
Metrics for Continuous Active Defence

George O.M. Yee
Computer Research Lab, Aptusinnova Inc., Ottawa, Canada

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
email: george@aptusinnova.com, gmyee@sce.carleton.ca

Abstract—As a sign of the times, headlines today are full of
attacks against an organization’s computing infrastructure,
resulting in the theft of sensitive data. In response, the
organization applies security measures (e.g., encryption) to
secure its vulnerabilities. However, these measures are often
only applied once, with the assumption that the organization is
then protected and no further action is needed. Unfortunately,
attackers continuously probe for vulnerabilities and change
their attacks accordingly. This means that an organization
must also continuously check for new vulnerabilities and
secure them, to continuously and actively defend against the
attacks. This paper derives metrics that characterize the
security level of an organization at any point in time, based on
the number of vulnerabilities secured and the effectiveness of
the securing measures. The paper then shows how an
organization can apply the metrics for continuous active
defence.

Keywords- sensitive data; vulnerability; security measure;

security level; metrics; continuous defence.

I. INTRODUCTION

Headlines today are full of news of attacks against
computing infrastructure, resulting in sensitive data being
compromised. These attacks have devastated the victim
organizations. The losses have not only been financial (e.g.,
theft of credit card information), but perhaps more
importantly, have damaged the organizations’ reputation.
Consider, for example, the following data breaches that
occurred in 2017 [1]:

• March, 2017, Dun & Bradstreet: This business services
company found its marketing database with over 33
million corporate contacts shared across the web. The
company claimed that the breach occurred to
businesses, numbering in the thousands, that had bought
its 52 GB database. The leak may have included full
names, work email addresses, phone numbers, and
other business-related data from millions of employees
of organizations such as the US Department of Defence,
the US Postal Service, AT&T, Walmart, and CVS
Health.

• September, 2017, Equifax: This is one of the three
largest credit agencies in the US. It announced a breach
that may have affected 143 million customers, one of
the worst breaches ever due to the sensitivity of the data
stolen. The compromised data included social security

numbers, driver’s license numbers, full names,
addresses, birth dates, credit card numbers, and other
personal information. Hackers had access to the
company’s system from mid-May to July by exploiting
a vulnerability in website software. Equifax discovered
the breach on July 29, 2017.

There were many more breaches in 2017, and in fact, no
year can be said to have been breach-free. Moreover, the
problem appears to be getting worst, as 2017 has been
mentioned [2] as a “record-breaking year” for data breaches:
a total of 5,207 breaches and 7.89 billion information
records compromised.

In response to attacks, such as the ones described above,
organizations determine their computer system
vulnerabilities and secure them using security measures.
Typical measures include firewalls, intrusion detection
systems, two-factor authentication, encryption, and training
for employees on identifying and resisting social
engineering. However, once the security measures have
been implemented, organizations tend to believe that they
are safe and that no further actions are needed.
Unfortunately, attackers do not give up just because the
organization has secured its known computer vulnerabilities.
Rather, the attackers will continuously probe the
organization’s computer system for new vulnerabilities that
they can exploit. This means that the organization must
continuously analyze its computer system vulnerabilities
and secure any new ones that it discovers. In order to do this
effectively, it is useful to have quantitative metrics of the
security level at any particular point in time, based on the
number of vulnerabilities secured and the effectiveness of
the security measures, at that point in time. An acceptable
security level can be set, so that if the security level falls
below this acceptable level due to new vulnerabilities, the
latter can be secured to bring the security level back to the
acceptable level. This work derives such metrics and shows
how to apply them for continuous active defence, i.e.,
continuous vulnerabilities evaluation and follow up.

The objectives of this work are: i) derive
straightforward, clear metrics of the resultant protection
level obtained by an organization at any point in time, based
on the use of security measures to secure vulnerabilities and
the effectiveness of the measures, ii) show how these
metrics can be calculated, iii) show how the metrics can be
applied for continuous active defence. We seek
straightforward, easy to understand metrics since
complicated, difficult to understand ones tend not to be used

92Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

or tend to be misapplied. We base these metrics on securing
vulnerabilities since this has been and continues to be the
method organizations use to secure their computer
infrastructure.

The rest of this paper is organized as follows. Section II
discusses sensitive data, attacks, and vulnerabilities. Section
III derives the metrics and presents various aspects of the
metrics, including some of their strengths, weaknesses, and
limitations. Section IV explains how to apply the metrics for
continuous active defence. Section V discusses related work
and Section VI gives conclusions and future research.

