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Abstract—Critical infrastructures (CIs) are characterized by
their high importance for the welfare of a society and failure of
such an infrastructure has a significant impact on our everyday
life. However, a problem in one critical infrastructure also affects
other infrastructures, e.g., if electricity is only partly available
this also affects hospitals. The effects of even a partial failure of
a provider on a critical infrastructures are hard to predict unless
strict assumptions are made. The damage depends, among other
things, on the availability of substitutes, but also on external
influences such as weather, temporary demand or load peaks,
etc., which is why we propose a stochastic model where the state
of an infrastructure is a random variable. Each infrastructure
changes its state depending on what the other CIs do, based on
a probabilistic change transition regime. This allows to model
complex interdependencies, whose underlying dynamics may be
stochastic or deterministic yet partly unknown. The model of the
entire CI thus consists of several Markov chains, which retains
simplicity for implementation in a software such as R, and flexibil-
ity to capture various forms of mutual influence between CIs. We
illustrate this by giving a small example. The main contribution
of this work is a model that partly unifies three different models
of risk propagation (Bayesian networks, percolation and system
dynamics) under a single simulation/percolation framework.

Index Terms—critical infrastructure; stochastic dependencies;
Markov chain; risk propagation

I. INTRODUCTION

Critical infrastructures (CIs) are typically supply networks
satisfying the basic needs of society, such as power, wa-
ter, food, health care, transportation, etc. Besides this high
dependency of the society on CIs, there are also mutual
dependencies among these CIs, such as hospitals depend on
electricity, water, food supply and working transportation lines.
A main characteristic of a CI is that a failure with a CI does
not only affect the CI itself, but has a huge impact on the
dependent CIs, as well as on society. This has manifested
in the last years as, for example, the disruption of electric
power in California in 2001 [1] affected several other critical
infrastructures, the major power outage in Italy [2], which
lasted for about 12 hours, resulted in a financial damage
of over 1 billion euros or the most recent hacking of the
Ukrainian power grid caused a power outage of several hours
[3]. In general, such dependencies between CIs can be either
continuous, as it is the case of electricity where a stable
supply is required, or instantaneous, for example, if the CI’s
support is just required in an emergency situation (e.g., police,
fire brigade, or similar). In this work, we consider structures
that mutually and continuously depend on input from several

providers, such as water or electricity (see [4][5], for a more
detailed discussion). The case of an instantaneous dependency
will be revisited briefly later on.

Reduced or even missing supply from a critical provider
may cause significant problems for an infrastructure. The
actual damage depends on the degree of failure of the provider,
but is also influenced by many other factors such as availability
of substitutes (see [6] for work related to water supply). Since
the consequences of a reduced support are not always exactly
predictable, we introduce a stochastic model that describes
how a critical infrastructure depends on other infrastructures
whose input is needed for smooth operation. This abstract
model can be applied to any type of infrastructure, as long as
the dependencies from other infrastructures are known and can
be classified qualitatively in terms of “how severe” a provider’s
outage is on a finite scale (say, from 1 to 5. See [7] for a discus-
sion of this requirement in light of compliance, auditing and
monitoring). The model thus speaks about different “degrees
of failure”, where the particular meaning of such a “degree”
is up to the specific characteristics of the CI (e.g., status 3
may mean different things or problems for a water provider
than for a hospital). In particular, not every failure yields to
a complete blackout of the infrastructure of interest. On the
other hand, the model is not too complex by considering only
dependencies between two infrastructures at a time and by
grouping infrastructures into different classes with different
characteristics.

Paper Outline

The remainder of this article is organized as follows: after
a recap of the current research situation in Section II, Section
III introduces our model for dependencies between critical
infrastructures. Section IV describes how such a model may
be used to simulate how the states of a critical infrastructures
change and Section V shows a small example. Finally, we
provide concluding remarks in Section VI.

II. RELATED WORK

Several models have been developed for dependencies
among critical infrastructures. In [8], a framework for ad-
dressing infrastructure interdependencies is presented that de-
scribes five different classes of critical infrastructure interde-
pendencies (including also dependencies of information and
communication technologies). Recent models consider random
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failure and stochastic dependencies. For example, a multi-
graph model is used to analyze random failures and their
effects on critical infrastructures in [9]. Other models look
explicitly at interdependencies of higher order to identify and
assess the effect of failures not only for direct “consumers”
but also for subsequent infrastructures in the dependency chain
[10][11]. Such cascading effects have been investigated in [12]
by means of an Input-output Inoperability Model (IIM) that
is based on financial data. Further, Hierarchical Holographic
Modeling (HHM) [13] has been used to describe the diverse
nature of CI networks and analyze failures therein. More
complex models are based on Bayesian networks [14] as, for
example, the Hierarchical Coordinated Bayes Model (HCBM)
[15] or other approaches (cf. [16] and references therein).
Our work is also related to various approaches by simulation
and co-simulation [17][18][19][20][21]. Typically, these are
applicable when the analyst is much more informed about
the infrastructure in question, since the simulation depicts the
internal dynamics (even up to the level of concrete network
packets to be exchanged). Our perspective is much more high-
level and assumes the absence of these details up to only
categorical valuations of interdependencies (cf. [4][22][23][24]
for more comprehensive overviews).

