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Abstract—As a sign of the times, headlines today are full of 
attacks against an organization’s computing infrastructure, 
resulting in the theft of sensitive data. In response, the 
organization applies security measures (e.g., encryption) to 
secure its vulnerabilities. However, these measures are often 
only applied once, with the assumption that the organization is 
then protected and no further action is needed. Unfortunately, 
attackers continuously probe for vulnerabilities and change 
their attacks accordingly. This means that an organization 
must also continuously check for new vulnerabilities and 
secure them, to continuously and actively defend against the 
attacks. This paper derives metrics that characterize the 
security level of an organization at any point in time, based on 
the number of vulnerabilities secured and the effectiveness of 
the securing measures. The paper then shows how an 
organization can apply the metrics for continuous active 
defence. 
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I.     INTRODUCTION 

Headlines today are full of news of attacks against 
computing infrastructure, resulting in sensitive data being 
compromised. These attacks have devastated the victim 
organizations. The losses have not only been financial (e.g., 
theft of credit card information), but perhaps more 
importantly, have damaged the organizations’ reputation. 
Consider, for example, the following data breaches that 
occurred in 2017 [1]: 

• March, 2017, Dun & Bradstreet: This business services 
company found its marketing database with over 33 
million corporate contacts shared across the web. The 
company claimed that the breach occurred to 
businesses, numbering in the thousands, that had bought 
its 52 GB database. The leak may have included full 
names, work email addresses, phone numbers, and 
other business-related data from millions of employees 
of organizations such as the US Department of Defence, 
the US Postal Service, AT&T, Walmart, and CVS 
Health. 

• September, 2017, Equifax: This is one of the three 
largest credit agencies in the US. It announced a breach 
that may have affected 143 million customers, one of 
the worst breaches ever due to the sensitivity of the data 
stolen. The compromised data included social security 

numbers, driver’s license numbers, full names, 
addresses, birth dates, credit card numbers, and other 
personal information. Hackers had access to the 
company’s system from mid-May to July by exploiting 
a vulnerability in website software. Equifax discovered 
the breach on July 29, 2017. 

There were many more breaches in 2017, and in fact, no 
year can be said to have been breach-free. Moreover, the 
problem appears to be getting worst, as 2017 has been 
mentioned [2] as a “record-breaking year” for data breaches: 
a total of 5,207 breaches and 7.89 billion information 
records compromised. 

In response to attacks, such as the ones described above, 
organizations determine their computer system 
vulnerabilities and secure them using security measures. 
Typical measures include firewalls, intrusion detection 
systems, two-factor authentication, encryption, and training 
for employees on identifying and resisting social 
engineering. However, once the security measures have 
been implemented, organizations tend to believe that they 
are safe and that no further actions are needed. 
Unfortunately, attackers do not give up just because the 
organization has secured its known computer vulnerabilities. 
Rather, the attackers will continuously probe the 
organization’s computer system for new vulnerabilities that 
they can exploit. This means that the organization must 
continuously analyze its computer system vulnerabilities 
and secure any new ones that it discovers. In order to do this 
effectively, it is useful to have quantitative metrics of the 
security level at any particular point in time, based on the 
number of vulnerabilities secured and the effectiveness of 
the security measures, at that point in time. An acceptable 
security level can be set, so that if the security level falls 
below this acceptable level due to new vulnerabilities, the 
latter can be secured to bring the security level back to the 
acceptable level. This work derives such metrics and shows 
how to apply them for continuous active defence, i.e., 
continuous vulnerabilities evaluation and follow up. 

The objectives of this work are: i) derive 
straightforward, clear metrics of the resultant protection 
level obtained by an organization at any point in time, based 
on the use of security measures to secure vulnerabilities and 
the effectiveness of the measures, ii) show how these 
metrics can be calculated, iii) show how the metrics can be 
applied for continuous active defence. We seek 
straightforward, easy to understand metrics since 
complicated, difficult to understand ones tend not to be used 
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or tend to be misapplied. We base these metrics on securing 
vulnerabilities since this has been and continues to be the 
method organizations use to secure their computer 
infrastructure.  

