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Abstract - This work presents an ongoing research aimed at 
interpreting the responses of non-selective gas sensors (such as 
metal oxide resistive ones) in terms of simple IF THEN rules. 
In particular, it is shown how a logical combination of the 
output of three extremely low-cost sensors, namely MQ131, 
MQ136 and TGS2602, can be arranged to produce IF THEN 
inferences able to discriminate among CO, SO2 and NH3 
emissions. The outcome is quantitatively similar to that 
obtained with high-selective and costly chemical sensors. The 
experimental results, albeit grounding on an empirical base, 
seem to support the idea that smart compositions of low-cost 
sensors are able to manifest surprising discrimination abilities. 

Keywords - gas discrimination, low-cost sensors, IF THEN 
rules.  

I.  INTRODUCTION  

Electronic noses are progressively disseminating 
throughout both the business-to-business and business-to-
consumer market for the number of application domains they 
spawn. Alcohol testers, air quality monitoring stations [1] 
food ripeness detectors [2] and even lung cancer sniffers [3] 
are all examples of this progression. The total cost of such 
devices is made of two chief components: signal acquisition, 
processing and transmission unit on the one hand and 
sensing unit on the other. The latter may significantly affect 
the final price when high-selective responses, precise and 
accurate performances are required. Of course, choosing 
cheaper solutions entails a conundrum. 

Low-cost oxide-based resistive sensors are well known to 
be sensitive to a wide spectrum of gases and air contaminants 
(this, in principle, is not a drawback); however, their 
selectivity is generally low [4] thus providing an ambiguous 
response in terms of individual components of the gas 
mixtures. Consequently, if high selectivity is needed by the 
application, the only commercially available option is to buy 
extremely expensive sensors.  

This work presents some empirical results aimed at 
validating the following hypothesis: it is possible to 
discriminate among different gas emissions by logically 
combining the output of low-cost sensors appropriately. The 
outcome should be as much close as possible to that obtained 
by employing  high-selective and costly chemical sensors. 

Therefore, wide-spectrum sensitivity is turned into an 
advantage because it allows one to provide a multi-detection 
device at extremely low-cost. Commercial prototyping of 
this kind of device is currently involving the set of three 

sensors MQ131, MQ136 and TGS2602 to discriminate 
among CO, SO2 and NH3 emissions. 

Paper layout is organized as it follows. Section II 
overviews the principal approaches published in the 
literature to tackle with gas discrimination problems. Section 
III presents two different approaches to gas discrimination, 
i.e., classification and disambiguation; the latter is used in 
this paper and analyzed from the perspective of logics. Then, 
the experimental setting and the proposed approach are 
described in Section IV; finally, conclusions are drawn in 
Section V. 

II. RELATED WORK 

Several techniques have been proposed in the literature to 
address the problem of low selectivity in low-cost sensors. 
With reference to tin oxide chemical sensors, two typical 
measurement strategies are employed [5]: multi-sensor arrays 
or dynamic measurements based on a single sensor. The 
latter mainly includes modulation in operating temperature 
by pulsed or oscillated heating.  

A lot of works can be found on temperature modulation 
in semiconductor gas sensing [6-8]. The modulation is well 
known to provide more information than static measurement 
with a mode of a constant operating temperature. Sears et al. 
[9] suggest several advantages that can arise from the 
application of a heating voltage pattern. Among all, due to 
the different reaction rates of various analyte gases at 
different temperatures, a cyclic temperature variation can be 
used to characterize unique signatures for each gas.  

Unfortunately, temperature modulation requires an 
intense (hence expensive) pre-calibration phase because of 
different kinds and patterns of temperature modulation that 
have to be tried in order to minimize cross-sensitivity effects. 
For this reason, some sort of signal post-processing is 
generally applied.  

Signal processing attempts to extract information hidden 
in raw data attenuating the effect of the different sources of 
noise that can occur during measurements such as cluttered 
or dynamic background [10]. In [11], a systematic approach 
for automatic signal processing, evaluation and optimization 
of gas sensors with temperature cycles is proposed. 

In very recent times, signal processing has been coupled 
with multi-array sensor setups. Initial promising results for 
example have been obtained in real-time breath monitoring 
applications with micro-sensor arrays [12]. In that case, the 
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signal processing technique is based on standard statistical 
dimensionality reduction and classification algorithms. 