III. RANDOM DEPENDENCIES OF A CRITICAL
INFRASTRUCTURE

Dependencies between CIs are conveniently described by
a simple directed graph. The nodes represent the CIs and
a directed edge from CI 1 to CI 2 indicates that CI 2
depends on input from CI 1. Such a visualization helps to
get an overview of dependencies in a larger area (e.g., in a
geographical region or an entire country) but it is not suitable
to get a deeper understanding of how these dependencies
influence the functionality of the CIs. For this sake, the model
needs to describe both the critical infrastructures as well as
the dependencies between them in more detail. At the same
time, it is infeasible to describe every possible impact of
every dependency since such a model grows exponentially (in
the number of parameters). As a trade-off, we propose the
following solution on middle ground.

A CI is described as a node that can be in one of k different
states representing its functionality where state 1 represents
the situation where everything works smoothly, ranging up
to state k that means total failure, with intermediate states
corresponding to different levels of restricted service provi-
sioning. Each CI continuously depends on input from different
providers that may not always work correctly themselves. Even
a partial failure of one provider may change the CIs state. For
example, if there is not enough electricity most infrastructures
are affected in some way and may no longer work properly.
This situation is captured by describing each CI as a ‘big’
node with two types of internal nodes: k status nodes indicate
the state of the CI itself while ni · k input nodes represent all
possible states of the ni input nodes (provider).

...

...

Status nodes 

(color represents 

state)

Input nodes, getting 

states from parent 

nodes

Fig. 1. Model of the inner structure of a critical infrastructure

This idea can be visualized, as shown in Figure 1, by
representing each of the k states of the CI by a node with
a color representing the degree of damage (cf. the top set
of nodes in Figure 1). Each of the ni provider may again
be in one of the same k states and we represent all these
different configurations by ni · k nodes below the status
nodes. Note that this modeling allows a node to be in several
states simultaneously. The state communicated to the next
node is, according to the maximum principle, the most severe
among the given states (i.e., a system is only as secure as its
weakest element). In practice, a node may indeed encounter
multiple problems of different severity at the same time;
nonetheless, the degree of trouble in which a CI is, is surely
determined by the most severe of its current issues. Moreover,
the model straightforwardly generalizes to several states in
different respects, say, if a number d > 1 of distinct security
goals are in question. For instance, a node could maintain a
status regarding confidentiality, and another status regarding
availability. In this context, imagine an electricity provider
who has experienced a data leakage where customer data has
been stolen. This is a confidentiality breach, but the power
supply is still up and running, so there is no availability issue.
In that case, we can make the internal graph d-partite, with
d output layers, each corresponding to its own security goal.
The status reported to subsequent nodes is then the worst status
per security goal (and not the overall worst case status over all
nodes, since this would not make sense for obvious reasons;
just reconsidering the availability vs. confidentiality example
from before).

As consequences of (partial) failure of a provider are not
always predictable and depend on many factors that cannot
be controlled (in particular they depend on other suppliers
themselves), we apply a stochastic model to describe the
influence an CI has on another. More explicitly, this means
that the current state of one provider yields a specific state
of the critical infrastructure only with a certain probability. In
other words, any edges in Figure 1 transmits a problem with
a specific probability. We assume that every node in the lower
row (representing one state of one provider) has the potential to
change the state of the CI. Technically speaking, we describe
changes between the states of the CIs as a Markov chain,
that is, every state of a provider influences the state of the
infrastructure it provides input for. This includes the situation
where the state does not change as well as the situation that
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the condition gets better since one of the providers recovered.
A more detailed analysis of such situations is postponed to
future work.

A. The Model

Let us take a look on a critical infrastructure v that provides
input to another infrastructure u. The state of u changes
depending on the states of its provider v but these changes
are by no means predictable. Thus, we describe the state by
a random variable S that is multinomial distributed, which
we denote by MN(~p), i.e., the j-th component pj of ~p gives
the probability that S takes on the value j. These likelihoods
depend on the current state i of the input node, i.e., if u
works properly it is not likely that the dependent node v
faces serious problems. Thus, we describe these transitions
by a stochastic matrix. However, the transition probability is
also influenced by the type of connection between the two
nodes. For that purpose, we classify all edges and define a
transition probability matrix for each of the defined classes
that represents its characteristics. Thus, if a node v is in state
i and the connection to u is of class c, the state of u follows
a multinomial distribution NM(~pi,c) with a probability vector
~pi,c. In the graphical model of Figure 1, the possible transitions
and likelihoods are reflected in the bipartite graph, and the
transition matrix is the biadjacency matrix of that bipartite
graph.