The rest of this paper is organized as follows. Section II 
discusses sensitive data, attacks, and vulnerabilities. Section 
III derives the metrics and presents various aspects of the 
metrics, including some of their strengths, weaknesses, and 
limitations. Section IV explains how to apply the metrics for 
continuous active defence. Section V discusses related work 
and Section VI gives conclusions and future research. 

II.     SENSITIVE DATA, ATTACKS, AND VULNERABILITIES  
Sensitive data is data that needs protection and must not 

fall into the wrong hands. It includes private or personal 
information [3], which is information about an individual, 
can identify that individual, and is owned by that individual. 
For example, an individual’s height, weight, or credit card 
number can all be used to identify the individual and are 
considered as personal information or personal sensitive 
data. Sensitive data also includes non-personal information 
that may compromise the competitiveness of the 
organization if divulged, such as trade secrets or proprietary 
algorithms and formulas. For government organizations, 
non-personal sensitive data may include information that is 
vital for the security of the country for which the 
government organization is responsible.  

DEFINITION 1: Sensitive data (SD) is information that 
must be protected from unauthorized access in order to 
safeguard the privacy of an individual, the well-being or 
expected operation of an organization, or the well-being or 
expected functioning of an entity for which the organization 
has responsibility. 

DEFINITION 2: An attack is any action carried out against 
an organization’s computer system that, if successful, 
compromises the system or the SD held by the system. 

An attack that compromises a computer system is 
Distributed Denial of Service (DDoS). One that 
compromises the SD held by the system is a Trojan horse 
attack in which malicious software (the Trojan) is planted 
inside the system to steal SD. Attacks can come from an 
organization’s employees, in which case the attack is an 
inside attack. For example, a disgruntled employee secretly 
keeps a copy of a SD backup and sells it on the “dark web”.  

DEFINITION 3: A vulnerability of a computer system is 
any weakness in the system that can be targeted by an attack 
with some expectation of success. A vulnerability can be 
secured to become a secured vulnerability through the 
application of a security measure.  

An example of a vulnerability is a communication 
channel that is used to convey sensitive data in the clear. 
This vulnerability can be targeted by a Man-in-the-Middle 
attack with reasonable success of stealing the sensitive data. 
This vulnerability can become a secured vulnerability by 
encrypting the sensitive data that the communication 
channel carries.  

A computer system can undergo upgrades, downgrades, 
and other modifications over time that changes its number 
of secured and unsecured vulnerabilities. It is thus necessary 
to specify a time t when referring to vulnerabilities. Clearly, 
the number of secured and unsecured vulnerabilities of a 
computer system at time t is directly related to the security 
level of the system at time t. This idea is formalized in the 
next definition. 

DEFINITION 4: A computer system’s security level (SL) at 
time t, or SL(t), is the degree of protection from attacks that 
results from having q(t) secured vulnerabilities, and p(t) 
unsecured vulnerabilities, where the system has a total of 
N(t) = p(t)+q(t) secured and unsecured vulnerabilities. SL(t) 
is uniquely represented by the pair (p(t), q(t)).  

Clearly SL(t) increases with increasing q(t) and 
decreases with increasing p(t). Figure 1 shows 3 SL(t) 
points on the (p(t), q(t)) plane for N(t)=100.  

 

 

 

 

 

 

 

 

In Figure 1, the higher values of q(t) correspond to 
higher security levels, and the higher values of p(t) 
correspond to lower security levels.  

III.    METRICS FOR CONTINUOUS ACTIVE DEFENCE 
While the pair (p(t), q(t)) uniquely represents SL(t), it 

cannot be used to calculate the value of SL(t), which would 
be useful in tracking the security of a system over time as its 
vulnerabilities change. In this section, we derive two metrics 
for the value of SL(t), one assuming that the measures 
securing vulnerabilities are totally reliable; the other with 
the measures only partly reliable. Both metrics are applied 
right after the vulnerabilities have been determined, and 
possibly before any of them have actually been secured. 
Determining vulnerabilities is discussed in Section III.C 
below. 