Other approaches employ gray-box models for predicting 
metal oxide sensor response as in [13]; in this case selectivity 
enhancement is reached thanks to parametric models. This,  
however, requires a specific knowledge of the underlying 
electrochemical and thermodynamic aspects. 

III. DIFFERENT APPROACHES TO GAS DISCRIMINATION 

The problem of correctly attributing low-cost sensor 
response to one gas from the list of the putative ones can be 
handled from multiple perspectives. Two of these are 
considered in the following: classification and signal 
disambiguation.  

A. Classification-based approaches 

In principle, the task of assigning a class label to a pattern 
can be viewed as a classification problem [14], hence the 
expected output is a classifier that minimizes inter-class and 
intra-class distance. However, several riddles hinder the 
correct classification of gases when low-cost sensors are 
employed. For example: provided timesheets often show an 
underestimation of the number and the range of sensed 
gases; furthermore, sensor drift determines non-steady 
behavior even when similar emission stimuli are supplied 
thus invalidating the calibration phase.  

A high desirable condition is that function boundaries 
allow for proper discrimination among output classes. In 
other words, linear separability should be always pursued to 
avoid misclassification.  

Starting from the work of Rumelhart and McClelland 
[15] it is well-known that 3-layer feed-forward networks are 
capable of forming any possible complex decision boundary 
(the so-called property of ‘Universal Approximation’). For 
this valuable property, a number of reference works in the 
literature applying  neural networks as a computational tool 
for gas discrimination [16][17][18][19][20][21].  

Notwithstanding, linear separation of data in case of gas 
mixtures can be hardly obtained. In fact, to achieve perfect 
classification, all the possible concentration combinations 
should be exploited, which is impractical and in contrast with 
the objective of an affordable sensor price, at least from the 
manufacturer’s point of view.  For this reason, metal oxide 
sensors seem unable to produce a true quantitative 
information of gaseous concentrations, especially in normal 
operating conditions. 

B. Disambiguation-based approaches 

In a recent paper [22], the problem of cross-sensitivity 
has been accounted from a different viewpoint. It has been 
considered as a disambiguation process driven by 
algorithmic rules that come from the observation of the 
sensor datasheets and simple hypotheses on sensor behavior. 
The basic idea grounds on the hypothesis that, if the same 
gas is actually measured by two or more sensors, then their 
estimated concentrations will be similar, with an accuracy 
related to the number of concordant sensors. The same 
consideration can be drawn for every possible gas detected 
by the sensors so that a simple ranking strategy is applied. If 

the level of agreement among sensors about a supposed 
measured gas is above a certain confidence threshold, then 
the gas is considered to be a good candidate for the 
disambiguation process.  

C. Blending classification and disambiguation approaches 

The current paper tries to take benefit from the two 
above-mentioned approaches of gas discrimination as either 
a classification or disambiguation problem. The proposed 
one deals in fact with both separability (hence classification) 
and semantics (hence disambiguation). To achieve this goal, 
logical combinations of the output of three extremely low-
cost sensors are employed. They represent a simple means to 
characterize sensor behaviors in intuitive linguistic terms, as 
it happens with fuzzy logic [23] descriptions. In the 
following, the proposed approach is presented in more detail. 

IV. PROPOSED LOGIC-BASED APPROACH 

It is fair to assume that any empirically-driven scientific 
methodology is based on the following steps:  

1. observations and pre-processing (i.e., of measurable 
signals);  

2. theoretical hypothesis formulation from 
observations; 

3. consequent hypothesis validation; 
4. theory formulation (hypotheses become verified 

rules); 
If applied with care (possibly after several iterations) the 
steps above should lead to some verifiable (inductive) 
inference (i.e., a theory) about the phenomenon under scope. 
Hence, the result is a description of the analyzed 
phenomenon after some kind of classification and validation 
phase. It is noteworthy that none of the traditional 
Computational Intelligence [24] techniques such as neural 
networks or fuzzy logic seem to provide a complete coverage 
of all the previous points at the same time.  

In [25], a heuristic for extracting IF THEN rules form 
signal measurements has been presented with reference to 
temperature time-series analysis. In this paper, the same 
heuristic is used for gas discrimination.  

IF THEN rules are widely used in expert systems [26] for 
representing knowledge in a structured and logical way; their 
application to the field of sensor measurements is indeed 
quite a novel engagement in the literature. 

