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Abstract—The problem of tracking multiple targets using 

Sequential Monte Carlo technique under the framework of 

Bayesian techniques for wireless sensor networks is discussed. 

Distributed filtering in wireless sensor networks is an active 

area of research owing to the high communication costs of 

centralized tracking. However, distributed filtering must 

carefully address the conflict between high correlation among 

signals picked up by neighboring sensors and detached sensing 

by far away nodes due to limited sensing radii. Further 

challenges relate to the processing and communication of large 

number of particles in resource-constrained sensor nodes. This 

paper proposes a novel integrated approach to network 

management and target tracking by which distributed tracking 

is achieved in a lightweight manner. Important contributions 

are ‘Consensus Tracking’ as a low-cost distributed solution for 

sensor tasking and ‘Multitiling’ as computationally efficient 

solution for managing and propagating particles. 

Keywords- multitarget tracking, Bayesian filtering, 

sequential Monte Carlo, particle filter, sensor networks. 

I.  INTRODUCTION 

Advancements in electronics and communication 
technologies coupled with research in fusion techniques have 
made it possible to model the non-linear and non-Gaussian 
nature of most real-life problems more accurately, 
overcoming the limitations of Kalman filter and its variants. 
Applications are increasingly adopting the rigorous general 
framework of formal Bayes modeling for dynamic state 
estimation problems. 

Wireless Sensor Networks (WSN) has been another 
interesting recent development. Large networks of small 
untethered nodes capable of sensing, communicating and 
computing have opened up entirely new possibilities. 

In Bayes modeling of target-tracking applications, the 

goal is to estimate the density )|( :1

|

kk

kk zxf  of the target set 

being in state k
x , given all observations up to time k. The 

estimate is performed recursively in two steps viz. prediction 
and update. Prediction amounts to obtaining the prior density  

 

∫
+

+
+

+ = ')|'()'|()|(
:1

|

1

|1

:11

|1 dxzxfxxfzxf
k

kk

k

kk

kk

kk
 … (1) 

 
The update step uses the Bayes’ rule to find the posterior 
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Finite Set Statistics [1] extends Bayes single target 
tracking model to scenarios involving multiple sensors and 
multiple targets including target birth, death, merger and 
spawning by providing a unified, scientifically defensible 
probabilistic foundation for tracking. 

The Bayes modeling problem has no closed form 
solution. For discrete state-spaces, exact inference is always 
possible, but may be computationally prohibitive [2]. A 
number of computationally tractable stochastic 
approximation techniques have been proposed. Sequential 
Monte Carlo (SMC) approximation or Particle filtering is 
one such technique that, given enough samples, guarantees 
to give exact answer [3]. The basic idea is to approximate the 
belief sate by a set of weighted particles or samples 
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for any unitless function θ(x) of a state set variable x 
(likewise for sets X and Z in case of multitarget tracking). 
The particles approach the pdf ‘in asymptotia’; the larger the 
number of particles, the better the approximation. 

Tracking in the resource-constrained WSN poses even 
bigger challenges. Due to the limited field of sensing of 
individual nodes, the set of particles must be propagated not 
just temporally but also spatially for computing the belief 
state. Centralized solutions are not suitable due to latency 
and excessive energy requirement. Decision on the next node 
responsible for tracking a target as it leaves the sensing zone 
of one sensor must be taken in distributed manner. Managing 
and propagating the particles, typically large in numbers, is 
highly computation and communication intensive. 

This paper makes two important contributions. First, it 
proposes ‘Consensus Tracking’, a method that works in 
integrated mode with network management functions to 
designate the node responsible for tracking a target in 
distributed and lightweight manner. Second, it proposes 
‘Multitiling’, a method to reduce cost of managing and 
propagating the particles. To the best of our knowledge, no 
work has been reported addressing these problems in an 
integrated manner. 

Handling of target birth, death, merger, spawning, missed 
detections, false alarms, track initiation and maintenance are 
the scope of a related work and are not discussed here. 

The rest of the paper is organized as follows. Section II 
discusses related prior work. Section III describes the 
network setting. Consensus tracking and Multitiling are 
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discussed in Sections IV and V respectively.  Simulation 
results are shown in Section VI. Conclusions are drawn in 
Section VII. 