A. Metric with Totally Reliable Securing Measures 

We seek a metric STRM(t) (STRM is an acronym for 
“SL with Totally Reliable Measures”) for a computer 
system’s SL(t), where all securing measures are totally 
reliable. Suppose that p(t) and q(t) are as in Definition 4. Let 
Pt(e) represent the probability of event e at time t. Let 
“exploit” mean a successful attack on a vulnerability. Let 

Figure 1.  SL(t) points corresponding to a computer system with 
N(t)=100.  SL(3) is higher security than SL(2), which is higher 
security than SL(1). 
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“all exploits” mean exploits on 1 or more vulnerabilities. 
Let Uk(t) denote an unsecured vulnerability k at time t. We 
have 
               SL(t) = Pt(no exploits) = 1-Pt(all exploits)          (1) 
However, the only exploitable vulnerabilities are the 
unsecured vulnerabilities since the securing measures are 
totally reliable. Therefore 

               Pt(all exploits) = Σk [Pt(exploit of Uk(t))]                  
by applying the additive rule for the union of probabilities, 
assuming that 2 or more exploits do not occur 
simultaneously. Let uk(t) be a real number with 0 < uk(t) ≤ 
p(t) and Σkuk(t) = p(t). Set 
                 Pt(exploit of Uk(t)) ≈ uk(t)/(p(t)+q(t))                (2) 
By substitution using (2) 

                Pt(all exploits) ≈ Σk [uk(t)/(p(t)+q(t))] 

                                        = Σkuk(t)/(p(t)+q(t))  
                                        = p(t)/(p(t)+q(t))                         (3)             
The condition 0 < uk(t) ≤ p(t) is needed to ensure that there 
is some probability for an unsecured vulnerability to be 
exploited. The condition Σkuk(t) = p(t) is necessary in order 
for Pt(all exploits) ≤ 1. Expression (2) gives a way of 
assigning values for Pt(exploit of Uk(t)) based on a risk 
analysis [3]. However, expression (3) ensures that such 
assignment is not needed for calculating STRM(t). In other 
words, the fact that some vulnerabilities are more likely to 
be exploited than others does not affect the value of 
STRM(t). 
Substituting (3) into (1) gives 
                SL(t) ≈ 1-[p(t)/(p(t)+q(t))] 
                         = q(t)/(p(t)+q(t))      if  p(t)+q(t) > 0         
                         = 1                            if  p(t)+q(t) = 0          
We obtain STRM(t) by assigning as follows: 
          STRM(t) = q(t)/(p(t)+q(t))     if  p(t)+q(t) > 0       (4) 

                    = 1                            if  p(t)+q(t) = 0       (5) 
We see from (4) that 0 ≤ STRM(t) ≤ 1 if p(t)+q(t) > 0 and 
has value 0 if q(t)=0 (the system has no secured 
vulnerabilities) and 1 if p(t)=0 (all of its vulnerabilities are 
secured). We see from (5) that STRM(t)=1 if p(t)+q(t)=0 
(no vulnerabilities, which is unlikely). The values of the 
metric are therefore as expected. 

B. Metric with Partially Reliable Securing Measures 

Here, we seek a metric SPRM(t) (SPRM is an acronym 
for “SL with Partially Reliable Measures”) for a computer 
system’s SL(t) where the measures securing the 
vulnerabilities are only partially reliable.  

