include JSPatch, so there is no reason for it to be

rejected and makes some suggestions for things to change, so

the user will be accepted [11].

User bang590 is correct, according to FireEye’s analysis

as of January 2016, 1,200 apps in the app store contained

JSPatch [3]. Rollout.io claims to be used on over 370 apps

with a total device count of over 50 million [12].

Rollout.io, as a company, must have some sort of legal

precedent to sell their product. They claim that according to

Apple’s developer guidelines 3.3.2 and 3.3.3 [7], they are not

in violation of the rules because “ 1. The code is run by

Apple’s built-in WebKit framework and JavascriptCore. The

code does not provide, unlock or enable additional features or

functionality” [13]. The author also claims that no app has

ever been rejected for containing Rollout.io.

Rollout.io is correct that its product is not designed to add

new feature or functionality. However, that does not prevent

it or JSPatch from being used to do just that: to use it for the

addition of functionality without the user's knowledge, which

violates the user’s privacy or puts them at risk.

Since this is not a discussion of the legality but the

security of this policy, regardless of whether or not this

exploit is within Apple’s developer guidelines, Apple has

been allowing apps with both JSPatch and Rollout.io on its

app store for several years now.

Clearly, both Rollout.io and JSPatch pose major problems

to Apple’s supposedly stringent security policies. Apple’s

security is often praised as superior to Google’s Android

because of their strict review process and single, proprietary

app store. However, tools like JSPatch and Rollout.io directly

undermine the review process, which is supposedly keeping

apps secure.

IX. PROBLEM THAT LEADS TO CURRENT STATE

The problem, which these tools are trying to address,

though, is not creating a way to undermine the app review

process, but creating a way to avoid the time delay, which

Apple’s review process creates for developers who are

anxious to keep users if their app is crashing and users who

are irritated by apps they want to use but are crashing. Apple

[14] provides a way for developers to request an expedited

review for fixing a critical bug, but, of course, it is not

guaranteed that your request will be granted.

Comparably, the Google [15] play store, implemented a

similar app review process. However, the times dramatically

differ. In fact, Google rolled out the app review process in

2015 without notifying developers, and there was no

noticeable change in rollout time because review times

remained, on average, under an hour. They automate part of

the process before submitting it to app reviewers. Therefore,

they can do it much more quickly.

Apple [16] has significantly improved its review time

since the invention of JSPatch and Rollout.io, shrinking it

from an average of 8.8 days in 2015 to 1.95 days in May

2016. However, this is still significantly longer than

Google’s, their main competitor. Since Apple does not

publicize information about their review process, it is

unknown what is taking so long compared to Google.

X. TOWARDS A BETTER SOLUTION

Apple has an urgent need to change their review process

to make it comparable to Google’s, perhaps automating parts

of it to speed up a review, to eliminate the need for tools like

JSPatch and Rollout.io. Though they have decreased the

review time (see above) since the invention of these tools,

they have not decreased it to an acceptable level for

developers who want to patch immediately.

With this lag time and their allowance of JSPatch and

Rollout.io, they have undermined their entire security

process, and these tools should be banned from use but not

without a quicker patching solution.

The technology of Rollout.io and JSPatch represent a

creative and easy solution to this problem, which should not

be disregarded, however. To secure the process, Apple could

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

require submission of these patches to undergo review before

they are actually downloaded to the app. These patches are

not designed to be large scale changes to the entire app, but

small hotfixes to bugs. The code being added when the tool

is used correctly, should be relatively few lines and thus easy

for an Apple app reviewer to approve within minutes. To

protect against MITM attacks, developers who submit with

this technology could be required to add code to ensure that

the JavaScript being downloaded was protected and Apple

could reject apps, which did not protect the network

communication between the app and the server.

If developers began making their small patches through

this technology and not resubmitting their entire app for even

the smallest of bug patches, it would, in theory, free up the

time of the Apple app reviewers to review initial app

submissions and large updates more quickly. Therefore, this

solution solves the problem of secure hot-patching and the

problem of long submission wait times while maintaining the

clean iOS app environment; see Figure 2 for a visual

representation of the suggested process.

XI. CONCLUSION AND FURTHER RESEARCH

The need to be able to patch apps immediately is vital to

developers and has driven them to create tools that expose

loopholes in Apple’s otherwise strict development guidelines

and inconsistencies in its review process. Rollout.io and

JSPatch provide significant benefits to developers and users

when they are used safely and responsibly, but when they are

in the hands of a malicious developer or if JSPatch is used

without proper encryption, malicious code can enter the

otherwise clean iOS environment.