II. SENSITIVE DATA, ATTACKS, AND VULNERABILITIES
Sensitive data is data that needs protection and must not

fall into the wrong hands. It includes private or personal
information [3], which is information about an individual,
can identify that individual, and is owned by that individual.
For example, an individual’s height, weight, or credit card
number can all be used to identify the individual and are
considered as personal information or personal sensitive
data. Sensitive data also includes non-personal information
that may compromise the competitiveness of the
organization if divulged, such as trade secrets or proprietary
algorithms and formulas. For government organizations,
non-personal sensitive data may include information that is
vital for the security of the country for which the
government organization is responsible.

DEFINITION 1: Sensitive data (SD) is information that
must be protected from unauthorized access in order to
safeguard the privacy of an individual, the well-being or
expected operation of an organization, or the well-being or
expected functioning of an entity for which the organization
has responsibility.

DEFINITION 2: An attack is any action carried out against
an organization’s computer system that, if successful,
compromises the system or the SD held by the system.

An attack that compromises a computer system is
Distributed Denial of Service (DDoS). One that
compromises the SD held by the system is a Trojan horse
attack in which malicious software (the Trojan) is planted
inside the system to steal SD. Attacks can come from an
organization’s employees, in which case the attack is an
inside attack. For example, a disgruntled employee secretly
keeps a copy of a SD backup and sells it on the “dark web”.

DEFINITION 3: A vulnerability of a computer system is
any weakness in the system that can be targeted by an attack
with some expectation of success. A vulnerability can be
secured to become a secured vulnerability through the
application of a security measure.

An example of a vulnerability is a communication
channel that is used to convey sensitive data in the clear.
This vulnerability can be targeted by a Man-in-the-Middle
attack with reasonable success of stealing the sensitive data.
This vulnerability can become a secured vulnerability by
encrypting the sensitive data that the communication
channel carries.

A computer system can undergo upgrades, downgrades,
and other modifications over time that changes its number
of secured and unsecured vulnerabilities. It is thus necessary
to specify a time t when referring to vulnerabilities. Clearly,
the number of secured and unsecured vulnerabilities of a
computer system at time t is directly related to the security
level of the system at time t. This idea is formalized in the
next definition.

DEFINITION 4: A computer system’s security level (SL) at
time t, or SL(t), is the degree of protection from attacks that
results from having q(t) secured vulnerabilities, and p(t)
unsecured vulnerabilities, where the system has a total of
N(t) = p(t)+q(t) secured and unsecured vulnerabilities. SL(t)
is uniquely represented by the pair (p(t), q(t)).

Clearly SL(t) increases with increasing q(t) and
decreases with increasing p(t). Figure 1 shows 3 SL(t)
points on the (p(t), q(t)) plane for N(t)=100.

In Figure 1, the higher values of q(t) correspond to
higher security levels, and the higher values of p(t)
correspond to lower security levels.

III. METRICS FOR CONTINUOUS ACTIVE DEFENCE
While the pair (p(t), q(t)) uniquely represents SL(t), it

cannot be used to calculate the value of SL(t), which would
be useful in tracking the security of a system over time as its
vulnerabilities change. In this section, we derive two metrics
for the value of SL(t), one assuming that the measures
securing vulnerabilities are totally reliable; the other with
the measures only partly reliable. Both metrics are applied
right after the vulnerabilities have been determined, and
possibly before any of them have actually been secured.
Determining vulnerabilities is discussed in Section III.C
below.

A. Metric with Totally Reliable Securing Measures

We seek a metric STRM(t) (STRM is an acronym for
“SL with Totally Reliable Measures”) for a computer
system’s SL(t), where all securing measures are totally
reliable. Suppose that p(t) and q(t) are as in Definition 4. Let
Pt(e) represent the probability of event e at time t. Let
“exploit” mean a successful attack on a vulnerability. Let

Figure 1. SL(t) points corresponding to a computer system with
N(t)=100. SL(3) is higher security than SL(2), which is higher
security than SL(1).

