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Abstract—The Bobox framework is a platform for parallel
data processing. It can even be used as a database query
evaluation engine. However, it does not contain the means
necessary to compile and optimize the queries. A specialized
front-end is needed. This paper presents one such front-end,
which handles queries written using the SPARQL language.
The front-end also performs query optimizations taking the
specific features of the SPARQL language into account.
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I. INTRODUCTION

The SPARQL language [1] is one of the most popular
RDF (Resource Description Framework [2]) query lan-
guages. There are several database engines that are capable
of evaluating SPARQL. Unfortunately, their performance is
still behind state-of-the-art relational and XML databases.

The Bobox parallel framework was designed to support
development of data-intensive parallel computations [3]. One
of the main motivation was to use it in web semantization
research we are currently conducting [4]. The main idea
behind Bobox is to connect large number of relatively
simple computational components into a non-linear pipeline.
This pipeline is then executed in parallel, but the interface
used by the computational components is designed in such
a way that they do not need to be concerned with the
parallel execution – issues like scheduling, synchronization
and race conditions. This system may be easily used for
database query evaluation, but a separate query compiler
and optimizer has to be created for each query language,
since Bobox only supports a custom low-level interface for
the definition of the structure of the pipeline.

Traditionally (for example in relational databases), query
execution plans have the form of directed rooted trees where
the edges indicate the flow of the data and all are directed
to the root. The nodes of the tree are the basic operations
used by the evaluation engine, like full table scan, indexed
access, merge join, filter etc. This maps well to the Bobox
archtecture, since the tree is a special case of the non-linear
pipeline supported by the system. Each operation is mapped
to one (or possibly a fixed combination of) components and
the components are connected in the same manner as in the
original evaluation plan.

We decided to take similar approach for SPARQL. An
example of a query evaluation plan is shown in the Figure
1. While the operations used by the SPARQL algebra
resemble operations used in the relational algebra, there are

SELECT
1

JOIN [NestedLoops]

1

?yr

JOIN [NestedLoops]

1

?journal, ?yr

SCAN [Index]
?journal  dcterms:issued  ?yr

1610

?journal, ?yr

SCAN [HashTable]
?journal  dc:title  ’Journal 1 (1940)’^^xsd:string

1

?journal

SCAN [HashTable]
?journal  rdf:type  bench:Journal

47

?journal

Figure 1. Query evaluation plan example

some more or less significant differences. This prevents the
relational algebra from being used directly by the SPARQL
evaluation engine. Furthermore, some optimizations used
in relational optimizers are not applicable for SPARQL,
since the several of the transformations that are used when
optimizing relational queries do not preserve the semantics
of the SPARQL queries.

The rest of the text is organized as follows: first, the issues
related to SPARQL execution, most notably the difference
from relational algebra, are discussed in the Section II.
Next, the Section III describes data representation used by
our system and the statistics we collect about the queried
data set. Sections IV and V describe the way in which the
query is parsed, transformed and the way in which the final
execution plan is generated from the transformed query. The
Section VI provides some evaluation of our approach. The
last section concludes the paper and discusses future work.

II. SPARQL

The sematics of the SPARQL language is defined using
the SPARQL algebra. The algebra is similar to the relational
algebra, but there are several important differences.

The relational algebra works with relations (tables), while
the SPARQL algebra uses sets of variable mappings. Unlike
SQL, there are no NULL values in SPARQL. Instead, the
variable is left unbound. This is not just a minor technicality,
it significantly affects the way in which some operations
behave. There is no difference between an unbound variable
and variable that is not present at all. For example the
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SPARQL equivalent of left natural join produces a row (a
variable mapping to be exact) even when the tested variable
is unbound (which would also happen if the variable was not
present in the query at all), unlike SQL where the operation
is null-rejecting. This may prevent some optimizations like
join-reordering to be performed on SPARQL since they
could change the results under certain conditions. These
optimizations may still be performed, but care must be taken
to mind the specific constraints imposed by the SPARQL
algebra.

