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Abstract—Extracting useful temporal and spatial patterns
from sensor data has been seen before, the technical basis
of Machine learning with Data mining is studied with the
evidence collected uniformly over many years and which
allow using users’ perspective in collected evidence. This
model helps in probabilistically forecasting fires and help
forest department in planing day to day schedules. Using
a model to predict future events reliably one needs to
collect samples from sensors and select a feature, which
does have any particular bias. Due to practicable problems
most of the collected data have 80% of attributes missing
and the remaining has numeric values, which are hard to
discretization. To adapt to such limitations, we use nominal
data type, which allows better understanding of the temporal
and spatial features, which are learnt. We encounter several
practicable limitations as forest fires events are very rare
and manual classification is extremely costly. Another is the
unbalanced nature of the problem of the many forest fire
events many are of the burnt area is very small and gives
skewed distribution. Most of the examples naturally group
into batches, which are collected from evidence satellite
photography and collaborative reports from national parks
departments. The second set of database was collected from
the meteorological weather station about several weather
observations, which are located very close to the reported
fires. Finally, the compiling task is to serve as a filter and
provide the user to vary the false alarm rate. We show by
regression analysis of the compiled dataset that the forest
fire classifier has a minimum false alarm rate when including
temporal features. The machine learning algorithms success-
fully classifies accidental small fires with 85% reliably and
large fires by a much lower accuracy of 30%.

Index Terms—Machine Learning, Datamining, Naive
Bayes, Forest fires, Fire Weather Index (FWI), Temporal
Patterns, WEKA machine learning framework.

I. INTRODUCTION

Accidental small forest fire can lead to heavy loss of
precious natural reserves in protected lands in which
many different species thrive due to their balanced ecol-
ogy. Tropical rain forests are also a factor in keeping the
sensitive balance global warming trends seen recently
due to heavy deforestation due to human needs. One

of objective of Datamining is to allow modeling the
users’ perspective such as temporal properties, which
are cause and effect of forest fires, which allows in
reducing false detection. The hidden patterns are mined,
which allows to find the underlying hidden structure of
the data. This allows learning the concepts needed for
forest fires classification. The features extracted of the
predicted class by means of datamining allows to apply
many machine learning algorithms to the transformed
data. This framework forms the technical basis for the
supervised and unsupervised classification.

Temporal query properties like weekday and week-
ends help probabilistically bias the predicted outcome
of class variables to be classified. As a small human
accidental fire or a possibility of occurrence of large
natural fire disasters can further be classified according
to the users choice. Attribute value transformations are
equally important when formulating attribute depen-
dencies within a weather class [4,5,6,7] nominal values
such as cool, windy and high humidity for successful
formulation of machine learning rules.

Following motivation the rest of the paper with is
organized as follows. In Section III, we evaluate the per-
formance of machine learning algorithms and develop a
weak learner for temporal features. Section IV presents
initial basis for user queries without significant error
analysis, that is without any ranking criteria. In Section
V, we evaluate Naive Bayes [1] with Tree based classifiers
and compare the method on the task of accidental fire
prediction. Section VI investigates alternative feature and
computational aspects of the method respectively and
explains the results. Section VII concludes the paper.

II. STATE OF THE ART

The historic information recorded by it does not reveal
any hidden patterns to calculate the likelihood of forest
fires. Classifiers model depends on accurate class condi-
tional probabilities but in practice, samples are limited,
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most of the estimates are approximate which further
biases the sample search space. With limited samples, the
Bayesian method does the better estimation of the class
conditional probabilities, when compared to maximum
likelihood method. The internal representation of the
classifier data model uses a weighted term, and best
evaluates the quantity purity of the labeled class. This
provides classification of the same-labeled pattern with
insufficient samples, with pure and impure groups and
helps its internal ranking. The internal representation
captures the hidden pattern of the training samples, once
the hidden patterns are quantitatively verified with a
base classifier such as Nave Bayes, these representative
patterns are further classified by user specified attributes
such as which month and which day the particular
pattern has maximized the likelihood of a phenomenon
such as fire event.