0 10 20 30 40 50 60 70 80 90 100

100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

p(t)

q(t)

SL(3): (20, 80)

SL(2): (50, 50)

SL(1): (80, 20)

higher
SL(t)

lower SL(t)

93Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

“all exploits” mean exploits on 1 or more vulnerabilities.
Let Uk(t) denote an unsecured vulnerability k at time t. We
have
 SL(t) = Pt(no exploits) = 1-Pt(all exploits) (1)
However, the only exploitable vulnerabilities are the
unsecured vulnerabilities since the securing measures are
totally reliable. Therefore

 Pt(all exploits) = Σk [Pt(exploit of Uk(t))]
by applying the additive rule for the union of probabilities,
assuming that 2 or more exploits do not occur
simultaneously. Let uk(t) be a real number with 0 < uk(t) ≤
p(t) and Σkuk(t) = p(t). Set
 Pt(exploit of Uk(t)) ≈ uk(t)/(p(t)+q(t)) (2)
By substitution using (2)

 Pt(all exploits) ≈ Σk [uk(t)/(p(t)+q(t))]

 = Σkuk(t)/(p(t)+q(t))
 = p(t)/(p(t)+q(t)) (3)
The condition 0 < uk(t) ≤ p(t) is needed to ensure that there
is some probability for an unsecured vulnerability to be
exploited. The condition Σkuk(t) = p(t) is necessary in order
for Pt(all exploits) ≤ 1. Expression (2) gives a way of
assigning values for Pt(exploit of Uk(t)) based on a risk
analysis [3]. However, expression (3) ensures that such
assignment is not needed for calculating STRM(t). In other
words, the fact that some vulnerabilities are more likely to
be exploited than others does not affect the value of
STRM(t).
Substituting (3) into (1) gives
 SL(t) ≈ 1-[p(t)/(p(t)+q(t))]
 = q(t)/(p(t)+q(t)) if p(t)+q(t) > 0
 = 1 if p(t)+q(t) = 0
We obtain STRM(t) by assigning as follows:
 STRM(t) = q(t)/(p(t)+q(t)) if p(t)+q(t) > 0 (4)

 = 1 if p(t)+q(t) = 0 (5)
We see from (4) that 0 ≤ STRM(t) ≤ 1 if p(t)+q(t) > 0 and
has value 0 if q(t)=0 (the system has no secured
vulnerabilities) and 1 if p(t)=0 (all of its vulnerabilities are
secured). We see from (5) that STRM(t)=1 if p(t)+q(t)=0
(no vulnerabilities, which is unlikely). The values of the
metric are therefore as expected.

B. Metric with Partially Reliable Securing Measures

Here, we seek a metric SPRM(t) (SPRM is an acronym
for “SL with Partially Reliable Measures”) for a computer
system’s SL(t) where the measures securing the
vulnerabilities are only partially reliable.

Let Vk(t) denote a secured vulnerability k at time t. The
reliability rk(t) of the measure securing Vk(t) can be defined
as the probability that the measure remains operating from
time zero to time t, given that it was operating at time zero
[4]. The unreliability of the measure is then 1-rk(t). We have
the events

 [exploit of Vk(t)] if and only if [Vk(t) selected for exploit]
 AND [measure securing Vk(t) unreliable]
Since the two right-hand side events are independent,
 Pt(exploit of Vk(t)) = Pt(Vk(t) selected for exploit) x
 Pt(measure securing Vk(t) unreliable)
Set
 Pt(Vk(t) selected for exploit) ≈ 1/(p(t)+q(t)) (6)
since attackers will have no preference to attack one secured
vulnerability over another secured vulnerability (they should
not even see them as vulnerabilities). Again, applying the
additive rule for the union of probabilities,
 Pt(all Vk(t) exploits) = Σk[Pt(Vk(t) selected for exploit) x

 Pt(measure securing Vk(t) unreliable)]
 = Σk [(1/(p(t)+q(t)))(1-rk(t))]
 = [Σk(1-rk(t)]/[p(t) + q(t)]
 = [q(t)-Σkrk(t)]/[p(t) + q(t)]
 =[q(t)/(p(t)+q(t))]-Σkrk(t)/(p(t) + q(t)) (7)

Now, since both Uk(t) and Vk(t) can be exploited,

Pt(all exploits)=Pt(all Uk(t) exploits) + Pt(all Vk(t) exploits)
 ≈ [p(t)/(p(t)+q(t))] + [q(t)/(p(t)+q(t))]-
 Σkrk(t)/(p(t) + q(t))
 = 1 - Σkrk(t)/(p(t) + q(t)) (8)

by substitution using (3) and (7), where (3) is Pt(all Uk(t)
exploits). Finally, by substitution using (1) and (8),

 SL(t) ≈ 1 – 1 + Σkrk(t)/(p(t) + q(t))
 = Σkrk(t)/(p(t) + q(t)) if p(t) ≥ 0, q(t) > 0
 = 1 if p(t)+q(t) = 0
 = 0 if p(t)>0, q(t) = 0
We obtain SPRM(t) by assigning as follows:
 SPRM(t) = Σkrk(t)/(p(t)+q(t)) if p(t) ≥ 0, q(t) > 0 (9)

