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Abstract—In this paper, a novel localization approach based
on the use of a mobile beacon is proposed for wireless sensor
networks. The localization system consists of a mobile beacon
and beacon receiving modules on each sensor node for mea-
suring distance. The localization is based on the application of
multidimensional scaling technique and a local map registration
approach. The approach is designed to operate without requiring
path planning for the mobile beacon. It estimates the relative
coordinates of the sensor nodes, and does not require the location
information of the mobile beacon, making them attractive for
applications where access to GPS signals is not available. Finally,
computer simulations are used to evaluate the localization per-
formance of the proposed approaches under different scenarios.

Index Terms—wireless sensor network, sensor localization,
mobile beacon, multilateration, MDS, map registration, path
planning, GPS, least squares

I. INTRODUCTION

Sensor node localization is a highly desirable capability for

wireless sensor network applications. Localization refers to

the process of estimating the coordinates of the sensor nodes

in a network based on various types of measurements and

with the aid of a number of beacon or anchor nodes that

know their locations. A beacon node broadcasts beacon signals

with limited information content. Anchors are required for

sensor localization in a global coordinate system. The location

information of an anchor or beacon node can be hard-coded

or acquired by using localization systems such as a Global

Positioning System (GPS) receiver. There are a number of

reasons why sensor localization is important. For example,

sensor location information can be used for tagging sensory

data, which is important for environmental monitoring and

military surveillance applications. The operation of a sensor

network relies on sensor location information for uncovering

and healing coverage holes in the network. Sensor location

information can also be used to perform efficient spatial

querying or tasking, e.g., scoping the query or task propagation

to sensor nodes in specific locations or geographic regions

without the need to flood the whole network, significantly

reducing the network overhead and minimize consumption of

energy and resources in the network.

Recently, many sensor localization techniques have been

developed for wireless sensor network applications [1][2]. In

this paper, we focus on mobile beacon-based sensor local-

ization approaches. Localization using mobile beacons has

many advantages over those that use static beacons. The

use of mobile beacons pushes the hardware complexity and

power consumption requirement on the mobile beacon, which

is less resource constrained and has access to the required

power for repetitive message transmission to sensor nodes

to be localized. In addition, the use of mobile beacons can

significantly reduce the cost of sensor deployment. A mobile

beacon transmitting at different locations can be considered

equivalent of multiple static beacon deployment. Mobile bea-

cons can move and easily avoid environmental obstructions.

Using mobile beacons can also avoid the problem of inter-

ference and collision of beacon signals due to uncoordinated

beacon transmissions of static beacons. In [3], Sichitiu et al.

proposed a mobile beacon based localization method, in which

the received signal strength indicator (RSSI) was used for

ranging. A mobile beacon traverses the deployment area while

broadcasting beacon signals. Sensor nodes that receive beacon

signals infer proximity constraints to the mobile beacon, and

their positions are estimated using a Bayesian approach. In

[4], a solution called the Walking GPS was proposed. In this

approach, a mote equipped with a GPS receiver (mobile bea-

con) is carried by a sensor deployment person and periodically

broadcasts its location. A sensor node being deployed infers

its position from the location broadcast by the GPS mote.

This approach is simple and cost effective. Its disadvantage is

also obvious: the localization results are directly determined

by GPS accuracy. Galstyan et al. [5] proposed a distributed

online localization algorithm based on a moving beacon, in

which sensor nodes use geometric constraints induced by both

radio connectivity and sensing to reduce the uncertainty of

their positions. The authors then generalized the approach to

use a moving target with a priori unknown coordinates. In

[6], a refined approach is proposed, which uses mobile an-

chor scenarios for anchor information distribution. Statistical

techniques are adopted for localization with inaccurate range

data. In [7], a walking beacon-assisted localization is discussed

and two distributed localization methods are proposed where

sensor nodes compute their position estimates based on the

range-free technique. The first method uses the arrival and

departure information of a walking beacon and the second

method exploits the variance of the RSS measurements from

the beacon.