The obtained rules are considered as “self-descriptors” of 
the observed signals since they manifest knowledge in the 
form of logical implications built upon numerical hypotheses 
on the input data without any external knowledge source 
available. Although quite at an early stage, this simple 
methodology has a relevant aspect: the output (i.e., rules) is 
built over the same alphabet of the input space (signals) by 
means of numerical hypotheses. Alternatively speaking, 
input-output mapping is performed through measurable 
hypotheses. At the end of the validation process, verified 
hypotheses become IF THEN rules, hence they provide a 
(logical) description of the observed input. 

Since such methodology is general, it can be employed 
for gas discrimination, which is the aim of this paper. 
Consequently, numerical hypotheses applied over low-cost 
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gas sensor output signals can be used to infer on the kind of 
gas actually being sensed. In other words, given N sensors as 
input, the expected output should be a set of IF THEN rules 
of the type:  

IF hyp(sensor1) AND hyp(sensor2) … AND hyp(sensorN) 

THEN gasx  OR gasy  … OR gasz  are being measured  

where hyp() is a predicative function defined as follows: 

 
otherwise

sensor for   verifiedis hyp if

0

1 x
sensorhyp x





   

   A pictorial representation of the proposed approach is 
drafted in Figure 1.   

A. Experimental setting  

The experimental setting has been built around three 
extremely low-cost sensors (see Figure 2 for more details), 
namely: Hanwei MQ131 and MQ136,  Figaro TGS2602. 

In all these sensors, the sensing material is a metal oxide 
semiconductor (generally tin oxide). When the sensing layer 
is heated at a certain temperature in the air, oxygen is 
adsorbed on the crystal surface with a negative charge. As 
quoted in [6] by withdrawing electron density from the 
semiconductor surface, adsorbed oxygen gives rise to 
Schottky potential barriers at grain boundaries, and thus 
increases the resistance of the sensor surface. Reducing gases 
decrease the surface oxygen concentration and thus decrease 
the sensor resistance. The overall process causes a decrease 
in the resistance Rs of the sensing layer that can be measured 
against a standard value R0 gathered at optimal test condition. 
Sensor datasheets are given as Rs/R0 values against part-per-
million (ppm) concentrations. 

Experiments have been carried by directly exposing the 
device acquisition unit to small quantities of different 

gaseous contaminants. Emissions have been produced in 
sequence to stimulate  subgroups of the chosen sensor triplet. 
Emissions have been the following: first, carbon monoxide 
(CO); second, sulfure dioxide (SO2); third, a mix of the first 
two (CO+SO2); fourth, ammonia (NH3).  

Actually, we purposely did not use any test chamber for 
the experiment since our objective was mainly to 
discriminate among classes of emissive phenomena rather 
than exactly computing the ppm values of the induced gases. 
All emission events have been tagged with a timestamp. This 
assured a correct synchronization between the emitted gases 
and the observed sensor responses. 

B. Pre-processing 

A brief sequence of pre-processing steps has been applied 
over raw data, namely: 1) normalization; 2)extraction of the 
first derivative; 3) extraction of the absolute value. 

In the normalization step, the dataset is transformed so 
that each signal is brought at mean zero with unary standard 
deviation. This allows for comparing the dynamics of the 
signals on the same scale. The consequence is the loss of 
absolute values, which is however outside the scope of the 
paper and is left to a future work on the subject. 

In the second processing step, sensor dynamics is 
emphasized by considering the first derivatives as relevant 
features in the signal characterization process. 

In the last processing step, absolute values obtained from 
the previous step are taken, so that oscillatory behaviors of 
the first derivatives are eliminated. 

The effect of the three processing steps on input data is 
displayed in Figure 3. 
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Figure 1. Conceptual schema of the proposed approach.

Figure 2. Datasheet of the employed sensors. 

Figure 3. Synopsis of the three signals after all the pre-processing steps.
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C. Defining numerical hypotheses over the dataset 

After the pre-processing step, data are given in input to 
the logical block for gas selection.  

Logical rules are defined by means of numerical 
hypotheses on data, as discussed above. The chosen 
hypothesis is a very simple one: it is defined by the 
following function: 

 
otherwise

  )datum( if

0

1
)(








k

kdatumhyp  

where datum(k) is an input sample at time k and  is a 
parametric threshold.  