 = 1 if p(t)+q(t) = 0 (10)
 = 0 if p(t)>0, q(t)=0 (11)

We see from (9) that 0 < SPRM(t) < 1 for p(t) ≥ 0, q(t) > 0
(all vulnerabilities may or may not be secured), and from
(10) that SPRM(t) = 1 for p(t)+q(t) = 0 (no vulnerabilities,
which is unlikely). We see from (11) that SPRM(t) = 0 for
p(t)>0, q(t) = 0 (no secured vulnerabilities). We also see that
for rk(t) = 1, SPRM(t) is the same as STRM(t). The values
of the metric are therefore as expected.

C. Calculating the Metrics

Calculating STRM(t) requires the values of p(t) and q(t)
at a series of time points of interest. SPRM(t) requires the
values of p(t), q(t), and the reliability value for each
measure used to secure the vulnerabilities.

To obtain the values of p(t) and q(t), an organization
may perform a threat analysis of vulnerabilities in the
organization’s computer system that could allow attacks to

94Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

occur. Threat analysis or threat modeling is a method for
systematically assessing and documenting the security risks
associated with a system (Salter et al. [5]). Threat modeling
involves understanding the adversary’s goals in attacking
the system based on the system’s assets of interest. It is
predicated on that fact that an adversary cannot attack a
system without a way of supplying it with data or otherwise
accessing it. In addition, an adversary will only attack a
system if it has some assets of interest. The method of threat
analysis given in [5] or any other method of threat analysis
will yield the total number N(t) of vulnerabilities to attacks
at time t. Once this number is known, the organization can
select which vulnerabilities to secure and which security
measures to use, based on a prioritization of the
vulnerabilities and the amount of budget it has to spend. A
way to optimally select which vulnerabilities to secure is
described in [6]. Once vulnerabilities have been selected to
be secured, we have q(t). Then p(t) = N(t) – q(t). The threat
analysis may be carried out by a project team consisting of
the system’s design manager, a security and privacy analyst,
and a project leader acting as facilitator. In addition to
having security expertise, the analyst must also be very
familiar with the organization’s computer system. Further
discussion on threat analysis is outside the scope of this
paper. More details on threat modeling can be found in [6].
Vulnerabilities may be prioritized using the method in [3],
which describes prioritizing privacy risks.

The reliability values for hardware measures used to
secure the selected vulnerabilities may be obtained from the
hardware’s manufacturers (e.g., hardware firewall).
Reliability values for software and algorithmic measures are
more difficult to obtain (e.g., encryption algorithm). For
these, it may be necessary to estimate the reliability values
based on the rate of progress of technology. For example,
one could estimate the reliability of an encryption algorithm
based on estimates of the computer resources that attackers
have at their disposal. If they have access to a super
computer, an older encryption algorithm may not be
sufficiently reliable. One could also opt to be pessimistic
and assign low reliability values, which would have the net
effect of boosting security by securing more vulnerabilities,
in order to meet a certain SL(t) level (see Section IV).
Reliability values for security measures represent a topic for
future research.

It is important to note that at each time point where the
metrics are calculated, the values of p(t) and q(t) are
generated anew. Vulnerabilities secured previously with
totally reliable measures would not appear again as
vulnerabilities. On the other hand, vulnerabilities secured
with only partially reliable measures should be identified
again as vulnerabilities. Further, it is not necessary to have
actually implemented the securing measures before
calculating the metrics.

D. Graphing the Metrics

The metrics STRM(t) and SPRM(t) are both functions of
p(t), q(t), and t. Figure 2 shows a 3-dimensional graph of
these metrics with axes for STRM(t)/SPRM(t), p(t), and
q(t). Time is not shown explicitly as an axis since we would

need 4 dimensions, but is instead represented as time period
displacements of the metrics’ values.

Figure 2 shows 4 values of one of the metrics, labeled
according to the times it was evaluated, namely t1, t2, t3, and
t4 where t1 < t2 < t3 < t4. The intervals between these times
may be 1 week or 1 month, for example. T is a threshold,
below which the metric values should not drop (see Section
IV.A). At t1, one of the metrics was evaluated producing the
value shown. At t2, the metric was again evaluated, but this
time the value was found to be much lower than at t1, and in
fact, the value dropped below T. The reason for this was that
new vulnerabilities were found that had not been secured.
The organization decides to secure the additional
vulnerabilities. At t3, another evaluation was carried out, and
this time, the metric had improved, reaching above T. The
organization finds some surplus money in its budget and
decides to secure 2 other vulnerabilities. An evaluation of
the metric at t4 finds the value a little higher than at t3, due
to the 2 additional vulnerabilities secured. It is thus seen that
the security level of a computer system changes over time,
in accordance with the system’s number of secured and
unsecured vulnerabilities.