Let Vk(t) denote a secured vulnerability k at time t. The 
reliability rk(t) of the measure securing Vk(t) can be defined 
as the probability that the measure remains operating from 
time zero to time t, given that it was operating at time zero 
[4]. The unreliability of the measure is then 1-rk(t). We have 
the events 

     [exploit of Vk(t)] if and only if [Vk(t) selected for exploit]  
                          AND [measure securing Vk(t) unreliable] 
Since the two right-hand side events are independent, 
   Pt(exploit of Vk(t)) = Pt(Vk(t) selected for exploit) x 
                                 Pt(measure securing Vk(t) unreliable) 
Set 
             Pt(Vk(t) selected for exploit) ≈ 1/(p(t)+q(t))          (6)    
since attackers will have no preference to attack one secured 
vulnerability over another secured vulnerability (they should 
not even see them as vulnerabilities). Again, applying the 
additive rule for the union of probabilities, 
   Pt(all Vk(t) exploits) = Σk[Pt(Vk(t)  selected for exploit) x  

                            Pt(measure securing Vk(t)  unreliable)] 
                     = Σk [(1/(p(t)+q(t)))(1-rk(t))] 
                     = [Σk(1-rk(t)]/[p(t) + q(t)] 
                     = [q(t)-Σkrk(t)]/[p(t) + q(t)]      
                     =[q(t)/(p(t)+q(t))]-Σkrk(t)/(p(t) + q(t))    (7) 

Now, since both Uk(t)  and Vk(t) can be exploited,  

Pt(all exploits)=Pt(all Uk(t) exploits) + Pt(all Vk(t) exploits)   
               ≈ [p(t)/(p(t)+q(t))] + [q(t)/(p(t)+q(t))]- 
                                Σkrk(t)/(p(t) + q(t)) 
                = 1 - Σkrk(t)/(p(t) + q(t))                            (8) 

by substitution using (3) and (7), where (3) is Pt(all Uk(t) 
exploits). Finally, by substitution using (1) and (8), 

          SL(t) ≈ 1 – 1 + Σkrk(t)/(p(t) + q(t)) 
                   = Σkrk(t)/(p(t) + q(t))    if  p(t) ≥ 0, q(t) > 0  
                   = 1                                if  p(t)+q(t) = 0  
                   = 0                                if  p(t)>0, q(t) = 0  
We obtain SPRM(t) by assigning as follows: 
  SPRM(t) = Σkrk(t)/(p(t)+q(t))    if  p(t) ≥ 0, q(t) > 0     (9) 

             = 1                                if   p(t)+q(t) = 0        (10) 
                  = 0                                if   p(t)>0, q(t)=0      (11) 
 
We see from (9) that 0 < SPRM(t) < 1 for p(t) ≥ 0, q(t) > 0 
(all vulnerabilities may or may not be secured), and from 
(10) that  SPRM(t) = 1  for p(t)+q(t) = 0 (no vulnerabilities, 
which is unlikely). We see from (11) that SPRM(t) = 0  for 
p(t)>0, q(t) = 0 (no secured vulnerabilities). We also see that 
for rk(t) = 1, SPRM(t) is the same as STRM(t). The values 
of the metric are therefore as expected.  

C. Calculating the Metrics  

Calculating STRM(t) requires the values of p(t) and q(t) 
at a series of time points of interest. SPRM(t) requires the 
values of p(t), q(t), and the reliability value for each 
measure used to secure the vulnerabilities.   

To obtain the values of p(t) and q(t), an organization 
may perform a threat analysis of vulnerabilities in the 
organization’s computer system that could allow attacks to 
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occur. Threat analysis or threat modeling is a method for 
systematically assessing and documenting the security risks 
associated with a system (Salter et al. [5]). Threat modeling 
involves understanding the adversary’s goals in attacking 
the system based on the system’s assets of interest. It is 
predicated on that fact that an adversary cannot attack a 
system without a way of supplying it with data or otherwise 
accessing it. In addition, an adversary will only attack a 
system if it has some assets of interest. The method of threat 
analysis given in [5] or any other method of threat analysis 
will yield the total number N(t) of vulnerabilities to attacks 
at time t. Once this number is known, the organization can 
select which vulnerabilities to secure and which security 
measures to use, based on a prioritization of the 
vulnerabilities and the amount of budget it has to spend. A 
way to optimally select which vulnerabilities to secure is 
described in [6]. Once vulnerabilities have been selected to 
be secured, we have q(t). Then p(t) = N(t) – q(t). The threat 
analysis may be carried out by a project team consisting of 
the system’s design manager, a security and privacy analyst, 
and a project leader acting as facilitator. In addition to 
having security expertise, the analyst must also be very 
familiar with the organization’s computer system. Further 
discussion on threat analysis is outside the scope of this 
paper. More details on threat modeling can be found in [6]. 
Vulnerabilities may be prioritized using the method in [3], 
which describes prioritizing privacy risks.  

