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Abstract—Recently, the exposure to formaldehyde has appeared
as a major concern since it is listed as a human carcinogen. Con-
ventional methods for its long-term monitoring are not feasible
due to their high operational cost, long analysis time and the
requirement of specialized equipment and staff. In this paper, we
use an electronic nose, containing an array of commerciallyavail-
able Figaro gas sensors, to estimate formaldehyde concentration.
A hardware friendly bio-inspired spike latency coding scheme
has recently been employed for gas classification by using relative
time between spikes. We use this scheme to estimate formaldehyde
concentration by utilizing absolute spike timings. However, there
is no straightforward relationship between the spike latency and
the formaldehyde concentration. Instead, stochastic variability in
the sensor array response, corresponding to repeated exposure
to the same formaldehyde concentration, implies that latency
patterns of the sensor array encode probability distribution over
the formaldehyde strength. We use a Bayesian inference approach
to estimate the formaldehyde concentration, and its performance
is successfully validated by acquiring data for formaldehyde
with our sensor array at twenty different concentrations in the
laboratory environment.

Keywords–Formaldehyde exposure; Sensor array; Spike latency
coding; Bayesian inference.

I. I NTRODUCTION

Formaldehyde (CH2O) is one of the most ubiquitous and
reactive aldehydes in the environment. It is a colourless and
rapidly polymerizing gas at room temperature and is widely
used in consumer products to protect them from spoilage
by microbial contamination. It can also be found in pressed
wood products, tobacco smoke and fuel burning appliances [1].
Recently, formaldehyde received great attention when it was
considered as a human carcinogen in the report of International
Agency for Research on Cancer [2]. This was based on
sufficient evidence of carcinogenicity from studies of human
cancers and exposure to formaldehyde. Higher concentration
levels of formaldehyde in the indoor environment pose a
serious health hazard to occupants of buildings. A recent study
[3] reported increased concentration levels in urban areas. This
alarming situation highlights the importance of formaldehyde
monitoring with a low cost and robust solution on a long-term
basis for healthy living. Unfortunately, traditional methods
[3]-[6] can not be used for the long-term monitoring of
formaldehyde because specialized equipment and staff are
required for the analysis of air samples collected from the
area being monitored. Moreover, the cost and analysis time
associated with these methods is very high.

An electronic nose system, containing an array of gas sen-
sors, emerged as a successful platform for the fast identification
of gases in the last two decades and it is targeted for many
applications like food quality checking [7], diseases diagnosis
[8], bacteria identification [9], environmental monitoring [10],
beverages classification [11], paper quality inspection [12] and
identification of health endangering indoor gases [15]. In this
paper, we use an electronic nose system, containing an array
of six commercially available Figaro gas sensors, to acquire
the signature of CH2O at twenty different concentration values
spanning from 0 to 5 parts per million (ppm).

Motivated by the recent experimental findings in the field of
neuroscience which report a logarithmic relationship between
the odor concentration and the spike latency of the mitral cell
[13], a logarithmic time domain scheme is used for gas classifi-
cation by translating a sensor array response into a spike laten-
cy pattern [14]. Hardware friendly rank order based classifiers
are developed for gas identification by using this technique
[14]-[17]. In these classifiers, the relative time between spikes
is utilized to distinguish gases. We use this scheme to retrieve
concentration information by using absolute spike latencies.
However, there is no straightforward relationship betweenthe
absolute spike latency and the formaldehyde concentrationas
there is in the rank order based classifiers where the change in
relative times between spikes does not change the classification
performance as long as their temporal order is not changed.
Generally, gas sensors exhibit randomness in their responses
due to multiple reasons and as a result, stochastic variability
is observed in the latency patterns.