E. Strengths, Weaknesses, and Limitations

Some strengths of the metrics are: a) conceptually
straightforward, and easily explainable to management, and
b) flexible and powerful, i.e., they have many application
areas, as described in Section IV.

Some weaknesses are: a) threat modeling to determine
the vulnerabilities is time consuming and subjective, and b)
the SL may involve more factors than vulnerabilities and
secured vulnerabilities. For weakness a), it may be possible
to automate or semi-automate the threat modeling. Related
works [13] and [19] are good starting points for further
research. For weakness b), it may be argued that the metrics
as presented are sufficient for their envisaged application
when other sources of error are considered (e.g., it is
difficult to tell where an attacker will strike or how he will

STRM(t) /
SPRM(t)

q(t)

p(t)

0

1 t1

t2

t3
t4

Figure 2. STRM(t)/SPRM(t) values at times t1 < t2 < t3 < t4.

T

95Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

strike), and that adding more factors would only make the
metrics unnecessarily more cumbersome and time
consuming to evaluate with little additional benefit.

Some limitations of the metrics follow. First of all, the
metrics are only estimates of the security level, not the
security level itself. This was indicated in assigning the
probabilities as approximate in expressions (2) and (6) of
Section III. Second, as noted in Section III, it makes no
difference to the values of the metrics whether one
unsecured vulnerability is more likely to be exploited than
another. This may be due to the fact that the metrics are
estimating the total security of the computer system, and
therefore the total number of exploitable vulnerabilities is
what’s important, not the order in which they are exploited.
Third, we applied the additive rule for the union of
probabilities in Section III, requiring that 2 or more exploits
do not occur simultaneously. This condition holds in general
but if it is violated, the metrics will be inaccurate. Other
limitations may be that there are vulnerabilities that have not
been identified, and a secured vulnerability may not in
reality be secured because the attacker has a secret way of
defeating the securing measure. However, these other
limitations are true of other security methods as well.

IV. APPLICATION AREAS
In this section, we present some applications for the

metrics. In Section IV.A, we discuss how they can be used
for continuous active defence of a computer system. In
Section IV.B, we present other application areas, such as
critical infrastructure and defence.

A. Continuous Active Defence

Attackers do not attack once, and finding that you are
well protected, go away. Rather, they continuously probe
your defences in order to find new vulnerabilities to exploit.
It is thus necessary to continuously evaluate the computer
system’s vulnerabilities using threat modeling, and add
additional security by securing new vulnerabilities when
necessary. We call this “Continuous Active Defence” or
CAD. How do we know when it is necessary to add more
security? This is where the metrics can be applied.
Continuous Active Defence involves the following steps:
1. Decide on a threshold for SL(t) below which the values

of the metrics should not drop.
2. Decide on the frequency with which to perform threat

modeling, e.g., every week, every month, exceptions.
3. Begin Continuous Active Defence by carrying out the

threat modeling at the frequency decided above. After
each threat modeling exercise, calculate either STRM(t)
(if reliability data is not available) or SPRM(t) (if
reliability data is available). If the value of the metric
falls below T (see Figure 2), secure additional
vulnerabilities until the value is above T.

4. If there has been a change to the system, such as new
equipment or new software, do an immediate threat
analysis, calculate one of the metrics, and add security
if necessary based on T. Then, proceed with the
frequency for threat modeling decided above.

The value of T and the frequency of threat modeling can
be determined by the same threat analysis team mentioned
above. The values would depend on the following:
• The potential value of the sensitive data – the more

valuable the data is to a thief, a malicious entity, or a
competitor, the higher the threshold and frequency
should be.

• The damages to the organization that would result, if
the sensitive data were compromised – of course, the
higher the damages, the higher the threshold and
frequency.

• The current and likely future attack climate – consider
the volume of attacks and the nature of the victims, say
over the last 6 months; if the organization’s sector or
industry has sustained a large number of recent attacks,
then the threshold and frequency need to be higher.

• Consider also potential attacks by nation states as a
result of the political climate; attacks by individual
hacktivist groups such as Anonymous or WikiLeaks
may also warrant attention.