B. Relation to Other Models

The model used here can be seen as a generalization of
the stochastic error spreading model in [25] in the sense
that the (real-valued) transition probabilities between different
components are replaced by transition matrices that describe
the influence for each level of failure. More precisely, we can
replace the transition probability pi for an edge of type i by a
stochastic matrix ~Pi that describes the transition probabilities
for each degree of failure for both the dependent and the
depending node. As described in [26], these probabilities can
be estimated by expert opinions (e.g., by taking the median
of all scores assigned by experts) or other stochastic models,
such as described in [27].

Moreover, some simple forms of Bayesian networks also
appear as special cases of this model: let in be a node over
which a parent reports its status, and let v1, . . . , vk be the status
nodes of the CI. The weight that the model assigns to the edge
in → vi is the conditional probability Pr(vi|in). This is just
what a Bayesian network [28] would describe/require in the
same modeling. The difference to general Bayesian networks
lies in the difficulty to express joint distributions in this form,
since an output state is conditionally dependent on several
input nodes, but not jointly conditionally so.

Finally, by making the edge weights for the model binary,
we can model deterministic dependencies to some extent: for
example, if the outage of a parent node causes the outage of
the given CI, then the respective internal edges in the bipartite
inner model graph get assigned the weight 1. This will cause

the simulated chain to go to the worst status node for sure
when its parent has an outage. Again, not all kinds of dynamics
can be expressed like this, for the same reasons as with the
general Bayesian networks.

The limitations imposed here save us from the exponential
complexity that Bayesian networks induce for their specifi-
cation (as we would require a conditional probability on all
subsets of parent nodes; and there are exponentially many of
them). For deterministic dynamics, there are endless possibil-
ities to describe what can happen using rules; a sufficiently
flexible way of representing such dynamics is, indeed, offered
by Bayesian networks, but this comes with the same complex-
ity issues as mentioned before. In light of this, the limitations
are a trade-off between model flexibility and computational
feasibility of its specification.

IV. SIMULATION OF STOCHASTIC DEPENDENCIES

The stochastic dependency model between critical infras-
tructures can straightforwardly be implemented in a software
such as R. This simulation starts with an incident happening
at some node, which subsequently (and indirectly) triggers
descendant CIs to change their status according to the like-
lihoods in their inner bipartite graphs. The simulation thus
reveals how far an incident will propagate (within the runtime
of the simulation), and can thus be used to estimate the
effect a problem in one component has on a specific critical
infrastructure or generally on other components. Additionally,
it allows an empirical estimation of the number of components
that are in a critical state (i.e., reach the highest status k).

More explicitly, we model the network of infrastructures as
a graph with n vertices v ∈ V that represent the infrastructures
and edges e ∈ E representing the connections between them.
A usual difficulty in specifying such probabilistic models is
the issue of where to get the conditional probabilities from.
To mitigate this practical obstacle, we let the weighting be
discrete and according to edge classes, meaning that each edge
(representing an inner or mutual dependency) is assigned to
one class c out of the set {1, 2, . . . , C} of candidate classes,
in which each class represents a different levels of importance
of a CI for its successor CI (provider-consumer dependency).
Each edge v → u is then associated with a representative
number for its class c that acts the probability used for the
simulation. This allows the model parameterization to be done
upfront and independent of the concrete CI, and eases matters
of model parameterization in absence of empirical data to
estimate conditional probabilities. Depending on this class c
the state i of v influences the state of u through a multinomial
distribution MN(pi,c). That is, the j-th component of the
vector pi,c gives the probability that u will be in state j in
this situation. In pseudo-code, an algorithm that simulates T
timesteps looks as shown in Figure 2.

The result of this simulation is a network of connected
critical infrastructures where each CI is in a specific state.
For visualization, we can use color codes, ranging from green
to indicate a working state to red, alerting about a critical
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1: t← 0
2: while t < T
3: for each node v, set N(v) = {u ∈ V : (v, u) ∈ E}
4: for each neighboring node u ∈ N(v)
5: let c be the class of v → u,
6: let i be the current state of node v,
7: draw the status of u from MN(pi,c)
8: t← t+ 1.
9: endfor
10: endfor
11:endwhile

Fig. 2. Simulation Algorithm

condition. Numerically, the results of the simulation can be
summarized as a table that lists how many components are on
average in any of the possible states.