There are standard benchmarks for performance com-
parison of classifiers and Bayes gives the lowest error
rate compared to others. We also study the kappa score,
which compares our classifier with a J48 tree classifier
for the same input data set and normalizes using the
results of the confusion matrixes. A high kappa score
is generally preferred for a classifier to be efficient,
which needs using of good pre-processing algorithms.
Since sensor data are, highly unreliable most of well-
designed classifiers perform badly and cannot adapt
to the sensor data stream. By using post-processing of
miss-classified samples and identifying falsely classified
data also called outliers, we further improve the relia-
bility. From authors previous work [1], we have shown
data aggregation eliminate redundancies and improves
reliability in sensor network performance. The current
ML algorithm focuses on event aggregation over a long
period of time from user reports and collaborative sensor
network stream, which have been further classified to a
particular application. We study the effects of predicting
forest fires in a given region using sensor aggregated
data.

III. MACHINE LEARNING RULES

Consider the concept leaning, in particular the learner
considers some finite hypothesis [6] space H defined
over instance space X , in which the task is to learn some
target concepts c : X− > 0, 1. As we are building a
fire event predictor from the sensed data, we assume
that the network learner is given some sequence of
training measurements ((X1, d1)...(xm, dm)) where xi is
some instance from X and where di is the target value
of di = c(xi). As we are learning from a knowledge
base such as data repository the sequence of instances
(x1...xm is held fixed, so that the training data D can be
written as the sequence of target values D = d1...dm.

P (h|D) =
P (D|h)P (h)

P (D)
(1)

X

Y

Fig. 1. location of inventorised geomorphosites in the montesinho
natural park.

hMAP = argmaxhϵHP (h|D) (2)

The assumptions for the concept learning follows:

• The training data D is noise free.
• The target concept c is contained in the hypothesis

space H .
• We have no a priori reason to believe that any

hypothesis is more probable than any others.

Since we assume noise free samples, the first hypothesis
can be formed for the detection of forest fires [2] for an
approximate target function V as shown in equation (3)

V (FireLocation) = XPos+ Y Pos (3)

where every incident of forest fire is documented and its
location in terms of <X,Y> [2] are recorded. The learning
algorithm uses a boosting [5,6] method to learn from the
forest fire events and its corresponding correlated sensor
measurements. The model does not use real-time sensor
inputs and data samples to classify but on the other hand
it uses recorded fire events and probabilistically predict
the new sensor input closest to the already seen training
sample (data aggregated over time) using Naive Bayes
or Tree classifiers. This computational model can further
post-processed using supervised learning to improve on
the purity of the classes and detect any outliers which
may create false alarms. The unreliability of accurately
detection real and outlier events is an open problem in
sensor networks. The above equation is dependent on
<X,Y> positions in Figure 1 map, for grid of 10x10 it
may need 100 combinations of every other dependent
variable making the model unfriendly. The estimated
formula of the above equation (3) can estimated in
temporal terms for the Fire Event as shown in equation
(4).

Vtrain(FireEventDay of week)← (4)

V̂ (FireEventDay of week)Temporal Variable +

V̂ (FireEventDay of week)Correlated measurements

Temporal Variables = Month of the year + (5)
Day of the week
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Correlated measurement = temperature + (6)
humidity + wind + rain

Classfires = {accidental; small, medium, large} (7)

A. Estimating training values with sample data

Sample datasets are based on UCI forest fire repos-
itory. The equation representing the Bayes probability
model of the hypothesis is given in equation (1). In
our case the hypothesis to be maximized is shows in
equation (2) for a four class classification, as shown in
equation (7). The assumption here is that the training
set D is a unbiased representation to learn the concept c
and can estimate the inputs xi. The previously defined
dependent variable Fire Location, which is used to es-
timate given the independent correlated measurements
and its relation to the temporal attributed are given in
equations (4), (5) and (6). The target concepts are present
in the training samples and, we like to see the influence
of adding sensor measurements to further accurately
learn the concepts of the human induced accidental fires
versus the more natural accruing types of the medium
and large fires. For the sake of clarity of machine learning
domain we convert the correlated sensor data to nominal
[5] types, as illustrated below.

temperature = {cool;mild;hot} (8)

humidity = {low;medium;high} (9)

wind = {true; false} (10)

The model estimation of the the target function with
weights w1, w2 as shown allows to minimize the training
error, where x1, x2 are temporal and correlated measure-
ments.

V̂ = w1x1 + w2x2 (11)

The learning algorithm needs to define the best fit for the
given hypothesis and adjust the weights to minimizing
the error and miss classifications.