In general, a computer system should be as secure as
possible. Therefore, T above 80% and a frequency of
weekly would not be uncommon. However, whatever the
threshold and frequency, the organization must find them
acceptable after considering the above factors. The financial
budget available for securing vulnerabilities also plays an
important role here, since higher thresholds call for securing
more vulnerabilities, which means more financial resources
will be needed.

B. Other CAD Application Areas

CAD may also be applied to a specific type of
vulnerabilities. An example of this application is dealing
with inside attacks. If the organization is particularly
susceptible to inside attacks, it can decide to apply CAD to
vulnerabilities that can be exploited for inside attacks. In
this case, some of the vulnerabilities may be weaknesses of
the organization itself, e.g., ineffective screening of job
applicants, and the securing measures may not be
technological, e.g., having an ombudsman for employee
concerns. A list of questions that can be used to identify
vulnerabilities to inside attack is given in [6].

CAD can be applied to a specific subset of
vulnerabilities that the organization deems are crucial to its
mission. For example, a cloud service provider would deem
the protection of clients’ data crucial to its mission. It can
choose to apply CAD to vulnerabilities that are specific to
its data storage capabilities, and also apply CAD to its
computer system as a whole.

CAD may also be applied to code level vulnerabilities.
In this case, the frequency of application will depend on
how often the code is changed, due to patching and the
addition or deletion of functionality. The threat modeling
would have to be tailored to code and would be more of a
code inspection exercise.

Finally, CAD may be applied to protect critical
infrastructure and defence systems. The power grid is an

96Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

example of critical infrastructure. The development of the
metrics only considers vulnerabilities and reliabilities,
which are also found in critical infrastructure and defence
systems. However, the threat analyses would involve
different types of threats, and the securing measures, would
of course, need to be appropriate for the vulnerability. For
example, the vulnerability of transformer sabotage in a
power grid may need to be secured by the use of intrusion
alarms. As another example, the vulnerability of a
retaliatory missile site being preemptively destroyed may
need to be secured by putting the missile on a mobile
platform. The application of CAD to protect critical
infrastructure and defence systems is a subject of future
research.

V. RELATED WORK
Related work found in the literature includes attack

surface metrics, risk and vulnerabilities assessment,
vulnerabilities classification, threat analysis, other, and this
author’s previous work.

A system’s attack surface is related to a SL; it is
proportional to the inverse of a SL since the lower the attack
surface, the higher the SL. Stuckman and Purtilo [7] present
a framework for formalizing code-level attack surface
metrics and describe activities that can be carried out during
application deployment to reduce the application’s attack
surface. They also describe a tool for determining the attack
surface of a web application, together with a method for
evaluating an attack surface metric over a number of known
vulnerabilities. Munaiah and Meneely [8] propose function
and file level attack surface metrics that allow fine-grained
risk assessment. They claim that their metrics are flexible in
terms of granularity, perform better than comparable metrics
in the literature, and are tunable to specific products to
better assess risk.

In terms of risk and vulnerabilities assessment, Islam et
al. [9] present a risk assessment framework that starts with a
threat analysis followed by a risk assessment to estimate the
threat level and the impact level. This leads to an estimate of
a security level for formulating high-level security
requirements. The security level is qualitative, such as
“low”, “medium”, and “high”. Vanciu et al. [10] compare an
architectural-level approach with a code-level approach in
terms of the effectiveness of finding security vulnerabilities.
Wang et al. [11] discuss their work on temporal metrics for
software vulnerabilities based on the Common Vulnerability
Scoring System (CVSS) 2.0. They use a mathematical
model to calculate the severity and risk of a vulnerability,
which is time dependent as in this work. Gawron et al. [12]
investigate the detection of vulnerabilities in computer
systems and computer networks. They use a logical
representation of preconditions and post conditions of
vulnerabilities, with the aim of providing security advisories
and enhanced diagnostics for the system. Wu and Wang
[13] present a dashboard for assessing enterprise level
vulnerabilities that incorporates a multi-layer tree-based
model to describe the vulnerability topology. Vulnerability
information is gathered from enterprise resources for display
automatically. Farnan and Nurse [14] describe a structured

approach to assessing low-level infrastructure vulnerability
in networks. The approach emphasizes a controls-based
evaluation rather than a vulnerability-based evaluation.
Instead of looking for vulnerabilities in infrastructure, they
assume that the network is insecure, and determine its
vulnerability based on the controls that have or have not
been implemented. Neuhaus et al. [15] present an
investigation into predicting vulnerable software
components. Using a tool that mines existing vulnerability
databases and version archives, mapping past vulnerabilities
to current software components, they were able to come up
with a predictor that correctly identifies about half of all
vulnerable components, with two thirds of the predictions
being correct. Roumani et al. [16] consider modeling of
vulnerabilities using time series. According to these
researchers, time series models provide a good fit to
vulnerability datasets and can be used for vulnerability
prediction. They also suggest that the level of the time series
is the best estimator for prediction.