V. AN ILLUSTRATIVE EXAMPLE

Let a subnetwork of a CI consist of a hospital that depends
on a water provider, an electricity provider as well as trans-
portation infrastructures (roads). The dependencies between
the different components in the network are classified as either
“minor”, “normal” or “critical” depending on how important
the service provisioning is for the CI. In this small example, we
classified input from the electricity provider as “normal” (as
we assume existence of an emergency power system), input
from a water provider as “critical” (substitution by bottled
water is usually just possible for a limited period of time)
and the transport connection as “minor”, since even if roads
are temporarily congested or blocked, aerial transportation
remains possible for critical patients.

Arbitrary transition matrices were chosen depending on the
class of the connection. Here, we consider 5 possible states for
each node, where 1 represents the situation where everything
works smoothly, while 5 stands for serious problems including
total failure. In a practical application, these values need to be
estimated by experts familiar with the infrastructure’s opera-
tion (possibly aided by other simulation methods accounting
for the internal system dynamics). For the specification of a
dependency on the chosen scale from 1 to 5, we specify a
matrix Tminor/normal/critical = (tij)

5
i,j=1, in which the ij-th

entry corresponds to the conditional likelihood tij := Pr(CI
gets into state j | provider is in state i). For the example, let

Tminor =


0.6 0.2 0.2 0.0 0.0
0.5 0.2 0.2 0.1 0.0
0.4 0.2 0.2 0.2 0.0
0.3 0.2 0.2 0.2 0.1
0.3 0.2 0.2 0.2 0.1

 ,

Tnormal =


0.4 0.2 0.2 0.2 0.0
0.4 0.2 0.1 0.3 0.0
0.3 0.2 0.2 0.2 0.1
0.2 0.2 0.2 0.3 0.1
0.2 0.2 0.1 0.3 0.2



Hospital

Electricity Water Transport

Tcritical TminorTnormal

State j of 

the hospital

State i of 

the transport

1 3 4

2 3 5

2

1

5

4

Fig. 3. Example Instance

and

Tcritical =


0.3 0.2 0.2 0.2 0.1
0.2 0.2 0.2 0.2 0.2
0.0 0.2 0.2 0.3 0.3
0.0 0.1 0.2 0.3 0.4
0.0 0.0 0.0 0.2 0.8.

 .

Figure 3 (left side) displays the dependencies graphically,
with arrows annotated according to the criticality of the
dependency. The right part of Figure 3 shows how the inner
model of Figure 1 corresponds to a dependency, and is
instantiated according to the matrices above. For example, if
a provider classified as “minor” is in state 4 (i.e., it has rather
serious problems) this will yield to a state 5 of the critical
infrastructure that depends on it with a likelihood of 0.1.

Initially, we assume that all components operate smoothly
and are in state 1 except for the water provider that is in state
2 facing some (temporary) problems. This scenario yielded to
a critical state for the hospital in 16 out of 100 cases. Note
that in this example, this critical state can only be caused by
the state of the water provider since a CI of normal or even
minor importance will never cause a critical level while bing
in state 1 (i.e., both entries in the transition matrices are zero).

In Table I we show the average number of nodes (CIs)
that are in each of the 5 possible states. This information is
especially useful in larger networks to get an overview on the
impact of a problem in one critical infrastructure on the entire
network of CIs.

TABLE I. AVERAGE NUMBER OF AFFECTED NODES DUE TO
INCREASED LEVEL OF CRITICALITY

Criticality 1 2 3 4 5
Nodes 2.05 1.15 0.31 0.33 0.16

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a model for dependencies
between critical infrastructures that assumes random effects
of failures. In particular, the extent to which a problem in one
infrastructure influences another one depends on how serious
the problem is (represented by the state of this infrastructure)
and by the nature of the connection between them (described
by the connection’s classification). The effect on another
infrastructure is again described through several states that
indicate the severity. However, the effect itself is random due
to the impossibility of precise prediction. While this model
captures many important aspects of such dependencies it is still
quite simple and can straightforwardly be implemented. We
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have sketched the implementation in pseudo code and applied
the simulation to a small example.

Extensions to the model along future work are possible
in various ways. In the form presented, the model assumes
an independent influence of all providers to a specific CI.
Dependencies with an inner interplay of two providers cannot
be described in the given model. For example, two providers
being mutually substitutes for one another, a dependency of
a CI on the total input of several providers (irrespectively
of the individual supplies). Taking these into account seems
to involve more complex stochastic dependency models (e.g.,
copulas [29]) to describe distributions conditional on several
variables. At the same time, this also brings the model com-
plexity closer to exponential in the number of the CIs, with
Bayesian networks being located at the end of the spectrum
along this generalization. A “middle ground model” is thus an
interesting goal to strive for, starting from our work presented
here.
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