The reliability values for hardware measures used to 
secure the selected vulnerabilities may be obtained from the 
hardware’s manufacturers (e.g., hardware firewall). 
Reliability values for software and algorithmic measures are 
more difficult to obtain (e.g., encryption algorithm). For 
these, it may be necessary to estimate the reliability values 
based on the rate of progress of technology. For example, 
one could estimate the reliability of an encryption algorithm 
based on estimates of the computer resources that attackers 
have at their disposal. If they have access to a super 
computer, an older encryption algorithm may not be 
sufficiently reliable. One could also opt to be pessimistic 
and assign low reliability values, which would have the net 
effect of boosting security by securing more vulnerabilities, 
in order to meet a certain SL(t) level (see Section IV). 
Reliability values for security measures represent a topic for 
future research. 

It is important to note that at each time point where the 
metrics are calculated, the values of p(t) and q(t) are 
generated anew. Vulnerabilities secured previously with 
totally reliable measures would not appear again as 
vulnerabilities. On the other hand, vulnerabilities secured 
with only partially reliable measures should be identified 
again as vulnerabilities. Further, it is not necessary to have 
actually implemented the securing measures before 
calculating the metrics.  

D. Graphing the Metrics  

The metrics STRM(t) and SPRM(t) are both functions of 
p(t), q(t), and t. Figure 2 shows a 3-dimensional graph of 
these metrics with axes for STRM(t)/SPRM(t), p(t), and 
q(t). Time is not shown explicitly as an axis since we would 

need 4 dimensions, but is instead represented as time period 
displacements of the metrics’ values.    

 
 
 
 

 

 

 

 

 

 

 

 

Figure 2 shows 4 values of one of the metrics, labeled 
according to the times it was evaluated, namely t1, t2, t3, and 
t4 where t1 < t2 < t3 < t4. The intervals between these times 
may be 1 week or 1 month, for example. T is a threshold, 
below which the metric values should not drop (see Section 
IV.A). At t1, one of the metrics was evaluated producing the 
value shown. At t2, the metric was again evaluated, but this 
time the value was found to be much lower than at t1, and in 
fact, the value dropped below T. The reason for this was that 
new vulnerabilities were found that had not been secured. 
The organization decides to secure the additional 
vulnerabilities. At t3, another evaluation was carried out, and 
this time, the metric had improved, reaching above T. The 
organization finds some surplus money in its budget and 
decides to secure 2 other vulnerabilities. An evaluation of 
the metric at t4 finds the value a little higher than at t3, due 
to the 2 additional vulnerabilities secured. It is thus seen that 
the security level of a computer system changes over time, 
in accordance with the system’s number of secured and 
unsecured vulnerabilities. 

E. Strengths, Weaknesses, and Limitations  

Some strengths of the metrics are: a) conceptually 
straightforward, and easily explainable to management, and 
b) flexible and powerful, i.e., they have many application 
areas, as described in Section IV. 

Some weaknesses are: a) threat modeling to determine 
the vulnerabilities is time consuming and subjective, and b) 
the SL may involve more factors than vulnerabilities and 
secured vulnerabilities. For weakness a), it may be possible 
to automate or semi-automate the threat modeling. Related 
works [13] and [19] are good starting points for further 
research. For weakness b), it may be argued that the metrics 
as presented are sufficient for their envisaged application 
when other sources of error are considered (e.g., it is 
difficult to tell where an attacker will strike or how he will 
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strike), and that adding more factors would only make the 
metrics unnecessarily more cumbersome and time 
consuming to evaluate with little additional benefit.  