E ≡
∑

(Vtrain(FireEvent)− V̂ (FireEvent))2 (12)

B. Algorithm complexity

Search space consists of all the possible patterns of
the features, given our data model, 3 ∗ 3 ∗ 2 ∗ 4 = 72
possibilities for each rule when using attributes 3 for
temperature, 3 for humidity, 2 for wind for 4 classes of
fire categories. As there are 517 rules from the collected
dataset instances the complete search space [5] will have
nPr = 72522 ≈ 10969 different possibilities. To minimize
the complexity of search space, we can further cut down
on the sample instances by using spatial clustering and
removing any redundancies in similar features. Given
the <X,Y> positions, we can cluster into groups the
possible fires types into accidental small fires and others
which have medium and larger burnt area as large fires.

FIRE TYPES RECORDED

Accidental (AF) 247
Small (SF) 175

Medium (MF) 71
Large (LF) 24

TABLE II
TARGET VARIABLE OCCURRENCES.

As measuring ambient phenomena are correlated, we
expect them to be independent, then all the i.i.d’s can
be aggregated to nCr = 517C72 ≈ 1089 possibilities,
were in this case the combination is calculated. As these
methods are used with pre-processing to reduce data
overloads in the model further real valued dataset search
space optimization is possible. Domain knowledge as
in the case of WSN can be used practically to reduce
the complexity of machine learning algorithms if well
studies and calibrated. To judge the affectiveness of the
model and the classification effectiveness, we initially
rely on real-valued numeric model such as [1] to estimate
the errors. In contrast to the previous approach, we use
nominal values as defined in equations (8), (9) and (10)
to build a tree classifier and further reduce errors.

IV. NAIVE BAYES

One can use Naive Bayes [5], which by design pre-
sumes the class densities, which have been determined
and accurate. The model calculates the class conditional
probabilities of the input feature vectors. To understand
the underlying skewed structure of the dataset, we fur-
ther create thresholds for accidental small fires compared
to medium and large fires as shown in Table II. So we
have the four possible values for the target variable as
shown in equation (7).

A. User query

To validate the model let us predict the outcome of a
peak month, from the dataset [2] August has significant
number of reported fires compared to other months. Esti-
mating the probabilities of fire events given the attribute
values for the class

? = {Month = August;Day = Monday}
{Temprature = Cool;Humidity = High;Wind = True}

The estimated class conditional densities for the inde-
pendent variables temperature, humidity and wind con-
ditions are calculated using temporal attributes month
for the dataset are shown in Table II. The datasets further
is explored using two temporal variables, which are
month and the day of the week as shown in Table I
and Table IV. The temporal variables introduced into
the dataset helps gain the insight of users’ dependencies
with fire prediction model.

gi(x) = P (ωi∥x) =
p(x∥ωi)P (ωi)∑i=4

i=0 p(x∥ωj)P (ωj)
(13)
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Burnt Area(hectors) AUG MON TEMP HUMIDITY WINDY PRIOR PROB PREDICTOR VAR

GT 1h I 0.34 I 0.14 I 0.46 I 0.17 I 0.42 I 0.47 I 57%
GT 1h LEQ 10h 0.39 0.15 0.35 0.13 0.38 0.33 25.0%

GT 10h LEQ 50h 0.30 0.14 0.43 0.19 0.50 0.13 17.0%
GT 50h 0.33 0.08 0.16 0.08 0.37 0.04 0.02%

TABLE I
POSTERIORS PROBABILITIES FOR BACKGROUND WEATHER DATA FOR THE PEAK MONTH AUGUST.

FIRE TYPE MONTH=AUG

Accidental 0.004
Small 0.002

Medium 0.001
Large 0.00004

TABLE III
LIKELIHOOD OF FIRES FOR THE MONTH OF AUGUST.

DAYS ACCIDENTAL SMALL MEDIUM LARGE

MON I 35 I 27 I 10 I 2
TUE 28 21 11 4
WED 22 24 5 3
THU 30 21 9 1
FRI 42 31 12 0
SAT 42 24 11 7
SUN 48 27 13 7

TOTAL I 247 I 175 I 71 I 24

TABLE IV
POSTERIORS PROBABILITIES FOR TEMPORAL FEATURE DAY OF THE

WEEK.