II. RELATED PRIOR WORK 

Many researchers have addressed the many different 
facets of distributed particle filtering. Liu, Chu and Reich [4] 
provide a survey of techniques for tracking multiple targets 
in distributed sensor networks. A good study on distributed 
target tracking is also provided in [5]. 

Fang, Zhao and Guibas [6] have discussed the problem of 
target enumeration and aggregation in sensor networks. 
Zhao, Liu, Liu, Guibas, and Reich [7] have considered 
leader-based tracking with mutual information based 
handing over of target to neighboring node, non-parametric 
storage of belief state and also a real-life implementation of 
distributed tracking. Coates [8] proposed two methods for 
reducing communication overheads: using factorization and 
using adaptive encoding. Särkkä, Vehtari, and Lampinen [9] 
proposed a Rao-Blackwellized Monte Carlo data association 
method in a centralized setting. The authors propose 
partitioning the problem into many single target tracking 
problem and solving the data association problem by 
sequential importance sampling. 

Sheng, Hu, and Ramanathan [10] propose approximating 
the estimates with the parameters of a low-dimensional 
Gaussian Mixture Model (GMM). Zuo, Mehrotra, Varshney, 
and Mohan [11] also use GMM approximation of particles to 
convey belief to fusion center in bandwidth-efficient manner. 

Ihler, Fisher, and Willsky [12] have considered the 
problem of approximating the density estimates using lossy 
compression techniques. Vercauteren, Guo, and Wang [13] 
have addressed the problem of joint tracking and 
classification of targets in sensor networks. Teng, Snoussi, 
and Richard [14] have proposed a distributed state-
estimation algorithm that allows implicit compression of 
exchanged statistics between leader nodes. 

Leader-based tracking is essential in WSN due to high 
correlation among signals picked up by neighboring nodes 
and for energy conservation. However, selecting leader 
node(s) as the target(s) move requires computation and 
communication overheads. The problem gets more 
complicated for multiple and unknown number of targets, 
and in the presence of clutter and missed detections. 
Realizing the importance of efficient networking 
infrastructure, lot of work has been carried out in this area 
(reference [15] provides a review); however, almost all of the 
‘tracking leader election’ is independent of such structures. 
Also, while it is important to reduce communication cost, 
which is order of magnitude higher compared to computation 
cost, the energy consumption due to computation cannot be 
ignored, more so given the typically large number of 
particles in tracking problems. To the best of our knowledge, 
no work has been reported that addresses computation cost. 

III. NETWORK SETTING 

As discussed by Sheng, Hu, and Ramanathan [10], the 
assumption of independent observations at individual sensor 
nodes is unrealistic, and hence the motivation to partition the 

network into cliques. The clique size proposed in [10] is 
enough to cater to the spatio-temporal bandwidth of signals. 
As the target moves, newer cliques are formed. The authors 
argue that it results in unpredictable and time-varying size of 
clusters. In such cases, the cost of network management is 
typically very high and tends to dominate the operations cost. 
The cost of creating newer clusters every time results in 
additional overheads [16]. Most importantly, when multiple 
targets move in a given region, it is non-trivial, even 
impossible in some cases, to form distinct cliques for 
individual targets. Hence it is ideally suited that network be 
partitioned efficiently, not dependent on target movements, 
and sensor tasking be done using a robust distributed 
mechanism. 

N. Trivedi and N. Balakrishnan have earlier proposed 
iGroup [16], a lightweight distributed algorithm to partition 
the sensor network into hexagonal cells and also to decide on 
unique communication channels and time slots for 
interference-free inter- and intra-cell communication. In 
communication infrastructure, the number of neighbors 
being bounded by six allows pre-determination of 
communication channels and time slots in a way that avoids 
interference. Figures 1 and 2 indicating the organization, 
channel usage and time slot allocation have been reproduced 
from [16] for reference. 

The numbers inside cells in Figure 1 indicate channel 
indices. Many mote systems allow selection of channel from 
a set of tunable frequencies up to 25 in number, and the 
channel can be changed at run time simply by using a system 
call by providing the index as parameter. In Figure 2, 
interpretation of data can be determined by the control 
messages. The cell diameter is chosen such that the 
neighboring cells can communicate using the available 
power levels, and that the desired sensing coverage can be 
obtained when only the cell leaders are awake. 