Some limitations of the metrics follow. First of all, the 
metrics are only estimates of the security level, not the 
security level itself. This was indicated in assigning the 
probabilities as approximate in expressions (2) and (6) of 
Section III. Second, as noted in Section III, it makes no 
difference to the values of the metrics whether one 
unsecured vulnerability is more likely to be exploited than 
another. This may be due to the fact that the metrics are 
estimating the total security of the computer system, and 
therefore the total number of exploitable vulnerabilities is 
what’s important, not the order in which they are exploited. 
Third, we applied the additive rule for the union of 
probabilities in Section III, requiring that 2 or more exploits 
do not occur simultaneously. This condition holds in general 
but if it is violated, the metrics will be inaccurate. Other 
limitations may be that there are vulnerabilities that have not 
been identified, and a secured vulnerability may not in 
reality be secured because the attacker has a secret way of 
defeating the securing measure. However, these other 
limitations are true of other security methods as well. 

IV.   APPLICATION AREAS 
In this section, we present some applications for the 

metrics. In Section IV.A, we discuss how they can be used 
for continuous active defence of a computer system. In 
Section IV.B, we present other application areas, such as 
critical infrastructure and defence. 

A. Continuous Active Defence 

Attackers do not attack once, and finding that you are 
well protected, go away. Rather, they continuously probe 
your defences in order to find new vulnerabilities to exploit. 
It is thus necessary to continuously evaluate the computer 
system’s vulnerabilities using threat modeling, and add 
additional security by securing new vulnerabilities when 
necessary. We call this “Continuous Active Defence” or 
CAD. How do we know when it is necessary to add more 
security? This is where the metrics can be applied. 
Continuous Active Defence involves the following steps: 
1. Decide on a threshold for SL(t) below which the values 

of the metrics should not drop. 
2. Decide on the frequency with which to perform threat 

modeling, e.g., every week, every month, exceptions. 
3. Begin Continuous Active Defence by carrying out the 

threat modeling at the frequency decided above. After 
each threat modeling exercise, calculate either STRM(t) 
(if reliability data is not available) or SPRM(t) (if 
reliability data is available). If the value of the metric 
falls below T (see Figure 2), secure additional 
vulnerabilities until the value is above T. 

4. If there has been a change to the system, such as new 
equipment or new software, do an immediate threat 
analysis, calculate one of the metrics, and add security 
if necessary based on T. Then, proceed with the 
frequency for threat modeling decided above. 

The value of T and the frequency of threat modeling can 
be determined by the same threat analysis team mentioned 
above. The values would depend on the following: 
• The potential value of the sensitive data – the more 

valuable the data is to a thief, a malicious entity, or a 
competitor, the higher the threshold and frequency 
should be. 

• The damages to the organization that would result, if 
the sensitive data were compromised – of course, the 
higher the damages, the higher the threshold and 
frequency. 

• The current and likely future attack climate – consider 
the volume of attacks and the nature of the victims, say 
over the last 6 months; if the organization’s sector or 
industry has sustained a large number of recent attacks, 
then the threshold and frequency need to be higher. 

• Consider also potential attacks by nation states as a 
result of the political climate; attacks by individual 
hacktivist groups such as Anonymous or WikiLeaks 
may also warrant attention.  

In general, a computer system should be as secure as 
possible. Therefore, T above 80% and a frequency of 
weekly would not be uncommon. However, whatever the 
threshold and frequency, the organization must find them 
acceptable after considering the above factors. The financial 
budget available for securing vulnerabilities also plays an 
important role here, since higher thresholds call for securing 
more vulnerabilities, which means more financial resources 
will be needed.  