It is interesting to note that, depending on the value of , 
hypotheses can be true or false, i.e., below or above certain 
levels the hypothesis function may switch from one logical 
state to another. This means that an IF THEN rule of the type 
defined above can be verified only in certain subsets of the 
dataset. 

Furthermore, it is important to stress that the logical state 
(true or false) is obtained only by means of measures, 
without explicitly knowing the analytical form of the 
underlying datum function. This allows for analyzing, in 
principle, any given measurable signal. 

Parameter  provides one degree of freedom to the 
definition of the logical block. Of course, more than one 
parameter can be considered; however, for the sake of 
simplicity, only one parameter is taken in this paper.  

D. Finding the best parametric configuration 

The choice for optimal  has been led by the estimation 
of another parameter, referred to as the coverage index (CI). 

The coverage index of an IF THEN rule is simply 
defined as the number of samples where the rule is verified 
divided by the dataset cardinality. In formulae: 

|Dataset|

 verifiedis   wheresamples#
)CI( i

i

Rule
Rule   

Similarly, the total coverage index (TCI) represents the 
fraction of samples in the dataset covered by at least one of 
the IF THEN rules representing the knowledge base.  

TCI varies from 0 (no rule) to 1 (when rules completely 
partition the dataset). TCI can be reckoned by means of the 
following formula: 





||

1 Dataset

 )(CI)TCI(
KB

i
iRuleKB   

There can be samples in the dataset firing more than one 
rule; this means that there can be rule activation patterns that 
partially or totally overlap over the dataset.  

Our attempt was to empirically find the minimum 
number of rules (depending on parameter ) with the total 
coverage index closest to 1. For this to be achieved, an 
iterative procedure has been run varying the value of . Good 
results have been found for   = 0.3 with TCI=1 obtained by 
means of the four rules expressed in Table 1, while an image 
showing all four rules activation patterns is framed in Figure 
4. 

TABLE I.  LOGICAL RELATIONSHIPS FOUND AMONG SENSORS WITH 
THRESHOLD PARAMETER = 0.3. N.A. STAYS FOR NOT AVAILABLE. A MINUS 

SIGN IN APEX INDICATES LOW CREDIBILITY 

 
Each row from Table I represents a true IF THEN rule. 

Antecedents (i.e., arguments of the IF statement) are 
hypotheses on samples coming from sensors; consequents 
(i.e., arguments of the THEN statement) are True/False 
values over the hypothesis that a certain gas is actually being 
sensed. These last hypotheses have been verified in a 
supervised manner by windowing the emission events 
around the tagged timestamp of the experiment phase. For 
any given rule, if the number of firing events in the window 
of a gas emission was too low (less than 5% of the window 
length) then the predicate variable was considered insensitive 
to that gas. If the number of firing event was comprised 
between 5% and 50% of the window length, then the 
predicate value was assigned a low credibility. 

To be more clear, the first row of Table I represents the 
following statement: 

Rule 
ID 

KNOWLEDGE BASE (for =0.3) 

 IF STATEMENT THEN STATEMENT 
CI
% MQ 

131 
TGS 
2602 

MQ 
136 

SO2 NH3 CO other 

1 F F T T T- T- N.A. 4.9 

2 F T F N.A. T N.A. N.A. 1.4 

3 T T T N.A. N.A. T N.A. 2.7 

4 F F N.A. T N.A. N.A. T 93.7 

Figure 4. Rule activation patterns (rules correspond to logical relationship reported in Table I). 
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Rule 1: 

  IF MQ131< 0.3 AND TGS2602< 0.3 AND MQ136 >= 0.3 

  THEN  SO2 OR NH3 OR (with low credibility) CO (with 
low credibility) 

This means that every time the (preprocessed) values of 
MQ131 and TGS2602 are below 0.3 and those of MQ136 are 
above or equal to 0.3 then all the three gases are possibly 
being sensed: SO2, NH3 or CO, having the latter two cases a 
low credibility.  

Rules may also provide very poor pieces of information 
like in Rule 4: 

  IF MQ131< 0.3 AND TGS2602< 0.3 

  THEN SO2 OR something unknown 

where the interpretation is that if both MQ131 and TGS2602 
values are below 0.3 then either we are in presence of SO2, 
or we are not capable of ascribing sensor behavior to one of 
the considered gases.  