In this paper, we propose a novel localization approach,

referred to as the MAP approach, based on the use of a

mobile beacon for wireless sensor network applications. The

localization hardware includes a mobile beacon and a beacon
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Fig. 1. Block diagram of the mobile beacon and sensor node.

receiving module on each sensor node. The mobile beacon

moves in the sensor deployment area while broadcasting

beacon signals to the network of sensor nodes. When a sensor

node receives a beacon signal, it can estimate its distance to

the mobile beacon at the time of beacon transmission. In the

proposed approach, the user carries the mobile beacon and

deploys sensor nodes. When a sensor node is deployed, the

user turns on its power and set the mobile beacon to transmit

a set of beacon signals. Any previously deployed nodes that are

within the transmission range of the mobile beacon will receive

the beacon signals and estimate their distances to the sensor

node being placed. The inter-node distance measurements are

obtained by using the mobile beacon, and the mobile beacon

does not need a pre-planned path. All sensor nodes then

pass the data back to a central node for localization using a

map registration algorithm developed by Zhou et al. [10][11].

The rest of the paper is organized as follows. In Section

II, the mobile beacon system is discussed with a detailed

description of the hardware systems on both the mobile beacon

and the sensor nodes. The ranging mechanism of the mobile

beacon is also discussed. The proposed MAP localization

approach is also presented in Section III. In Section IV,

computer simulations are used to demonstrate and compare the

performance of the proposed mobile beacon based localization

approaches. Finally, the simulation results are analyzed and

conclusions are presented.

II. SYSTEM HARDWARE AND RANGING

Fig. 1 is the the block diagram for the mobile beacon and

sensor node. The mobile beacon consists of a GPS receiver and

an RF/ultrasound transmitter in addition to a processor and a

communication module. All sensor nodes in the network are

equipped with an RF/ultrasound receiver module. Note that the

GPS receiver is required for the mobile beacon when global

coordinates of sensor nodes are required. A beacon signal

contains an RF message followed by an ultrasound pulse that

is synchronized in time. The RF message contains the beacon

sequence number, time stamp and the current location of the

mobile beacon (optional and obtained through the onboard

GPS receiver).

When a sensor node receives a beacon signal, it can estimate

its distance to the mobile location at the time of beacon

transmission based on the TDOA between the RF signal and

the ultrasound pulses. There are different ranging techniques

including those based on time-of-flight (TOF), TDOA, and

RSSI etc. [2]. They typically use either RF, acoustic or optical

signals. The extreme fast propagation speed of RF signals

makes them impractical for TOF ranging due to the tight

time synchronization requirements for sensor nodes that often

operate at a low clock frequency. The relatively inexpensive

and simple RSSI based ranging tends to be highly susceptible

to environmental interference and is known to be unpredictable

for distance estimation. The ranging approach used in this

study is similar to the one used by the Cricket system [12]. The

underlying principle of RF/ultrasound ranging is to use their

different propagation speeds in the air. The fact that ultrasound

waves propagate at a much slower speed than RF in the air

makes it possible for low cost implementation of accurate

ranging. The TOA of the RF signal is used as a reference

assuming that it is negligible. Then, the TDOA between the RF

and the ultrasound represents the TOF of the ultrasound signal

traveling from the mobile becon to the sensor node. Ranging

based on RF and ultrasound signals can achieve an accuracy of

a few centimeters over a short distance [12][13]. It is also able

to eliminate the requirement for tight time synchronization

between the mobile beacon and deployed nodes. However,

it should be noted that since the speed of ultrasound in air

varies with ambient temperature, humidity and atmospheric

pressure, the impact of these factors on the speed of ultrasound

should be accounted for in practice. This is typically done

by installing temperature and humidity sensors on the sensor

nodes.