This paper demonstrates how this infrastructure can be 
exploited for efficiency in tracking problems. Though 
discussed in this setting, ‘Consensus Tracking’ can be used 
with other networking structures with ease. 

 

Figure 1.  Intra-cell (left) and Inter-cell (right) channel usage patterns 

Figure 2.  Network Operation Cycle (modified for Consensus Tracking) 

End of cycle 

Intra-cluster 
communication (9 slots for 

consensus tracking) 

Inter-cluster 
communication  

Beginning 
of cycle 

Control messages: 9 slots 
allotted by iGroup 
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IV. CONSENSUS TRACKING 

To exploit spatial diversity, multiple nodes observe a 
particular target; however, in a hierarchical infrastructure, it 
is the cell leader’s responsibility to track target(s) using 
detection details from itself and the other cell members. Two 
neighboring cells may detect the same target(s) and hence it 
is required to decide which cells must track which targets. 

The theme of Consensus Tracking is that the cell that is 
assumed to contain a given target must track it. Of course, 
the target position is never known in advance and hence a 
distributed mechanism is required by which all neighboring 
cells can uniquely agree on an assignment. This is achieved 
as follows. 

All members belonging to the cell having intra-cell 
channel ID ‘m’ broadcast their findings in slot ‘m’ on 
channel ‘m’ using transmission power enough to reach the 
neighboring cells. Random backoff is used to avoid collision. 
Having received the signals from own cell members and the 
neighbors’, each cell generates ‘energy plots’ [5]. Figure 3 
shows a sample energy plot. It is assumed that the sensor 
density is at least enough to capture the peaks and valleys of 
the energy field. The peaks in this plot indicate target 
positions. The cell to which the peak belongs is responsible 
for tracking that target. Since the same transmission is heard 
by all the neighbors for common targets and same algorithm 
used for generating energy plots, the peaks are common 
(error handling is discussed in the following subsection). The 
distributed algorithm for checking cell boundary [16] ensures 
that the cell assignment is also unique. Due to the properties 
of network infrastructure created by iGroup, neighbors more 
than one hop away need not participate in the coordination. 

The assignment of targets to cells is followed by decision 
on whether to hand over the history. Specifically, if one cell 
was tracking a target that has just crossed its boundary, the 
current cell must hand over the time-series measurement data 
to the neighbor. The tracking process per se is out of scope 
of this paper; however, Section IV discusses computationally 
efficient methods towards distributed state-estimation 
process as well as towards preparing for handover. 

A. Effect of Message Errors 

If the presence of transmission or reception errors, the 
neighbors may end up with different peaks and sensor 
tasking may be ambiguous. However, the Bayesian tracking 
framework is robust enough to accommodate process and 
measurement noise and, as the further analysis and 
simulation results show, this fluctuation gets smoothened out 
in the tracking framework. 

The framework for Consensus Tracking consists of an 
outer loop responsible for considering target births and 
deaths including clutter handling. Targets are identified by a 
grid-identification mechanism. When a target is detected for 
the first time, it is associated with a ‘time-to-live’ counter. If 
it was a false detection, this counter will eventually expire 
and the track will be deleted. Missed detections are handled 
in a similar manner by letting the tracks live for a ‘time-to-
live’ counter. This mechanism helps combat occasional 
message errors as discussed below. 

Figure 3.  Sample energy plot [5] 

 
Detection or transmission errors could lead to a target 

being detected in wrong position by all relevant neighboring 
cells. As a result, a wrong cell may begin tracking it. If the 
target was an existing one originally belonging to some other 
cell, the error would lead to missed detection there. 
Assuming that errors are spurious and non-identical over 
different time periods, the subsequent cycles will be able to 
recover from this error, where one cell assumes the 
phenomenon to be a false alarm and the other treats it as 
missed detection. 

Reception errors could lead to generation of different 
peaks by neighboring cells and as a result, a target may be 
detected in two different positions by neighboring cells, 
potentially both of which may be wrong. Even this will be 
treated as false alarm and/or missed detections and 
subsequent cycles will allow recovery from this error as well. 

A target moving on the cell boundary for some time 
could potentially cause fluctuating handovers. To avoid this, 
a cell hands over tracking to a neighbor only when the target 
is consistently in the other cell boundary for at least 3 cycles. 
The neighboring cell is informed not to initiate track during 
this period. 