Substituting the corresponding highlighted values from
Table 1 through to Table IV in the above equation (13),
we get the posterior probability of accidental small fire

ˆfireaccidental =
0.0007547

0.003565
= 57% (14)

ˆfireSmall =
0.000333

0.003565
= 25% (15)

ˆfiremedium =
0.000223

0.003565
= 0.17% (16)

ˆfirelarge =
0.000000287

0.003565
= 0.02% (17)

The posterior probabilities for the month of August for
the data collected in Portugal [2], the likelihood of ac-
cidental small fires are very high. From cross-validating
from the known fact that in summer the likelihood of
wild fires are higher the Bayes rule is able to classify the
dataset for accidental and small fires with high accuracy.
We use a simulation framework in the next sections to
further prove our intial conclusion from the datasets, it
is shown that the training time for Naive Bayes scales
linearly in both the number of instances and number of
attributes.

V. TREE CLASSIFIER

In this section, we will focus on the domain rules,
which are applicable to the learning system. Tree clas-
sifiers lend itself to use ML rules [6] when searching the
hypothesis by further branching on specific attributes.
The design of such a classifier needs to sort the weights
or entropies [5] of the attributes, which is the basis of its
classification effectiveness.

ID3 is a popular tree classifier algorithm, to implement
ID3 as illustrated in Figure 2 and Table X with our
attributes. Let (S) be a collection of samples then using
the tree algorithm, which uses entropy to split its levels
is given by

Entropy(S) =

i=c∑
i=0

p(i) log2 p(i) (18)

Let us assume a collection (S) has 517 samples [2] with
248, 246, 11 and 12 of accidental, small,medium, large
fires respectively. The total entropy calculated from equa-
tion (18) is given by

Entropy(S) =
248

517
log2

248

517
+

246

517
log2

246

517
+

11

517
log2

11

517
+

12

517
log2

12

517
=

1.23

A. Attribute selection

ID3 uses a statistical property called information gain
to select the best attribute. The gain measures how well
the attribute separates training targeted examples, when
classifying them into fire events. The measure of purity
that we will use is called information and is measured
in units called bits. It represents the expected amount of
information that would be needed to specify whether
a new instance should be classified accidental, small,
medium or large fires, given that the example reached
that node. The gain of an attribute is defined by and
illustrated in Table V. Using the calculated attribute for
information gain we show that temp attribute is used
before the wind attribute to split the tree after the tree
root.

Gain(S,A) = Entropy(S)−
i=c∑
i=0

Sv

|S|Entropy(Sv) (19)

Entropy(SHot) =
9

36
log2

9

36
+

23

36
log2

23

36
+

3

36
log2

3

36
+

1

36
log2

1

36
=
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1.282

Entropy(SMedium) =
23

96
log2

23

96
+

65

96
log2

65

96
+

3

96
log2

3

96
+

5

96
log2

5

96
=

1.175

Entropy(SCool) =
117

269
log2

117

269
+

146

269
log2

146

269
+

2

269
log2

2

269
+

4

269
log2

4

269
=

1.05

Entropy(temp) =
43

517
∗ 1.282 +

139

517
∗ 1.175 +

335

517
∗ 1.05 =

1.08

Gain(S, temp) = 1.23− 1.08 = 0.192

Entropy(SHIGH) =
162

249
log2

162

249
+

72

249
log2

72

249
+

8

249
log2

8

249
+

7

249
log2

7

249
=

1.1952

Entropy(SLOW ) =
68

133
log2

68

133
+

59

133
log2

59

133
+

2

133
log2

2

133
+

4

133
log2

4

133
=

1.24

Entropy(wind) =
361

517
∗ 1.1952 +

Fig. 2. Tree classifier and attribute view.

Month Temp Wind

Not shown info: 1.08 info: 1.20
Not shown gain: 1.23-1.08 gain: 1.23-1.08

= 0.192 = 0.025

TABLE V
GAIN RATIO CALCULATION FOR TREE IN FIGURE 2.