There are two main circumstances when this behavior
demonstrates. First, consider the following simple SPARQL
query with a OPTIONAL expression:

PREFIX f o a f : <h t t p : / / xmlns . com / f o a f /0 .1 / >
SELECT ? person , ? c o n t a c t
WHERE {

? p e r s o n f o a f : mbox ? c o n t a c t
OPTIONAL( ? p e r s o n f o a f : phone ? c o n t a c t )

}

In this query, the contact variable is used both inside
and outside the OPTIONAL pattern. The resulting behavior
is that if the person has an email (foaf:mbox) the mail is
returned but if the mail is not present, but a phone number is
(foaf:phone), the phone number is returned. Performing this
operation is SQL requires a more complicated combination
of operations.

The second situation where different definition of left
joins demonstrates is when the OPTIONAL branch contains
FILTER operation. The operation cannot be performed on
just the data from that branch – it is an integral part of the
join operation and may filter even the data from the non-
optional branch, as in the following example:

PREFIX f o a f : <h t t p : / / xmlns . com / f o a f /0 .1 / >
SELECT ? person , ? c o n t a c t
WHERE {

? p e r s o n f o a f : age ? x
OPTIONAL( ? p e r s o n f o a f : name ? b FILTER ( ? x>18))

}

On the whole, this means that we cannot directly apply
optimization methods that were developed for SQL.

III. DATA REPRESENTATION AND STATISTICS

Currently, we only work with local data sets. We assume
that the data is stored in the most general model – one
”triple” table where all triples are stored. Besides that, we
have several indexes, which are in fact the same table but
with a specified order (using for example a B-tree). For
example, one index is sorted by predicate, subject and the
object. This may be used for example when we know the
values of predicate and subject and we need to get all objects
(and they are already sorted).

Besides the actual data and indexes, we need further
information – statistics about data for the cost based opti-
mizations. Since the number of different predicates is usually
very limited, we can afford to store the number of distinct

Figure 2. SQGM example

Figure 3. SQGPM example

triples for each predicate. On the other hand, the number
of subjects may be very high, so we only store the total
number of triples and the number of distinct predicates.
For the objects we use equal-height histograms [5]. This
provides a balance between the size of the statistics and
their precision – we do not store the number of triples for
each object value, but if one value is much more common
than the others, it would be detected from the histograms.
These statistics allow us approximate selectivity of basic
graph patterns.

We also try to make some approximations of the results
of join operations. We consider the average selectivity of
the join of two triples a1, a2, a3 and b1, b2, b3 with the
join condition in the form ai = bj – we only store one
number for each possible form (9 combinations) of the
join condition. Besides these general statistics, we use more
detailed information for situations where both predicates are
known. Then, there are four combinations on join conditions
(a1, p, a2 and b1, q, b2 joined on ai = bj) for each pair of
predicates. This means we have 4 ∗ n2 values where n is
the number of predicates. This should still be manageable
amount of information.

During the optimization, the query evaluation plan is
stored in the form of the SQGPM (SPARQL Query Graph
Pattern Model) which we designed as an extension of the
SQGM model [6]. The difference is that instead of individual
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operations, the nodes of the tree are formed by groups of
operation – a group is a set of operations where the order
in which the operations are evaluated does not affect the
result of the operation. A SQGM model can be created by
replacing each group of operations with a tree composed
of those operations. This representation allows us to do
transformations that are performed before the order of join
operations is determined more easily, since the model is not
yet made unnecessarily complicated by the “insignificant”
joins (those whose order does not change the result of the
query).

An example of the SQGM is shown in the Figure 2 and the
corresponding SQGPM model in the Figure 3. They show
models of the example query from the previous section.

IV. QUERY PARSING AND REWRITING

The compilation of a query is performed in several
consecutive steps. The first step is query parsing. The input
stream is parsed into the SQGPM model using standard
methods of lexical and syntactical analysis.