III. MOBILE BEACON BASED LOCALIZATION

The proposed localization approach starts from the stage of

sensor node deployment. After the sensor deployment planning

process, the user that carries the mobile beacon starts to

deploy sensor nodes. When a sensor node is placed, the user

turns its power on, and sets the mobile beacon to transmit

a set of beacon signals. Any previously deployed nodes that

are within the transmission range of the mobile beacon will

receive the beacon signals and estimate their distances to the

current mobile beacon location (or the location of the sensor

node under deployment). The user then moves to deploy the

rest of the sensor nodes and repeats the same procedures

until all sensor nodes are deployed. After all sensor nodes

are deployed, each sensor node will have a set of distance

measurements to its neighbors, which are then passed to

a central node for localization using the MAP localization

algorithm.

The MAP localization algorithm is proposed to overcome

the problem of mismatching of the shortest distances in the

MDS method. The MDS localization method requires that the

full Euclidean matrix be known. In practice, due to power

constraint, the mobile beacon may have a limited transmission

range. When two nodes are out of the transmission range of the

mobile beacon, the distance measurement between them be-

comes unavailable and needs to be estimated or approximated
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[8]. A common approach is to replace the unavailable inter-

node distances by their shortest path distances. In a network of

regular topology, a shortest path distance is found to match its

corresponding Euclidean distance well. However, in a sparse

network or a network of irregular topology, a shortest path

distance may not match its Euclidean distance, and the use

of the approximated distance matrix will result in localization

errors [10][8]. In MAP, the network is divided into many small

sub-groups of nodes, where adjacent groups share common

sensor nodes. A commonly used approach is to form a sub-

group for each sensor node, which involves the node and its

neighbors with a given number of hops (e.g., one or two

hops). One hop is determined by the transmission range of

the mobile beacon rather than the radio range of the sensor

nodes. A local map is built for each sub-group of sensor nodes

using the MDS method [8]. The local maps are then merged

into a global map based on the common sensor nodes shared

by different groups. In [8], an incremental greedy algorithm

was proposed for merging the local maps in a sequential

manner. One local map is randomly selected as the core

map, which is grown by merging the local maps one by one.

During the merging process, an optimal rigid transformation

is determined, which minimizes the conformation difference

between the locations of the common nodes in the core map

and those of the local map subject to the rigid transformation.

The incremental greedy algorithm is seen to be locally optimal

since it only explores the commonalities of the shared sensor

nodes in two maps. In practice, the common sensor nodes

are often shared by more than two local maps. The sequential

merging process can also lead to error propagation and perhaps

unacceptable errors as the network grows. In [10], the MAP

approach was introduced to counter the problems of the

incremental greedy approach. In MAP, instead of using a

sequential pairwise approach for merging local maps, the

construction of the global map is considered at a global level.

An affine transformation is defined for each local map. The set

of optimal affine transformations are obtained simultaneously

by considering all available nodes that are shared by various

local maps. The set of optimal affine transformations are

found, which minimize the location discrepancies of sensor

nodes subject to their corresponding affine transforms in the

global map. The discrepancy is represented by the sum of the

squared distances of all nodes to their respective geometric

centers in the global map. The resulting coordinates of the

sensor nodes in the global map are relative coordinates. If

desired, they can be transformed into their global coordinates

based on the use of a few selected beacon nodes.

Since the proposed local map registration algorithm mini-

mizes the overall discrepancies of the locations of all sensor

nodes, it is able to counter the problems associated with

approaches based on pairwise map merging, and achieve

the global optimal performance. The problem of finding the

optimal rigid transformation for two maps based on common

nodes has closed-form solutions [14]. The approach by Arun

et al. [15] is shown to have provable optimality and the

advantage of computational efficiency over other methods.

Arun’s approach minimizes the squares error between two

sets of matched points under rotation and translation, and

the optimal transformation is obtained using a singular value

decomposition (SVD). The problem of finding a set of optimal

transforms for multiple local maps, however, is not trivial, and

analytic solutions do not exist due to the highly nonlinear opti-

mization criterion involved. In this study, a gradient projection

algorithm is developed for finding the optimal transforms for

transforming local maps to a global map [10]. The algorithm

is developed based on the general idea by Jennrich in [16][17]

and is suitable to the constrained optimization problem of

coordinate transformation. In spite of the iterative nature of

the algorithm, it has faster convergence and is computation-

ally more efficient than many general numerical optimization

techniques [19][18] for nonlinear programming.