With regard to vulnerabilities classification, Spanos et
al. [17] look at ways to improve CVSS. They propose a new
vulnerability scoring system called the Weighted Impact
Vulnerability Scoring System (WIVSS) that incorporates
the different impact of vulnerability characteristics. In
addition, the MITRE Corporation [18] maintains the
Common Vulnerability and Exposures (CVE) list of
vulnerabilities and exposures, standardized to facilitate
information sharing.

In terms of threat analysis, Schaad and Borozdin [19]
present an approach for automated threat analysis of
software architecture diagrams. Their work gives an
example of automated threat analysis. Sokolowski and
Banks [20] describe the implementation of an agent-based
simulation model designed to capture insider threat
behavior, given a set of assumptions governing agent
behavior that pre-disposes an agent to becoming a threat.
Sanzgiri and Dasgupta [21] present a taxonomy and
classification of insider threat detection techniques based on
strategies used for detection.

The following publications fall into the other category.
Kotenko and Doynikova [22] investigate the selection of
countermeasures for ongoing network attacks. They suggest
a selection technique based on the countermeasure model in
open standards. The technique incorporates a level of
countermeasure effectiveness that is related to the reliability
of measures securing vulnerabilities, used in the SPRM(t)
metric proposed in this work. Ganin et al. [23] present a
review of probabilistic and risk-based decision-making
techniques applied to cyber systems. They propose a
decision-analysis-based approach that quantifies threat,
vulnerability, and consequences through a set of criteria
designed to assess the overall utility of cybersecurity
management alternatives.

This author’s directly related work includes [24] and [6],
where the latter is an expanded version of the former. This
work improves on these previous works by adding a) time
dependency, together with the notion that an organization’s
security level needs to be continuously evaluated, b) a new
metric incorporating the reliability of the securing measures,

97Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

and c) a description of new application areas.

VI. CONCLUSIONS AND FUTURE RESEARCH
Since attackers continuously probe for new

vulnerabilities to exploit, an organization cannot afford to
assess its computer system’s vulnerabilities once, secure
some of the vulnerabilities, and then do nothing further.
Rather, the organization needs to assess and secure its
vulnerabilities on a continuous basis, i.e., perform CAD.
This work has proposed two conceptually clear SL metrics
that can be used to evaluate a computer system’s security
level at any point in time for CAD. One metric assumes that
the measures securing vulnerabilities are totally reliable; the
other considers the measures to be only partially reliable.
CAD may be applied to specific types of vulnerabilities
(e.g., vulnerabilities to insider attack), groupings of
vulnerabilities that require special attention, specific
application areas such as critical infrastructure and defence,
and even at the code level.

There are many security metrics in the literature, as
seen in Section V. The metrics in this work have the
advantages of being easy to understand, and easy to
calculate, which may be needed to convince management to
provide the necessary resources required for CAD.

Future research includes formulations of other security
metrics, the application of security metrics to critical
infrastructure and defence, improving the methods for threat
modeling, and exploring how this work may complement
work in the literature and in the standardization community.

REFERENCES
[1] Identity Force, “2017 Data breaches – the worst so far,”

retrieved: July, 2018.
https://www.identityforce.com/blog/2017-data-breaches

[2] Dark Reading, “2017 Smashed world’s records for most data
breaches, exposed information,” retrieved: July, 2018.
https://www.darkreading.com/attacks-breaches/2017-
smashed-worlds-records-for-most-data-breaches-exposed-
information/d/d-
id/1330987?elq_mid=83109&elq_cid=1734282&_mc=NL_D
R_EDT_DR_weekly_20180208&cid=NL_DR_EDT_DR_we
ekly_20180208&elqTrackId=700ff20d23ce4d3f984a1cfd31cb
11f6&elq=5c10e9117ca04ba0ad984c11a7dfa14b&elqaid=831
09&elqat=1&elqCampaignId=29666

[3] G. Yee, “Visualization and prioritization of privacy risks in
software systems,” International Journal on Advances in
Security, issn 1942-2636, vol. 10, no. 1&2, pp. 14-25, 2017.