The next step is query rewriting. Since the queries to be
processed are not expected to be written optimally (duplic-
ities, constant expressions, inefficient conditions, etc.), the
goal of this phase is normalization of the model. There are
four operations performed on the SQGPM model:

• Merging of included Group graph patterns
• Duplicity elimination
• Propagation of filter, distinct and reduced
• Projection of variables
Resulting tree is functionally equivalent to the original

one, but its evaluation can be more efficient and better
execution plan can be generated.

A. Merging of included group graph patterns

The goal of the merging phase is to detect group graph
patterns that can be merged with their parent group patterns
while preserving the equivalence of the SQGPM.

Consider the following query:
SELECT ∗
WHERE { ? x ? a ? b . { ? x ? y ? z . { ? a ? b ? c } } }

There is only one possible operation ordering when the
triples are grouped this way:

Join(?x ?a ?b, Join(?x ?y ?z, ?a ?b ?c))

Using such ordering the nested Join operation generates
a cartesian product that is consumed by the outer Join
operation. However, an equivalent representation of the
query is as:

SELECT ∗
WHERE { ? x ? a ? b . ? x ? y ? z . ? a ? b ? c }

This representation results in wider range of operation
ordering, e.g.:

Join(?x ?y ?z, Join(?x ?a ?b, ?a ?b ?c))

Such ordering does not produce the cartesian product; it
uses smaller result sets and therefore is more efficient.

Nevertheless, not every group graph pattern (GGP) can
be merged to its parent GGP. The problem arises if GGP
contain both unbound variables and a Filter that defines
restrictions on the variables. These variables may be bound
in another GGP, in which case changing the scope of the
Filter operation may change the result of the query.

Bound variables cannot change their value, they are
safe with respect to the FILTER operation. The following
example IV-A demonstrates a case where merging of GGPs
is not possible:

SELECT ∗
WHERE {

? s r d f : t y p e ? t .
{P . FILTER ( bound ( ? t ) ) }

}

P represents a graph pattern group for which the result set
contains the variable ?s and possibly unbound variable ?t.
Then the original representation rejects all tuples containing
the unbound variable ?t before joining the triple in the
parent GGP. On the other hand, if we first join the nested
GGP to the parent one and then perform the Filter, the
variable ?t will be bound by the parent GGP and the Filter
never removes such result.

B. Duplicity elimination

The goal of the next phase is to eliminate duplicate graph
patters. The following example demonstrates the problem:

SELECT DISTINCT ∗
WHERE {

? o b j r d f : t y p e ? t .
? o b j r d f : t y p e ? t

}

The query contains two equal triples ?obj rdf:type
?t. The execution of the second triple and the subsequent
join will not generate any new variable mapping not present
originally.

If only bound variables are present, there is no combina-
tion of rows that would produce a new, unique row. The size
of the result set is equal to the input set (possibly increased
by duplicates). Then the DISTINCT modifier removes all
duplicates which makes the result of the join equivalent to
the original results of the ?obj rdf:type ?t pattern.

This optimization may only be performed under the
following conditions:

• Duplicate may not under any circumstances generate
unbound variables

• The query is of the type DISTINCT or REDUCED

C. Propagation of Filter

Propagation of Filter means that we try to move it to the
lowest level (closest to the leaves of the tree that represents
the query plan) where all variables used in the Filter are
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still present. Early filtering reduces the size of the result
sets which speeds up subsequent operations.

Operation Filter where the expression is in a conjunctive
form is split into subexpressions using the operator AND.
Such splitting reduces the expression domain (the set of the
variables used in the Filter) and increases the probability of
its lower placement in the resulting tree.

Nevertheless, the Filter operation cannot be propagated
arbitrarily; presence of unbound variables prevents the prop-
agation; see the following example.