B. Other CAD Application Areas 

CAD may also be applied to a specific type of 
vulnerabilities. An example of this application is dealing 
with inside attacks. If the organization is particularly 
susceptible to inside attacks, it can decide to apply CAD to 
vulnerabilities that can be exploited for inside attacks. In 
this case, some of the vulnerabilities may be weaknesses of 
the organization itself, e.g., ineffective screening of job 
applicants, and the securing measures may not be 
technological, e.g., having an ombudsman for employee 
concerns. A list of questions that can be used to identify 
vulnerabilities to inside attack is given in [6]. 

CAD can be applied to a specific subset of 
vulnerabilities that the organization deems are crucial to its 
mission. For example, a cloud service provider would deem 
the protection of clients’ data crucial to its mission. It can 
choose to apply CAD to vulnerabilities that are specific to 
its data storage capabilities, and also apply CAD to its 
computer system as a whole. 

CAD may also be applied to code level vulnerabilities. 
In this case, the frequency of application will depend on 
how often the code is changed, due to patching and the 
addition or deletion of functionality. The threat modeling 
would have to be tailored to code and would be more of a 
code inspection exercise.  

Finally, CAD may be applied to protect critical 
infrastructure and defence systems. The power grid is an 
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example of critical infrastructure. The development of the 
metrics only considers vulnerabilities and reliabilities, 
which are also found in critical infrastructure and defence 
systems. However, the threat analyses would involve 
different types of threats, and the securing measures, would 
of course, need to be appropriate for the vulnerability. For 
example, the vulnerability of transformer sabotage in a 
power grid may need to be secured by the use of intrusion 
alarms. As another example, the vulnerability of a 
retaliatory missile site being preemptively destroyed may 
need to be secured by putting the missile on a mobile 
platform. The application of CAD to protect critical 
infrastructure and defence systems is a subject of future 
research. 

V.   RELATED WORK 
Related work found in the literature includes attack 

surface metrics, risk and vulnerabilities assessment, 
vulnerabilities classification, threat analysis, other, and this 
author’s previous work.  

A system’s attack surface is related to a SL; it is 
proportional to the inverse of a SL since the lower the attack 
surface, the higher the SL. Stuckman and Purtilo [7] present 
a framework for formalizing code-level attack surface 
metrics and describe activities that can be carried out during 
application deployment to reduce the application’s attack 
surface. They also describe a tool for determining the attack 
surface of a web application, together with a method for 
evaluating an attack surface metric over a number of known 
vulnerabilities. Munaiah and Meneely [8] propose function 
and file level attack surface metrics that allow fine-grained 
risk assessment. They claim that their metrics are flexible in 
terms of granularity, perform better than comparable metrics 
in the literature, and are tunable to specific products to 
better assess risk.  

In terms of risk and vulnerabilities assessment, Islam et 
al. [9] present a risk assessment framework that starts with a 
threat analysis followed by a risk assessment to estimate the 
threat level and the impact level. This leads to an estimate of 
a security level for formulating high-level security 
requirements. The security level is qualitative, such as 
“low”, “medium”, and “high”. Vanciu et al. [10] compare an 
architectural-level approach with a code-level approach in 
terms of the effectiveness of finding security vulnerabilities. 
Wang et al. [11] discuss their work on temporal metrics for 
software vulnerabilities based on the Common Vulnerability 
Scoring System (CVSS) 2.0. They use a mathematical 
model to calculate the severity and risk of a vulnerability, 
which is time dependent as in this work. Gawron et al. [12] 
investigate the detection of vulnerabilities in computer 
systems and computer networks. They use a logical 
representation of preconditions and post conditions of 
vulnerabilities, with the aim of providing security advisories 
and enhanced diagnostics for the system. Wu and Wang 
[13] present a dashboard for assessing enterprise level 
vulnerabilities that incorporates a multi-layer tree-based 
model to describe the vulnerability topology. Vulnerability 
information is gathered from enterprise resources for display 
automatically. Farnan and Nurse [14] describe a structured 