In this paper, we use a probabilistic inference approach [18]
to deal with this randomness in the latency patterns in order
to estimate CH2O concentration. Probabilistic models have
been successfully used in neuroscience to build computational
theories for perception and action [19]. There are two major
steps in this approach. The first step is to learn the probability
encoding model or the tuning curve for the spike latency
patterns at each concentration value of the CH2O from the
experimental data obtained through the sensor array. The
second step is to use a bayesian decoding model to estimate the
formaldehyde concentration for a new test latency pattern by
using the probability encoding model. The performance of this
approach is evaluated by acquiring the data of twenty different
concentration values of CH2O in the laboratory environment.

The paper is organized as follows. Section II explains
probabilistic inference approach for CH2O concentration es-
timation. Section III describes the experimental setup fordata
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acquisition and evaluates the performance of our approach.
Finally, the conclusion is drafted in Section IV.

II. PROBABILISTIC INFERENCE

A logarithmic time-domain encoding scheme has been used
for gas identification in rank order based classifiers [14]-[17].
In these classifiers, the spike latencyli of the i-th sensor
corresponding to a target gas is represented as

li =
log xi

mi
(1)

wherexi denotes the sensitivity of the the sensori andmi

is a sensor dependent parameter which is extracted through
linear regression between the average log sensitivity of the
sensors across the array as an explanatory variable and the
sensitivity of the i-th sensor as an output variable. This
spike latency carries information about the gas identity and
its concentration. In rank order based classifiers, a temporal
sequence of spikes referred to as a rank order is used for gas
identification. Absolute spike latency is shifted with the change
in the concentration but the temporal sequence of spikes
remains fixed. In this paper, we use this logarithmic time-
domain encoding scheme to retrieve concentration information
by using absolute spike latency.

The potential challenge with this scheme is that the gas
sensors usually exhibit randomness in their responses because
of drift and as a result, stochastic variability is observedin
the latency patterns. In this paper, we present a probabilistic
inference approach to retrieve concentration informationfrom
the random latency patterns. Probabilistic approaches have
been successfully used in developing computational paradigms
for biological sensory systems [19].

The main objective of using probabilistic inference is to
find the most probable concentration value of the new test
latency pattern by learning the distribution of latency patterns
corresponding to each concentration value from available mea-
surements taken with the electronic nose. Let us consider the
following notations for this probabilistic inference problem:
suppose we have a set of concentrationsc={cj} and latency
patterns obtained through the experiments where each latency
pattern is denoted asl={l1, l2, ..., ln}, whereli represents the
latency of thei-th sensor.

Probabilistic inference is a two step process [19]. In the first
step, we learn a model fitting that captures the mapping from
l to c from available sensor array measurements. In the second
step, we use bayesian decoding to estimate the concentration
valueci from the new observed latency patternl.

In order to learn model fitting, we need to know the distri-
bution or probability encoding model of the latency pattern
conditioned on the CH2O odor intensity. With a particular
model, parameterized by a vectorθ, we can use maximum
likelihood (ML) to obtain the optimal estimatêθ for which
the latency patterns are most likely

θ̂ = argmax
θ

p(l|c, θ) (2)

In our application, we assume that latency patterns follow
a Gaussian distributionN (µ,Σ) and hence second order
statistics, that is, mean and covariance, is sufficient to learn
this distribution. We use ML to estimate these parameters from

sensor array measurements. Ifm is the ML estimate of the true
mean andS is the ML estimate of the true covariance matrix
then the conditional density of latency patterns with a given
CH2O odor intensity (ci) is given by

p(l|ci) =
1

(2π)n/2|Si|1/2
exp[−

1

2
(l − mi)

T Si(l − mi)] (3)

In order to estimate a new latency pattern, Bayesian de-
coding is used to compute the posterior probability p(ci|l) of
every concentration valueci in the set with a given latency
patternl. It can be described as

p(ci|l) =
p(l|ci)p(ci)

p(l)
(4)

Finally, the concentration with maximum posterior prob-
ability is selected as an estimated concentration of the new
observed latency pattern.