The proposed localization approach does not rely on the

knowledge of the mobile beacon locations, which is important

for applications where access to GPS satellites is not available.

However, it is necessary to point out that the localization

results from MAP are relative sensor locations, i.e., the es-

timated sensor locations are given in an arbitrary coordinate

system. In many applications, relative location information

is sufficient. For example, in applications such as detecting

and tracking an intruder, the user is concerned about the

location of a target relative to the network rather than its

global coordinates. Relative locations of the sensor nodes

will suffice for wireless network functions such as routing

for communications and tasking. If global coordinates of the

sensor nodes are desired, then, a number of anchors are needed

to determine a rigid transformation of the relative coordinates

into global coordinates.

IV. COMPUTER SIMULATIONS AND PERFORMANCE

ANALYSIS

In this section, we use computer simulations to demonstrate

the performance of the proposed mobile beacon based local-

ization techniques. Four types of network shapes and sensor

deployment scenarios are used in the simulation: rectangular

random network, rectangular grid network, C-shape random

network, and C-shape grid network. A C-shape area is defined

as a rectangle that contains a concave on one side. In this study,

the concave is located at the center of the rectangle’s bottom

line.

The mobile beacon is simulated to have a transmission range

of 25 meters. The user moves at a speed of 0.694 meters per

second and spends 4 seconds to place a sensor node. When

in periodic broadcasting mode, the mobile beacon broadcasts

beacons to the network regularly every 10 seconds. For a grid

network, the deploying person starts from the left-most column

of the sensors, and places the sensor nodes from bottom to

top. The next column of sensor nodes are placed from top

to bottom along the y-axis. This process continues until all

sensor nodes are placed. For a random network, the sensor

deployment area is divided into multiple segment of equal

length on the x-axis. In the first (left-most) segment, sensor

nodes are placed from bottom to top along the y-axis. In the

245

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) The Government of Canada, 2011. Used by permission to IARIA.     ISBN: 978-1-61208-144-1



next segment, the sensor nodes are placed from top to bottom

along the negative direction of the y-axis. This process repeats

itself until all sensor nodes are placed.

The distance estimates computed by a sensor node from

receiving the mobile beacon signals is assumed to contain

additive errors, which are modeled as a random variable that

follows a uniform distribution with boundaries (both positively

and negatively) proportional to the actual distance. For an ac-

tual distance d between the mobile beacon and sensor node, the

distance estimate error is uniformly distributed in the interval

[−κd, κd], where κ is the proportionality constant. The mobile

beacon is assumed to carry a GPS receiver to acquire its own

coordinates (this information is only needed for multilateration

based approaches). The mobile beacon location errors are

simulated to be additive Gaussian distributed with zero mean

in both x and y coordinates. The errors in x and y coordinates

are assumed to be statistically independent and have a same

standard deviation of 1/
√

2 meters. For each scenario, we

vary the constant of proportionality κ and use Monte-Carlo

simulations to compute the root mean squares errors (RMSE)

of the sensor location estimates. In the simulation, κ varies

from 0 to 0.1 with a step size of 0.01. For each value of κ, 100
tests are repeated to obtain the RMSEs of the location estimate

of each sensor node. An averaged RMSE is then computed by

averaging the RMSEs of all nodes.

Five other localization approaches, referred to as MLE,

LLS, MDS PATH-MLE and PATH-LLS, respectively, are

included for comparisons. MLE and LLS are based on the

use of multilateration. The user carries the mobile beacon and

deploys sensor nodes. The mobile beacon broadcasts beacon

signals periodically. If a sensor node receives beacon signals

from more than three locations, it can apply multilateration

to find its coordinates. The only difference between MLE and

LLS is that MLE uses a nonlinear least squares formulation of

multilateration while LLS is formulated as a linear solution.