Of course, having multiple gases in output is not a 
desirable condition since it represents an ambiguous 
response. Notwithstanding, disambiguation can be partially 
dealt with by means of simple considerations. 

E. Disambiguating sensor response 

Rule 2 and 3 account respectively for NH3 and CO. This 
means that they do not need further disambiguation. If we 
want our system to be able to detect also SO2 emissions, 
some kind of rule post-processing has to be carried out. In 
particular,  Rule 1 can be simplified assuming to disregard 
NH3 and CO response due to their low credibility. 

Of course, this is only an empirical approach aimed at 
showing the problem of disambiguation at a coarse scale. 
More formal approaches go beyond the scope of the paper; 
for example, the reader may refer to a previous work [22]. 

F. Testing results with high-cost chemical sensors 

For testing purposes, the discrimination abilities of the  
logic block has been compared with the output of high-cost 
chemical sensors. In particular, two SensoriC sensors for CO 
and SO2 detection respectively have been used for this aim. 
These two sensors are approximately between one and two 
orders of magnitude more costly than the low-cost ones. 
Their response to the events of CO and SO2 is depicted in 
Figure 5.  

G. Dataset heteroschedasticity 

In order to have a further estimate of the inner correlation 
among sensors, dataset heteroschedasticity (i.e., the property 
of measured samples to represent a population with equal 
variance) has been assessed through the Barlett’s test [27]. 
The test, computed on raw data coming from the triplet, has 
shown that (with reference to the proposed experiment)  the 
number of dimensions necessary to explain the non-random 
variations in data is 3. The same result has been obtained by 
means of the principal component analysis [28]. 

This assessment defines the putative minimum number of  
IF THEN rules needed to best explain our data. As shown 
before, four IF THEN rules were empirically found. 

H. Theoretical aspects and future developments 

Since IF THEN rules are logical statements, they 
guarantee logical coherence in their respective domain of 
validity. For example, assuming that “IF A AND B THEN 
C” is true in a certain interval, this implies that, in the same 
interval, “IF A AND B THEN NOT C” cannot be verified. In 
other words, the proposed logical approach to signal 
interpretation, provides a coherent framework for gas 
discrimination. 

Another key point, is the type of numerical hypothesis to 
apply over incoming data. For the sake of simplicity, only 
one parameter has been used for tuning purposes. However, 
it is fair to assume that, the more parameters used, the more 
discriminatory the type of rules found. 

Starting from these observations, it is interesting to note 
that the proposed approach stays amid a wide number of 
fields, such as measurements, computational intelligence, 
logics. Measurements become valuators of hypotheses over 
data, thus allowing for a jump from the numerical world to 
the logic-symbolic one.  

V. CONCLUSION 

In this work, the novel hypothesis of logically combining  
low-cost metal oxide sensor responses by means of IF THEN 
inference rules has been presented for gas discrimination 
purposes. Observational experiments have been made to 
support this claim. In particular, it has been shown how a 
triplet of low-cost sensors (namely, MQ131, MQ136 and 
TGS2602) is sufficient for discriminating three different 
classes of emissions (CO, SO2 and NH3).  

This paper is built upon the theoretical and practical 
expertise gained from previous works in the mixed fields of 
measurement and computational intelligence. As far as the 
electrochemical and thermodynamic aspects are concerned, a 
temperature-humidity calibration phase was performed 
digitally on raw data basing on the available MQ131, 
MQ136 and TGS2602 datasheet information and using high-
sensitivity temperature and humidity sensor output as 
ground-truth reference. As for the information processing 
aspects, the computationally-lightweight rule extraction 

Figure 5. Rule activation patterns  
(rules correspond to the logical relationships reported in Table I). 
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mechanism presented in [25] allowed for producing a 
coherent knowledge base with a very small number of valid 
rules (four in our case). Since the obtained rules are logical, 
when they account for conflicting behaviors, this means that 
they  certainly do not occur in the same sampling time. 

To cap it all, the noteworthy principle behind our 
proposal is that gas discrimination abilities gained with low-
cost sensors can be surprisingly similar to that obtained with 
high-cost counterparts. This idea, although grounding by 
now only on an empirical base, seems to open a promising 
perspective in the research field of both measurements and 
intelligent information systems. 
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