V. MULTITILING 

Computation steps in SMC techniques involve particle 
initialization, prediction, assigning importance weights based 
on measurement and sequential importance sampling to 
alleviate impoverishment. A large number of particles must 
be used if the tracking has to be accurate. This involves large 
number of computationally expensive floating point 
operations. Multitiling is a low-cost solution to this problem. 

A. Initialization 

In the absence of any prior knowledge, the initial 
measurement is best representation of the density for the 
belief state. The number of peaks is representative of the 
number of targets initially present in the system. Assuming 
typical sound source point target at location ζ with amplitude 
a and lossless, isotropic sound propagation model, the root-
mean squared amplitude measurement z at location x is 
given by 

w
x

a
z +

−
=

|||| ζ
   … (3) 

 
where w is measurement noise. The measurement function is 
discretized with desired resolution to generate particles. 
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B. Prediction 

State transition is given by 
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where w is the process noise. The first prediction 

typically assumes a large variance for process noise for each 
state vector component. The variance gets reduced through 
the predict-measure-update cycle. 

C. Update 

Measurement is given by 
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where v is measurement noise. The distance between 
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prediction error assuming 
i

ttz 1|' − is what measurement would 

have been if state were 
i

ttx 1|' −  as predicted at time t-1. 

Importance weights to be assigned to particles are 
inversely proportional to the ‘distance’ between predicted 
and actual measurements. In the cases where state vector 
involves non-spherically symmetric distributions, mere 
Euclidean distance is not a good metric. Distance measure 
that takes into account the variance of the variables is 
required. This can be achieved by scaling the variables by 
their ‘variability’. Mahalanobis distance is one such measure 
that does not just take this variability into account but also 
caters to covariance between variables. Mahalanobis distance 

between two vectors ),...,,( 21 Nxxxx = and 

),...,,( 21 Nyyyy = in ℜN
 is defined as 

 

)()'( 1
yxyxD −Σ−= −   … (6) 

 

where Σ is the covariance matrix of the distribution. 
Mahalanobis distance must be calculated for each particle 

during every predict-update cycle for all the targets. The 
operation requires many floating-point multiplications. 
Given that the number of particles is typically very large, this 
is a highly computation-intensive step. In the following 
section the authors propose a low-cost approximation to this 
step. As the approximation progresses, side information is 
stored that helps in quick consolidation of state-estimate to 
be exchanged between cells either for belief handover or for 
distributed state estimate. 

1) Tile-based Weight Assignments 

The particles that are ‘closer’ to the measurement must 
be weighted higher. Points equidistant (in Mahalanobis 
sense) from the center form an ellipsoid around the center. A 
less computation-intensive approximation would be to 
consider cuboids enclosing the ellipsoid boundaries, because 
then the ‘distance’ could be calculated by only comparing 
the values with minimum and maximum values. This is the 

principle behind Multitiling. The region of interest in ℜN
 is 

divided into bigger cuboids enclosing smaller ones having 
common center point; this center point is the measured target 
state vector. Distance between the cuboids could be fixed for 
a fixed-interval comparison, or could increase with distance 
from the center for variable-intervals. Particles inside one 
cuboid share common weight. 

Spatial data structures such as k-D tree are ideally suited 
for proximity-based searches even when state vector contains 
elements other than position [12]; however, the weight 
assignment process requires the entire particle set to be 
processed i.e., all the nodes in the tree must be visited. This 
results in undue space and time complexity compared to 
array-based representations. Nevertheless, the distance 
comparison concept in k-D tree is computationally efficient 
and is used in Multitiling for assigning weights. Multitiling 
treats concentric ellipsoids as ‘bins’, with particles in one bin 
considered to have equal weights. These bins approximated 
as cuboids allow simpler boundary comparisons. 

a) Statistically Independent State Variables 

When the covariance matrix is diagonal, i.e., the different 
state variables are statistically uncorrelated, the axes of the 

ellipsoids are parallel to the principle axes of ℜN
. Without 

loss of generalization, consider ℜ2
. The area of ellipse is 

π*A*B where A and B are the axes of the ellipse. The area of 
the enclosing rectangle is 4*A*B. Scaling down the axes of 
the ellipse i.e., the bin sizes by 0.9 ensures that the rectangle 
covers desired area. Memberships get affected only for those 
particles on the boundary, which is an acceptable 
approximation considering the savings in computation. 
Figure 4(a) depicts this approximation called Multitiling-Z. 