156

517
∗ 1.24 =

1.20

Gain(S,wind) = 1.23− 1.20 = 0.025

The internal tree representation for m attributes from
n samples will have a complexity of O(lg n), with in-
creasing inputs, given by parameter n, the height of the
tree will not grow linearly as in the case of Naive Bayes.
On the other hand complexity of building a tree will be
O(mn lg n)

VI. SIMULATION

Open-source workbench called WEKA [3] is a useful
tool to quantify and validate results, which can be
duplicated. WEKA can handle numeric attributes well,
so we use the same values for the weather data from
the UCI [4] repository datasets. The class variable has
to be a nominal one, to allow WEKA [3], we convert
all fire types to ”0” or ”1”. Where ”0” is of accidental
small fire and ”1” is for large fires making it a two class
classifier, the results are shown as confusion matrix in
Table VIII and Table IX. Naive Bayes correctly classifies
accidental and small fires(209 out of 247) were as the
J48 Tree classifier does far more, 219 out of 247. As
WEKA uses kappa [3] stats for evaluating the training
sets, a standard score of > 60% means training set
is correlated, using J48 simulation, we get 53.56% just
below the standard. The comparison on results shows
that tree classifier does better than Naive Bayes by 25%
overall and equally well for accidental and small fires as
shown in Table VI and Table VII, when randomly tested
it falls just short of the expected 60%. Therefore using
sensor network measurements accidental and small fires
can be predicted reliably.
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WEKA Stats Results Summary

Correctly Classified Instances 267 51.64%
Incorrectly Classified Instances 250 48.35%

Kappa statistic 0.1371
Mean absolute error 0.3022

Root mean squared error 0.3902
Relative absolute error 94.86%

Root relative squared error 97.84%
Total Number of Instances 517

TABLE VI
EVALUATION ON TRAINING SET FOR NAIVE BAYES.

WEKA Stats Results Summary

Correctly Classified Instances 373 72.14%
Incorrectly Classified Instances 144 27.85%

Kappa statistic 0.5356
Mean absolute error 0.1938

Root mean squared error 0.3113
Relative absolute error 60.83%

Root relative squared error 78.04%
Total Number of Instances 517

TABLE VII
EVALUATION ON TRAINING SET FOR J48 TREE CLASSIFIER.

A. Simulation analysis
WEKA attribute statistics and its effective correlation

score. Table VI and Table VII show kappa and other com-
parison statistics for Naive Bayes and J48 tree classifier.

B. Error analysis
Equation (12) specifies the model error and the Confu-

sion matrix from the simulation score are shown in Table
VIII and Table IX, upper bound of small fire(AF+SF) has
over 80% accuracy for J48-Tree and 61% for Naive Bayes.
The corresponding baseline performances including all
fires categories is 72.1% for J48-Tree and Naive Bayes is
51.64%, which is due to large fires not correlated.

1) Correlation of attributes: From statistical point of
view if the attributes have similar values then it creates
high bias creating what is called over-fitting error during
learning. In our case temp and humidly may have
similar values and needs to be avoided and substituted
with a suitable attribute. To pre-process and analyze, we
use all the available in the dataset and WEKA provides
the attribute selection as illustrated in Table X.

We use the attribute selection wizard of WEKA to find
out the best match. The analysis shows from Table X that

LF MF SF AF

LF 0 1 7 16
MF 0 5 12 54
SF 0 7 53 115
AF 0 0 38 209

TABLE VIII
CONFUSION MATRIX FOR NAIVE BAYES USING TRAINING SET.

LF MF SF AF

LF 7 0 7 10
MF 0 29 15 27
SF 1 7 118 49
AF 0 5 23 219

TABLE IX
CONFUSION MATRIX ON TRAINING SET FOR J48 TREE CLASSIFIER.

Number of folds (%) No. Attribute

10(100 %) 1 month
1( 10 %) 2 day
0( 0 %) 3 temp
0( 0 %) 4 RH
0( 0 %) 5 wind

TABLE X
ATTRIBUTE SELECTION 10 FOLD CROSS-VALIDATION (STRATIFIED)

the Month(100%), Day(10%) and Wind(0%) are highly
dependent on the precision. As most of the attributes
are nominal it lends more to a tree classifier, which are
more flexibility in handling nominal types by design.

VII. CONCLUSION AND FUTURE WORK

The future research work will focus on how to rank
sensor queries with high reliability which otherwise
be biased due to unverifiable outliers present in the
form of noise, spikes and false positives in the time-
series data. The training sample sorting allows to weigh
the precession versus relevant evidence based on the
ranking criteria, such has F-scores and correlated Fire
Weather Index (FWI) to further compare the likelihood
of predicting large fire events reliably. The statistical
analysis of the data collection helps in exploring the
higher and lower bounds of the FWI ranges and its
corresponding robustness to predict large fires using our
implemented algorithms.
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