SELECT DISTINCT ∗
WHERE { A . FILTER ( bound ( ? y ) ) . { B }}

where:

• A, B are groups of operations with results:
A={{?x=1,?y=1}}
B={{?x=1}, {?x=2, ?y=2}}

• FILTER(bound(?y)) is a filter that uses the (pos-
sibly unbound) variable ?y

The result is the set {{?x=1, ?y=1}}. If we propagated
the filter to the nested pattern, the result set would be
empty. Therefore we defined safe and unsafe variables and
conditions for Filter propagation:

• Safe variable is bound for every possible tuple
• Unsafe variable can be unbound for some tuple

If the Filter’s domain contains unsafe variables then it
is ordered behind the last group graph pattern operation in
the respective operation tree. If the Filter domain does not
contain unsafe variables and it is not a part of a group graph
pattern which forms the OPTIONAL branch of a LeftJoin
then it:

• can be reordered behind the following operation (in a
direction to the root)

• can be reordered before the preceding operation (in a
direction to leaves) if it is not an OPTIONAL branch
of the LeftJoin operation and all used variables are
available.

The Filter operations that are part of the OPTIONAL
branch of the LeftJoin operation cannot be reordered, since
the SPARQL language defines it to be an integral part of the
LeftJoin operation.

D. Propagation of Distinct and Reduced

If the query uses DISTINCT or REDUCED modifier,
the result set should have no duplicates – they should be
eliminated as the last step of the query evaluation. However,
under most circumstances, we can add this operation even
to deeper levels of the query plan, especially after Join (if
it is a merge join) and OrderBy operations, since the data is
ordered and the elimination of duplicates can be done very
cheaply.

Figure 4. Tree types

V. EXECUTION PLAN GENERATION

After the transformations described in the previous sec-
tions, we still need to transform the groups present in
the SQGPM model into a tree of join operations. This is
performed by a non-exhaustive search of the space of all
possible join types and combinations. We also have to select
the best strategy to access the data stored in the physical
store – select the best index to use, if any.

The query execution plan is built from bottom to the top
using dynamic programming to search a part of the search
space of all possible joins. We only consider left-deep trees
of join operations, i.e. the right operand of a join operation
may not be another join operation. See the Figure 4 for an
example – T1 is a left-deep tree, T2 is right-deep and T3 is
a bushy tree.

There is one exception to this rule. If there is no other way
to add another join operation than adding one that would
generate cartesian product, we try building the best plan
for the rest of the operations (recursively using the same
algorithm) and then join that plan with the one we already
have. This may eliminate the need to generate cartesian
products and results in an execution plan in the form of
a bushy tree. This modification greatly improved plans for
some of the queries we have tested and significantly reduced
the depth of the trees – some of the results were almost a
balanced binary tree.

The whole execution plan generation is performed by
the following algorithm according to the statistics and price
function that are able to provide an approximate cost for a
part of any execution (sub)plan:

g e n e r a t e p l a n ( g r o u p g r a p h p a t t e r n )
begin

o p e r a t o r s := g r o u p g r a p h p a t t e r n . c h i l d s ;
b u c k e t s := empty ;
r e s u l t s := empty ;

/ / R a t i n g o f f e a s i b l e da ta a c c e s s o p t i o n s
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foreach op in o p e r a t o r s do
foreach method in op . methods ( ) do

/ / Group o p e r a t o r r e c u r s i v e c a l l
i f method i s group then

method := g e n e r a t e p l a n ( method ) ;
end i f

c := c o s t o f ( method ) ;
s := s o r t o r d e r o f ( method ) ;

/ / The c h e a p e s t o n l y
i f b u c k e t s [ s ] . c o s t > c then

b u c k e t s [ s ] := method ;
end i f

end f o r
end f o r

/ / Tree e x t e n s i o n
f o r i :=1 t o | o p e r a t o r s | do

foreach t r e e in b u c k e t s do
i n o p s := n o t used o p e r a t o r s in t r e e ;
foreach op in i n o p s do