The test for a particle to lie within given cuboid 
boundaries involves simple order comparisons. Taking an 
example of 2-D Euclidean space, equidistant points form a 
circle and a low-cost approximation requires checking for (x 
< center_x+radius) and (y < center_y+radius). Extending this 
approximation to non-Euclidean distances means checking 
for (ά < center_ά + ά_radius) and (έ < center_έ + έ_radius), 
where ά_radius and έ_radius are the scaled radii of the 
ellipse corresponding to variances in ά and έ respectively. 

The range for each variable in the state vector is divided 
into intervals that are multiples of σs (variance or spread) for 
that variable. In the present work, ranges are considered as 
multiples of 0.5σs for each variable. 

b) Correlated State Variables 

Some elements of the state vector may be correlated with 
each other, causing the concentric ellipsoids that depict 
‘scaled equal distances’ to be inclined at a non-zero angle 

with respect to the principle axes in ℜN
. Mahalanobis 

distance calculation uses covariance for scaling. The inclined 
axes can be projected to the principle axes, effectively 
uncorrelating the elements; however, comparisons in this 
case will involve first projecting the particle vectors to the 
new coordinate system, involving costly operations. The 
following simplification by fitting ellipsoids to cuboids 

called Multitiling-N is proposed. ℜ2
 is considered for 

illustration without loss of generality. 
As a preprocessing step, a rotated rectangle is fitted to the 

ellipse (Figure 4(b)). It is required to compute the projection 
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on each axis in ℜ2
 only once; thereafter additions and 

subtractions can be used for finding the corner points of the 
rectangle. An acceptable quantization factor is decided, 
which is used for approximating the rectangle edges by stair 
cases. Even this operation uses only additions and 
subtractions. The resulting quantization effect is a good 
tradeoff towards the gain in speed and closeness of 
approximation. Figure 5 depicts the staircase approximation. 

Having preprocessed the (quantized) edge points, 
Multitiling comparisons in each cycle amount to finding the 
staircase step in one direction followed by checking the 
boundary in the other direction. It can be easily seen that 
there are only two points on the horizontal axis for one step 
on the vertical axis. The number of comparisons during the 
update cycle is identical to that in the case of Multitiling-Z. 

2) Joint Tracking 

Multitarget tracking can be implemented as multiple 
independent particle sets or as multitarget particle systems, 
the latter being far more complex because it must deal with 
state sets rather than state vectors. The former case benefits 
directly from the approximations of the previous section. 
Multitiling concept applies equally well to the joint tracking 
case, though it can look a bit cumbersome. 

It is convenient to order [1] υ
kkkkkk XXX |

1

|

0

| ,...,, by 

increasing target number i.e., 0

|kkw is the weight of the no-

target particle φ=0

|kkX , the next 
1υ particles 

1

|
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|

0

| ,..., υ
kkkkkk XXX represent single-target samples 
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xXxX kkkk == and, in general, the n-target states 

are represented by 
nυ multitarget particles, up to some 

largest number ň of particles. Thus
nυυυυ ++++= ...1 21

, 

where 
0υ =1 is the number of zero-target particles. 

Define )(Xθ as )(Xθ =1 if | X |=n and )(Xθ =0 

otherwise. Then, ∑
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kk Znf  is 

the cardinality distribution of )|( )(

|

k

kk ZXf  i.e., )|( )(

|

k

kk Znf  

is the probability that n targets are present in the scene [1]. 
Multitiling addresses joint tracking as follows. The 

number of peaks is counted and number of targets n 
estimated from there taking into account the probabilities of 
missed detection and false alarms. The sets having n targets 
are accordingly assigned weights. Probabilities of missed 
detection and false alarms indicate possible variance, and the 
sets having n-l to n+l targets are assigned reducing weights 
accordingly. 

Figure 4.  The distribution ‘ellipse’  for 2-D state vector when the two 

dimensions are (a) independent (Multitiling-Z) (b) having non-zero 

correlation (Multitiling-N) 

 

Figure 5.  Quantizing rectangle edges for Multitiling-N 

 
Mahalanobis distance must now be calculated for each 

particle in the set for permutations of locations. The weights 
assigned to the cardinality multiplied by the weights to the 
particle set by Multitiling are the net weights for the sets. 