MDS uses the same deployment strategy as the proposed MAP

approach. PATH-MLE and PATH-LLS are the nonlinear and

linear least squares solutions of multilateration, respectively.

They differ from MLE and LLS in that the mobile beacon

moves along a planned path around or in the sensor deploy-

ment area. In this study, simple paths are used in evaluating

PATH-MLE and PATH-LLS, which are along the perimeter of

the sensor deployment area.

A. Rectangular random network

30 sensor nodes are deployed in a rectangular area of 100
meters by 20 meters. The mobile beacon moves on a Z-

shape path in the deployment area. Four anchor nodes are

selected. The anchor nodes are required by MAP and MDS to

transform the resulting relative coordinates of the sensor nodes

into global coordinates for comparison. For PATH-MLE and

PATH-LLS, the mobile beacon moves on a Z-shape path in

the deployment area.

Fig. 2 shows the RMSEs of the location estimates versus

κ. Among all the approaches, the MDS approach performs

the worst in terms of RMSEs for all κ. Even when κ = 0,
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Fig. 2. RMSEs of location estimates via κ: rectangular random network.

i.e., there are no ranging errors at all, MDS still shows an

RMSE of 1 meter. This phenomenon is due to the use of

approximated distances in the Euclidean matrix in MDS. As

discussed before, due to the limited transmission of the mobile

beacon, all inter-node distance estimates are not available.

For node pairs that have separation distances greater than

the mobile beacon transmission range, the distance estimates

will be approximated by their shortest path distances. As the

number of unavailable distance estimates increases, the lo-

calization performance deteriorates. We use connectivity level

to characterize the availability of inter-node distances, which

is defined as the averaged number of nodes that a node can

receive mobile beacon signals from. Note that this connectivity

is defined based on the mobile beacon transmission range

instead of the radio range of the sensor nodes. In Fig. 2, the

connectivity level is computed as 11.2, which means that each

node can directly measure its distances to about 11 nodes

instead of the 29 nodes in the ideal case. In general, the

connectivity level increases with node density of a network

and the mobile beacon transmission range. PATH-MLE, Path-

LLS and MLE outperform the others. The LLS approach

outperforms MAP only for low values of κ (κ < 0.06). It is

interesting to note that, for relatively small κ (κ < 0.06), the

RMSEs for PATH-MLE, PATH-LLS, MLE, LLS, and MAP,

are all smaller than 1 meter, which is the simulated RMSE for

GPS location errors. This indicates that these approaches are

able to suppress errors in the mobile beacon locations, and

provide better localization performance than by using GPS

alone.

B. Rectangular grid network

In this scenario, 30 sensor nodes are placed on a rectangular

grid with 20% placement errors. The unit length of the grid is

r = 8 meters. The placement errors are simulated as additive

and uniformly distributed in the interval [−0.2r, 0.2r] in both

the x and y coordinates of the node’s original grid position.

For PATH-MLE and PATH-LLS, the mobile beacon moves on
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Fig. 3. RMSEs of location estimates via κ: rectangular grid network.

a Z-shape path in the deployment area. Four anchor nodes are

selected.

Fig. 3 shows the RMSEs of the location estimates versus the

beacon ranging errors (κ). The MAP approach performs better

than PATH-LLS and LLS when κ < 0.06. The performance

of MDS lags behind the other approaches. All the approaches

have better localization performance in the rectangular grid

network than in the rectangular random network. In particular,

MDS sees significant improvement in the rectangular grid

network, which may partially be attributed to the increased

connectivity level of the grid network and its relatively uniform

node density. The simulated grid network has a connectivity

level of 14.1. For a rectangular grid network, the shortest path

between a pair of nodes corresponds well with their Euclidean

distance.

C. C-shape random network

The C-shape random network is simulated by randomly

placing 45 sensor nodes in a C-shape area. The rectangle size

is 100 meters by 40 meters, and the concave size is 60 meters

by 20 meters. The placement of the sensor nodes follows

a uniform distribution. Five anchor nodes are selected. For

PATH-MLE and PATH-LLS, the mobile beacon moves along

the perimeter of the C-shape area.