/ / H e u r i s t i c s : s k i p t h e o p e r a t o r s
/ / t h a t g e n e r a t e a v o i d a b l e
/ / c a r t e s i a n p r o d u c t s
i f c a r t h e s i a n && ! r e q u i r e d then

co n t i n u e ;
end i f

/ / Using j o i n i m p l e m e n t a t i o n s
foreach j t y p e in j o i n t y p e s do

/ / H e u r i s t i c s : l e f t −deep t r e e
n e w t r e e := o p j o i n ( t r e e , op ) ;
c := c o s t o f ( n e w t r e e ) ;
s := s o r t o r d e r o f ( n e w t r e e ) ;

i f b u c k e t s [ s ] . c o s t > c then
b u c k e t s [ s ] := n e w t r e e ;

end i f
end f o r

end f o r
end f o r
b u c k e t s := r e s ;

end f o r

/ / R e s u l t : t h e c h e a p e s t f e a s i b l e p lan
re turn min from r e s ;

end

The main goal of the design of this algorithm is to
minimize the number of sort operations, make the best use of
merge-join operations and avoid joins that generate cartesian
products.

VI. EVALUATION

An efficient implementation of the evaluation components
for the Bobox system that could execute the generated query
plans is not yet available. This allowed us to perform only
two types of experiments so far: manually checking the plans
generated by the compiler and comparing the cost estimates
produced by the compiler with the actual size of the query
result and intermediate results.

We have tested the queries provided by the SP2Bench
[7] benchmark suite for SPARQL. The Figure 5 shows an
example the plan produced for the following query:

Figure 5. A simple query example

SELECT
5954

MODIFIER[Distinct ]
5954

?name, ?person

JOIN [NestedLoops]
(?name = ?name2)

5954

?name, ?person

MODIFIER[Distinct ]
2750

?name, ?person

JOIN [Merge Join]

2750

?name, ?person

MODIFIER[Distinct Order By ]
2749

?person

JOIN [Merge Join]

2749

?person

SCAN [Index]
?article  rdf:type  bench:Article

3969

?article

SCAN [Index]
?article  dc:creator  ?person

6770

?article, ?person

SCAN [Index]
?person  foaf:name  ?name

4165

?name, ?person

MODIFIER[Distinct ]
980

?name2

JOIN [Merge Join]

980

?name2

MODIFIER[Distinct Order By ]
979

?person2

JOIN [Merge Join]

979

?person2

SCAN [Index]
?inproc  dc:creator  ?person2

6770

?inproc, ?person2

SCAN [Index]
?inproc  rdf:type  bench:Inproceedings

1413

?inproc

SCAN [Index]
?person2  foaf:name  ?name2

4165

?name2, ?person2

Figure 6. Example of a bushy tree

SELECT ? a r t i c l e
WHERE {

? a r t i c l e r d f : t y p e bench : A r t i c l e .
? a r t i c l e ? p r o p e r t y ? v a l u e
FILTER ( ? p r o p e r t y =swrc : month )

}

A more complex example that demonstrates the bushy
trees that may be produced by the compiler is shown in
the Figure 6. We were able to compile all SELECT queries
defined by the SP2Bench benchmark with satisfying results.

VII. CONCLUSION

We have created a working compiler that processes
SPARQL queries and generates plans to be executed by the
Bobox system. It performs a set of pre-defined optimizations
to transform the execution plan into an equivalent but more
efficient one. Then the query is further optimized by join
reordering using dynamic programing and a cost model to
asses the quality of the proposed execution plans.

An obvious next step is to implement the back-end of
the SPARQL processor into Bobox and perform experiments
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on an actual physical RDF store. We have already created
a subset of the back-end that can evaluate some of the
SP2Bench queries that have been compiled by hand to use
only the specified subset of operations. The results of these
experiments seem promising especially in comparison to
current stat-of-the-art systems like Sesame [8].
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