[4] ITEM Software Inc.,“Reliability prediction basics”, retrieved:
July, 2018.
http://www.reliabilityeducation.com/ReliabilityPredictionBasi
cs.pdf

[5] C. Salter, O. Saydjari, B. Schneier, and J. Wallner, “Towards
a secure system engineering methodology,” Proc. New
Security Paradigms Workshop, pp. 2-10, 1998.

[6] G. Yee, “Optimal security protection for sensitive data,”
International Journal on Advances in Security, vol. 11, no.
1&2, pp. 80-90, 2018.

[7] J. Stuckman and J. Purtilo, “Comparing and applying attack
surface metrics,” Proceedings of the 4th International
Workshop on Security Measurements and Metrics (MetriSec
’12), pp. 3-6, Sept. 2012.

[8] N. Munaiah and A. Meneely, “Beyond the attack surface,”
Proceedings of the 2016 ACM Workshop on Software

Protection (SPRO ’16), pp. 3-14, October 2016.
[9] M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson, “A

risk assessment framework for automotive embedded
systems,” Proc. 2nd ACM International Workshop on Cyber-
Physical System Security (CPSS ’16), pp. 3-14, 2016.

[10] R. Vanciu, E. Khalaj, and M. Abi-Antoun, “Comparative
evaluation of architectural and code-level approaches for
finding security vulnerabilities,” Proceedings of the 2014
ACM Workshop on Security Information Workers (SIW ’14),
pp. 27-34, Nov. 2014.

[11] J. A. Wang, F. Zhang, and M. Xia, “Temporal metrics for
software vulnerabilities,” retrieved: July, 2018.
http://www.cs.wayne.edu/fengwei/paper/wang-csiirw08.pdf

[12] M. Gawron, A. Amirkhanyan, F. Cheng, and C. Meinel,
“Automatic vulnerability detection for weakness visualization
and advisory creation,” Proc. 8th International Conference on
Security of Information and Networks (SIN ’15), pp. 229-236,
2015.

[13] B. Wu and A. Wang, “A multi-layer tree model for enterprise
vulnerability management,” Proceedings of the 2011
Conference on Information Technology Education (SIGITE
’11), pp. 257-262, October 2011.

[14] O. Farnan and J. Nurse, “Exploring a controls-based
assessment of infrastructure vulnerability,” Proc. International
Conference on Risks and Security of Internet and Systems
(CRiSIS 2015), pp. 144-159, 2015.

[15] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” Proc. 14th
ACM Conference on Computer and Communications Security
(CCS ’07), pp. 529-540, 2007.

[16] Y. Roumani, J. Nwankpa, and Y. Roumani, “Time series
modeling of vulnerabilities,” Computers and Security, Vol. 51
Issue C, pp. 32-40, June 2015.

[17] G. Spanos, A. Sioziou, and L. Angelis, “WIVSS: A new
methodology for scoring information system vulnerabilities,”
Proc. 17th Panhellenic Conference on Informatics, pp. 83-90,
2013.

[18] MITRE, “Common vulnerabilities and exposures”, retrieved:
July, 2018. https://cve.mitre.org/

[19] A. Schaad and M. Borozdin, “TAM2: Automated threat
analysis,” Proc. 27th Annual ACM Symposium on Applied
Computing (SAC ’12), pp. 1103-1108, 2012.

[20] J. Sokolowski and C. Banks, “An agent-based approach to
modeling insider threat,” Proc. Symposium on Agent-
Directed Simulation (ADS '15), pp. 36-41, 2015.

[21] A. Sanzgiri and D. Dasgupta, “Classification of insider threat
detection techniques,” Proc. 11th Annual Cyber and
Information Security Research Conference (CISRC ’16),
article no. 25, pp. 1-4, 2016.

[22] I. Kotenko and E. Doynikova, “Dynamical calculation of
security metrics for countermeasure selection in computer
networks,” Proc. 2016 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based
Processing, pp. 558-565, 2016.

[23] A. Ganin, P. Quach, M. Panwar, Z. A. Collier, J. M. Keisler,
D. Marchese, and I. Linkov, “Multicriteria decision
framework for cybersecurity risk assessment and
management,” Risk Analysis, pp. 1-17, 2017.

[24] G. Yee, “Assessing security protection for sensitive data,”
Proc. Eleventh International Conference on Emerging
Security Information, Systems and Technologies
(SECURWARE 2017), pp. 111-116, 2017.

98Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