Fig. 4 shows the RMSEs of location estimates versus κ.

PATH-MLE and MLE have similar performance and perform

best among all approaches for all κ. PATH-LLS and LLS

are close in their RMSEs for all κ, and they are slightly

outperformed by PATH-MLE and MLE. The MAP approach

performs reasonably well and has RMSE values that are less

than 1 meter when κ < 0.07. On the other hand, the MDS

performs poorly and fails to provide satisfactory localization

performance. The RMSE values for MDS are larger than 3.5
meters for all κ. The failure may be due to the irregular

shape of the C-shape network as well as the low connectivity

level of the network. As discussed in [10], for a sensor

network of irregular shape, the shortest paths between pairs
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Fig. 4. RMSEs of location estimates via κ: C-shape random network.

of sensor nodes usually do not correlate well with their

Euclidean distances. The simulated C-shape random network

has a connectivity level of 13.5.

D. C-shape grid network

In the simulation of the C-shape grid network, 38 sensor

nodes are placed on a C-shape grid with 20% placement

errors. The gird has 10 sensor nodes in the x direction and

5 sensor nodes in the y direction. The concave contains 4
and 2 sensor nodes in the x and y directions, respectively.

The unit length of the grid is 8 meters. Five anchor nodes are

selected. The anchor nodes are selected by dividing the sensor

deployment area into five sub-areas and randomly selecting

one sensor node from each area. The mobile beacon moves

along the perimeter of the C-shape area.

Fig. 5 shows the RMSEs of location estimates versus κ.

The RMSE curves for the C-shape grid network are similar

to those for the C-shape random network. The RMSEs for all

six approaches increase as κ increases. PATH-MLE and MLE

perform best and have close RMSE for all κ. PATH-LLS and

LLS are slightly outperformed by PATH-MLE and MLE, but

have close RMSE values for all κ. The MAP approach outper-

forms PATH-LLS and LLS for κ < 0.4. The MDS approach

fails to produce satisfactory results with RMSE values larger

than 3 meters for all κ. Note that MDS has slightly smaller

RMSE values than in the C-shape random network. As the

simulated C-shape grid network has a connectivity level of

16, which is larger than the connectivity level for the C-shape

random network, this may explain the improved RMSEs of

the sensor location estimates for the MDS approach.

V. CONCLUSIONS

In this paper, the MAP localization approach based on the

use of a mobile beacon has been presented for wireless sensor

network applications. The use of a mobile beacon has the

advantage of flexibility and can greatly simplify the process of

sensor localization. In addition, it is able to overcome many of

247

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) The Government of Canada, 2011. Used by permission to IARIA.     ISBN: 978-1-61208-144-1



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

Beacon range measurement errors (%)

R
M

S
E

 

 

PATH−MLE

PATH−LLS

MLE

LLS

MDS

MAP
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the difficulties that would be encountered by using static bea-

cons or localization approaches based on inter-node ranging.

The performance of the MAP approaches was evaluated using

computer simulations and compared with other approaches

that are also based on the use of mobile beacons. Four

types of network topology and sensor node placement were

simulated. The simulation results show that the MAP approach

has significant improvement in terms of RMSEs of sensor

location estimates in comparison with the MDS approach. It

outperforms or performs as well as LLS for low κ values. In

the case of rectangular grid network, MAP outperforms LLS

for all κ. It is observed that MAP performs better for grid

networks than for random networks partly due to the relatively

large and more balanced connectivity levels of grid networks.

In general, MAP is a practical sensor localization techniques

that can provide satisfactory localization results. Although

the simulation results showed that maximum likelihood based

approaches (e.g., MLE and PATH-MLE) are able to provide

the best localization performance, they are not considered

practical due to the nonlinear optimization procedures. MAP

is a GPS-less approach, i.e., it does not need to know its own

location coordinates. However, if global coordinates of the

sensor nodes are desired, then a sufficient number of anchor

nodes with known global coordinates is required.
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