approach to assessing low-level infrastructure vulnerability 
in networks. The approach emphasizes a controls-based 
evaluation rather than a vulnerability-based evaluation. 
Instead of looking for vulnerabilities in infrastructure, they 
assume that the network is insecure, and determine its 
vulnerability based on the controls that have or have not 
been implemented. Neuhaus et al. [15] present an 
investigation into predicting vulnerable software 
components. Using a tool that mines existing vulnerability 
databases and version archives, mapping past vulnerabilities 
to current software components, they were able to come up 
with a predictor that correctly identifies about half of all 
vulnerable components, with two thirds of the predictions 
being correct. Roumani et al. [16] consider modeling of 
vulnerabilities using time series. According to these 
researchers, time series models provide a good fit to 
vulnerability datasets and can be used for vulnerability 
prediction. They also suggest that the level of the time series 
is the best estimator for prediction. 

With regard to vulnerabilities classification, Spanos et 
al. [17] look at ways to improve CVSS. They propose a new 
vulnerability scoring system called the Weighted Impact 
Vulnerability Scoring System (WIVSS) that incorporates 
the different impact of vulnerability characteristics. In 
addition, the MITRE Corporation [18] maintains the 
Common Vulnerability and Exposures (CVE) list of 
vulnerabilities and exposures, standardized to facilitate 
information sharing.  

In terms of threat analysis, Schaad and Borozdin [19] 
present an approach for automated threat analysis of 
software architecture diagrams. Their work gives an 
example of automated threat analysis. Sokolowski and 
Banks [20] describe the implementation of an agent-based 
simulation model designed to capture insider threat 
behavior, given a set of assumptions governing agent 
behavior that pre-disposes an agent to becoming a threat. 
Sanzgiri and Dasgupta [21] present a taxonomy and 
classification of insider threat detection techniques based on 
strategies used for detection.  

The following publications fall into the other category. 
Kotenko and Doynikova [22] investigate the selection of 
countermeasures for ongoing network attacks. They suggest 
a selection technique based on the countermeasure model in 
open standards. The technique incorporates a level of 
countermeasure effectiveness that is related to the reliability 
of measures securing vulnerabilities, used in the SPRM(t) 
metric proposed in this work. Ganin et al. [23] present a 
review of probabilistic and risk-based decision-making 
techniques applied to cyber systems. They propose a 
decision-analysis-based approach that quantifies threat, 
vulnerability, and consequences through a set of criteria 
designed to assess the overall utility of cybersecurity 
management alternatives.  

This author’s directly related work includes [24] and [6], 
where the latter is an expanded version of the former. This 
work improves on these previous works by adding a) time 
dependency, together with the notion that an organization’s 
security level needs to be continuously evaluated, b) a new 
metric incorporating the reliability of the securing measures, 
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and c) a description of new application areas. 

VI.   CONCLUSIONS AND FUTURE RESEARCH 
Since attackers continuously probe for new 

vulnerabilities to exploit, an organization cannot afford to 
assess its computer system’s vulnerabilities once, secure 
some of the vulnerabilities, and then do nothing further. 
Rather, the organization needs to assess and secure its 
vulnerabilities on a continuous basis, i.e., perform CAD.  
This work has proposed two conceptually clear SL metrics 
that can be used to evaluate a computer system’s security 
level at any point in time for CAD. One metric assumes that 
the measures securing vulnerabilities are totally reliable; the 
other considers the measures to be only partially reliable. 
CAD may be applied to specific types of vulnerabilities 
(e.g., vulnerabilities to insider attack), groupings of 
vulnerabilities that require special attention, specific 
application areas such as critical infrastructure and defence, 
and even at the code level. 

There are many security metrics in the literature, as 
seen in Section V. The metrics in this work have the 
advantages of being easy to understand, and easy to 
calculate, which may be needed to convince management to 
provide the necessary resources required for CAD.  

Future research includes formulations of other security 
metrics, the application of security metrics to critical 
infrastructure and defence, improving the methods for threat 
modeling, and exploring how this work may complement 
work in the literature and in the standardization community. 
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