3) Computational Complexity 

The computation complexity of Multitiling is order of 
magnitude less compared to direct method of distance 
calculation for the same number of state variables. 
Mahalanobis distance is calculated as 

)()'( 1
yxyxD −Σ−= − . Even if we were to ignore the 

square root (only ordering is needed, not the absolute 

distance) and the inverse of Σ (assuming known covariance 
matrix, it is enough to calculate the inverse once), it requires 
O(N) floating-point subtractions and O(N

2
) floating-point 

multiplications. 
In contrast, Multitiling-Z requires O(N) floating-point 

comparisons only. Multitiling-N additionally requires 
preprocessing. Since the distribution covariance is known, 
the computation-intensive operations such as fitting the 
cuboids can be done offline and fed to the sensor nodes. 

In the O(N) comparisons, the constant factor depends on 
the number and spread of bins (Б) and, in the case of 
Multitiling-N, the desired quantization factor (Ќ). Assuming 

that Б<<ν (number of particles) and the number of steps due 

to Ќ<<ν, the cost of binning and quantization does not 
dominate. This is huge saving considering the typical 
number of particles to be handled in each cycle of real-time 
operations. The saving is even more significant in the case of 
joint tracking, where distances for many permutations of 
target states must be computed. 

 

4) Resampling 

Since the particles have unequal weights, they must be 
replaced by new particles having equal weights while 
retaining the influence of weights. The weights assigned by 
Multitiling are analogous to those assigned by existing 
methods and hence sequential importance sampling for 
Multitiling can be performed using common methods. This 

paper uses multinomial resampling. Assuming ν particles 

and i

kki ww 1|1

_

++≡ for all i=1…ν, the multinomial distribution 

__
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1 ....
!!...

!
),...( 1 ν

ν

ν

ν

ν
µ ii

ww
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ii = is a probability distribution 

on all ν-tuples (i1, …, iν) of nonnegative integers for which i1 

+ …+ iν = ν. A random sample (e1, …, eν)~µ(.) is drawn 

from this distribution. If ei=0, then the particle i
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B 
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eliminated, else ei identical copies are made of this particle. 

Since e1 + …+  eν = ν, total number of particles stays as ν. 
To avoid particle impoverishment, the copies of particles 

are randomly jittered. 

5) Belief Handover 

Belief propagation always requires more bits than raw 
data and hence is extremely expensive. Gaussian Mixture 
Model (GMM) approximation is an excellent way to save the 
transmission cost [10][11]. However, there usually is no 
prior knowledge of the number of components ‘cccc’ in the 

mixture. The µs and σs are also not known in advance. 

Reference [10] suggests selecting cccc as a function of number 

of targets and learning the GMM parameters using an 
iterating Expectation-Maximization (EM) algorithm. 
Reference [11] picks up cccc on a higher side subject to a 

maximum number, merges two components if the Kullback-
Lieber distance between them is below a threshold, and 
applies EM algorithm. 

De facto method for initialization of EM has been to 
assign random values to the parameters. However, EM is 
guaranteed only to converge to local optimum in the 
likelihood and hence it is best to initialize the model in the 
region of likelihood space where the local maxima are 

supposed to lie. Multitiling provides a crucial cue to cccc, µ, and 

σ, arguably the closest approximation for EM iterations, 
thereby saving precious iteration cost and also resulting in 
more accurate mixture parameters. The cue is provided as 
follows. 

A mode is a local maximum and is represented by higher 
frequency of particles. In Multitiling, finding local maxima 
amounts to counting the number of particles in each bin. 
Multitiling divides the particles into bins having equal 
‘weighted’ distance from the estimated state; however, 
selection of mode requires both range and bearing in the 
multidimensional space. First, the bins corresponding to 
local maxima are identified based on first-order differences; 
threshold is applied to avoid spurious small maxima. The 
number of maxima thus found is indicative of cccc. One random 

particle each from these bins is assumed to be the mean ‘µ’ 
for the mixture component. The variance ‘σ’ is estimated 
based on the first order difference. 