On March 7, 2017, Apple began sending emails to

developers using both Rollout.io and JSPatch to warn them

that apps containing these tools will no longer be accepted on

the app store. However, there has been no change in Apple’s

official development guidelines with regards to the language

used [17]. It seems like Apple is moving in the right direction

in terms of securing their ecosystem. However, there remains

no good solution for quickly patching iOS apps. It is also

worth noting that Apple has taken an alarmingly long time to

recognize the problem with these tools, despite extensive

reporting on it from security researchers. Apple’s review

system is slow and inefficient and also seems to lack efficacy

and consistency.

Despite these concerns, Apple has an opportunity to make

developers and users happy while maintaining security

through the solution proposed here. It would allow them to

review apps more quickly by relegating small changes to the

hotpatching fixes, which would require much less time to

review than the whole app code base that is resubmitted

through the current Apple app update process.

REFFERENCES

[1] T. F. Bissyandé, L. Réveillère, J.-R. Falleri and Y.-D.

Bromberg, "Typhoon: a middleware for epidemic

propagation of Software Updates," in Proceedings of the

Third International Workshop on Middleware for Pervasive

Mobile and Embedded Computing, Lisbon, 2011.

[2] M. T. Azim, I. Neamtiu and L. M. Marvel, "Towards self-

healing smartphone software via automated patching," in

Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering, New York, 2014.

[3] J. Xie, Z. Chen and J. Su, "Hot or Not? The Benefits and

Risks of IOS Remote Hot Patching," 2016 January 2016.

[Online]. Available: https://www.fireeye.com/blog/threat-

research/2016/01/hot_or_not_the_bene.html. [Accessed 11

December 2016].

[4] Rollout.io, "Rollout Under The Hood – 2016 Update," 22

March 2016. [Online]. Available:

https://blog.rollout.io/under-the-hood-2016-update/.

[Accessed 1 December 2016].

[5] Apple, "JavaScriptCore," [Online]. Available:

https://developer.apple.com/reference/javascriptcore.

[Accessed 11 December 2016].

[6] M. Thompson, "Method Swizzling," 17 February 2014.

[Online]. Available: http://nshipster.com/method-swizzling/.

[Accessed 13 December 2016].

[7] Appe, "iOS Developer Program Information," 3 4 2015.

[Online]. Available:

https://developer.apple.com/programs/ios/information/iOS_

Program_Information_4_3_15.pdf. [Accessed 11 December

2016].

Figure 2. A better solution.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

[8] Rollout.io, "About Rollout," [Online]. Available:

https://rollout.io/about/. [Accessed 17 December 2016].

[9] J. Xie and J. Su, "Rollout or Not: The Benefits and Risks of

IOS Remote Hot Patching," 4 April 2016. [Online].

Available: https://www.fireeye.com/blog/threat-

research/2016/04/rollout_or_not_the.html. [Accessed 30

November 2016].

[10] bang590, "JSPatch," 7 August 2016. [Online]. Available:

https://github.com/bang590/JSPatch. [Accessed 13

December 2016].

[11] xnth97, "Rejected by App Store," 15 September 2015.

[Online]. Available:

https://github.com/bang590/JSPatch/issues/111. [Accessed

2017 April 2017].

[12] Rollout.io, "Our Customers Fix Things Faster and Get More

5 Star Reviews," 2016. [Online]. Available:

https://rollout.io/success-stories/. [Accessed 17 April 2017].

[13] O. Prusak, "Update Native iOS Apps without the App Store.

How is this Legit?," 27 January 2016. [Online]. Available:

https://rollout.io/blog/updating-apps-without-app-store/.

[Accessed 17 April 2017].

[14] Apple, "App Review Support," [Online]. Available:

https://developer.apple.com/support/app-review/. [Accessed

17 April 2017].

[15] S. Perez, "App Submissions On Google Play Now Reviewed

By Staff, Will Include Age-Based Ratings," 17 March 2015.

[Online]. Available:

https://techcrunch.com/2015/03/17/app-submissions-on-

google-play-now-reviewed-by-staff-will-include-age-based-

ratings/. [Accessed 17 April 2017].

[16] O. Raymuldo, "Apple is approving apps for the iOS App

Store much faster now," 12 May 2016. [Online]. Available:

http://www.macworld.com/article/3070012/ios/apple-is-

approving-apps-for-the-ios-app-store-much-faster-

now.html. [Accessed 17 April 2017].

[17] E. Rusovsky, "Rollout's Statement on Apple Guidelines," 13

March 2017. [Online]. Available:

https://rollout.io/blog/rollout-statement-on-apple-

guidelines/. [Accessed 19 April 2017].

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