ĉ = argmax
i

p(ci|l) (5)

III. E XPERIMENTAL SETUP AND PERFORMANCE
EVALUATION

We use six commercially available Figaro gas sensors to
build an array for CH2O concentration estimation. The descrip-
tion of these sensors is listed in Table I. The experimental setup
for acquiring the response of CH2O at different concentrations
is shown in Figure 1. The sensor array is embedded in a
glass container with an inlet valve for CH2O exposure and
outlet valve for its outflow. The cylinders of CH2O and dry
air are connected to mass flow controllers (MFCs) which are
used to control the CH2O concentration by mixing it with air
in different proportions. A computer with a data acquisition
board is used for MFCs programming to achieve the desired
concentration of CH2O and for acquiring the response of the
sensor array.

TABLE I. GAS SENSORS USED TO ESTIMATE CH2O
CONCENTRATION.

Sensor Target Compounds
TGS 826 Ammonia
TGS 2600 Air contaminants
TGS 2602 Volatile organic compounds
TGS 2610 Liquefied petroleum gas
TGS 2611 Methane
TGS 2620 Solvent vapors

We expose the sensor array to twenty different concentra-
tion values of CH2O in the range between 0.25 ppm to 5 ppm
with a 0.25 ppm increment step. The sensor array is exposed
to CH2O for 500 seconds to obtain its response and then dry
air is used for 750 seconds to recover the baseline response,
i.e., the response without CH2O vapors. All the sensors in
the array respond to the target concentrations of CH2O with
different values of sensitivity. A typical response of a sensor
in the array to CH2O at ten different concentrations is shown
in Figure 2. In the figure, from left to right the concentration is
increased which results in decreased sensor resistance. Notice
that drift also appears, i.e., the sensor does not recover toits
original state (baseline response) during dry air exposure.

Drift is the major issue with current gas sensor technology,
which may occur due to changes in operational conditions,
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Figure 1. An Experimental setup to acquire the sensor array response to
CH2O exposure at different concentrations.
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Figure 2. Typical sensor response to formaldehyde at ten different
concentrations.

poisoning, and aging. Stochastic variability is observed as a
result of this drift. From these resistance values, the sensitivity
of each sensor is computed by dividing the steady state
sensor resistance during the gas exposure by the baseline
resistance. Regression coefficientsmi of each sensor are
computed through linear regression, as shown in Figure 3.
These parameters are used to transform the sensitivity pattern
of the sensor array into a spike latency code (SLC) or pattern.

The Bayesian inference approach is applied on these spike
latency codes in order to estimate the CH2O concentration,
and a 92.75% performance is achieved. This is slightly higher
as compared to other state of the art methods, which in-
clude Gaussian mixture models (GMM), multi-layer percep-
tron (MLP) and support vector machines (SVM) with linear
and radial basis function (RBF) kernel. The performances of
all these methods are summarized in Table II. The Bayesian
inference approach with spike latency codes not only performs
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Figure 3. Extraction of regression coefficients for each sensor through linear
regression.

better but it also does not require any tuning of parameters,
which is extensively used in other methods.

TABLE II. PERFORMANCE COMPARISON OF CH2O
QUANTIFICATION ALGORITHMS.

Classification method Classification Performance (%)
GMM 91.25
MLP 89.25
SVM (Lin) 88.5
SVM (RBF) 92.5
Bayesian Inference with SLC 92.75

IV. CONCLUSION

In this paper, we developed a low cost and compact
solution to estimate the concentration of health endangering
formaldehyde in the indoor environment by integrating com-
mercially available gas sensors. Spike latency codes are used
in the hardware friendly rank order based classifiers for gas
classification. We use these codes to retrieve concentration
information. Stochastic variability is observed in the spike
latency codes due to inherent issues in the existing gas
sensor technology. A probabilistic inference approach is used
with spike latency codes to reliably estimate formaldehyde
concentration. This scheme requires no manual tuning of the
parameters as compared to other commonly used state of the
art methods.
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