This process does not take into account the possibility of 
multiple modes for a single target in a single bin e.g., equal 
probability of a target taking a left or a right turn, indicated 
by two modes on the opposite sides. To address this, 
Multitiling maintains another variable called ‘quadrant’ for 

each particle. Orthogonal hyperplanes in ℜN
 divide the 

cuboids into four ‘quadrants’. No additional cost is needed to 
find this quarter through Multitiling process. Binning is done 
separately for the quadrants. Modes closer than this are 
considered as data fluctuations and are filtered out during 
thresholding. 

VI. SIMULATION 

An area of 100mx100m is considered with 400 nodes 
forming the iGroup infrastructure, and a target is moved 
through the area.  

 

Figure 6.  Tracking using Multitiling-Z 

Figure 7.  Tracking using Multitiling-Z: Zoomed-in version 

A. Consensus Tracking 

The metrics considered are multiple tasking (assigning 
one target to 2 or more cells), incorrect tasking and handover 
fluctuations (at least once). Results are averaged over 20 
simulation runs. Parameters as given in Table-I are assumed, 
where Pd is probability of detection and λ is probability of 
false alarm. Results are shown in Table-II. Note that due to 
sensors erring in estimating their own location, a target in 
one cell could appear to be in another cell. This is not 
considered to be an error in target assignment. 

TABLE I.  PARAMETERS FOR CONSENSUS TRACKING 

Scenario 1 2 3 4 5 6 

Pd 1 0.9 1 1 1 0.9 

λ 0 0 0.001 0 0 0.001 

Transmission error 0 0 0 0.01 0 0.01 

Reception Error 0 0 0 0 0.01 0.01 

TABLE II.  CONSENSUS TRACKING: RESULTS 

Scenario 1 2 3 4 5 6 

Multiple 
Tasking 

0% 0% 0% 0% <1% <5% 

Incorrect 
Tasking 

0% 0% 0% 0% <1% <5% 

Handover 
Fluctuations 

0% 0% 0% 0% 0% 0% 

Recovery after 
Error 

NA 100% 100% 100% 100% 100% 

B. Multitiling-Z 

Figure 6 shows the actual (with process noise), 
Mahalanobis-estimated, and Multitiling-Z-estimated X and 
Y positions. Figure 7 shows a smaller sector zoomed in for 
clarity. Results were averaged over 20 simulation runs. 
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C. Multitiling-N 

A hypothetical ellipse like the one in Figure 4 (b) is 
considered with variances and correlations as listed in Table-
III. Monte Carlo simulations were used to generate data 
points with these statistical parameters; these points 
represent particles. State estimates were computed using 
Mahalanobis distance and Multitiling-N approximation with 
various quantization levels. The estimation errors in both 
cases are depicted on the scatter plot of Figure 8. 

TABLE III.  PARAMETERS CONSIDERED FOR MULTITILING-N 

2

xσ  
2

yσ  xyσ (Covar) yx,ρ (Correlation) 

16 25 [10, -7, 0, 0.5] [0.5, -0.35, 0, 0.025] 

25 9 [-8, 13, 0, 0.9] [-0.53, 0.87, 0, 0.06] 

64 49 [50, -7, 0, 0.1] [0.89, 0.125, 0, 0.0018] 

49 49 [24, -12, 0, 0.8] [0.49, -0.25, 0, 0.016] 

VII. CONCLUSION AND FUTURE WORK 

Using the strength of the Bayesian technique atop the 
foundation of a robust networking infrastructure helps build 
a robust distributed tracking framework. Use of Multitiling 
provides the additional cost-saving. 

Results in Table-II will change for multi-target scenario, 
especially when targets move in close proximity. Handling 
target energy overlap is the subject of a related work and 
hence not discussed here; however, multi-target tracking can 
only build out of robust single target tracking. 

Multitiling provides excellent approximation for 
Mahalanobis distance, and at a substantially reduced cost. 
Even in the case of Multitiling-N (Figure 8), the worst-case 
estimation error is less than 3 units (most of the worst-case 
numbers belong to the cases of large variances and coarse 
quantization), whereas most other errors are confined to ±0.5 
units, similar to what Mahalanobis distance based estimates 
provided. The framework makes a low-cost tracking model. 

Our ongoing work is on implementation of EM and using 
it with data generated by Multitiling to demonstrate increase 
in performance and reduction in iterations. 
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