
Automated Service Evolution

Dynamic Version Coordination Between Client and Server

Virginia Smith
Business Technology Optimization

HP Software
Roseville, CA, USA

virginia.smith@hp.com

Bryan Murray
Business Technology Optimization

HP Software
Bellevue, WA, USA

bryan.murray@hp.com

Abstract— While client/server integrations may be loosely
coupled so that the evolution of the service endpoints occurs
with minimal impact on backward compatibility, installing and
configuring application upgrades to take advantage of new
application functionality is still painful for customers and
involves manual work by administrators. Coordinating
changes in version between client and server has traditionally
been done using either a central registry or through manual
configuration, both of which can be error prone. The authors
propose that clients and servers be aware of the versions they
consume and provide and that they coordinate between
themselves to adapt dynamically to new versions.

Keywords - automation, versioning, web service, REST
client/server, evolution

I. INTRODUCTION

Upgrading deployed software has been an ongoing
problem in the software industry. Much of the research has
focused on this problem in several main areas. One area of
focus is adaptive software where a software system can adapt
itself in response to specific internal or external conditions as
detailed in [10]. This research focuses on the software
system itself (the service) and does not address the problems
that occur in the client/server communication when a service
is upgraded. Another area of research focuses on maintaining
backwards compatibility to eliminate client problems after
the service upgrade, usually through the addition of a new
component. Some examples are [5] which uses adapters and
[4] which uses an interface monitoring component.

This version evolution problem is even more acute today
as more and more functionality is deployed as web services
where the client and server are independently controlled. In
addition, in many enterprise deployments, multiple versions
of client and services must coexist due to business
requirements or software supplier constraints. Services must
evolve to handle new customer requirements and clients
want to know when a service is upgraded so they can take
advantage of new functionality immediately without waiting
for a manual configuration. To handle this dynamic
environment, clients must be able to deal with multiple
service versions and services must be able to deal with
multiple client versions. The authors propose a method of
dynamic negotiation between client and server that enables
them to adapt to this kind of deployment environment.

We showcase our proposed solution using the
Representation State Transfer (REST) [2] client/server
architectural style as defined by Roy Fielding in his doctoral
dissertation. One of the key benefits of the REST
architectural style is that the client and server become much
more loosely coupled than was possible using the operation-
oriented approach. A RESTful architecture is being adopted
by many applications to enable easy and consistent
integration development. While RESTful application
integrations may be loosely coupled and, therefore, the
evolution of the service endpoints occurs with minimal
impact on backward compatibility, installing and configuring
application upgrades to take advantage of enhanced
application functionality is still painful for customers and
involves manual work by administrators. The authors
demonstrate dynamic version coordination between client
and server using a method that enables RESTful integration
participants to seamlessly configure themselves to use a new
endpoint version as the client is updated and/or a new service
version becomes available.

All services, even those written using the REST
architectural style, will need to modify their data models at
some point. With care, a client and service can continue to
work even with many data model changes, as long as those
changes are backwards compatible. The W3C TAG draft
document [8] on versioning languages addresses the issue of
maintaining compatibility between versions of a language
and provides insight into a number of design patterns for
constructing extensible languages and defining a language
versioning strategy. These strategies help to ensure
compatibility between versions of a language and thus
between a service and its clients.

However, even when there is language compatibility
between a service and its clients, there are reasons that may
prompt a server to move to a new version. Bug fixes are one
scenario. Another scenario is when there is a functionality
change in the content of a client request to the server. For
example, a server might support new query parameters. The
client can then add new logic to communicate with the server
using the new functionality. A third scenario occurs when
there is an expectation of some new action related to the
resources controlled by the service. For example, a resource
has a state attribute of 'on' or 'off' but a new state is
introduced such as 'standby'. The new language version may
be compatible with the old version but there is new

21

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

functionality represented by this change. The service
supports the new state attribute with some specific actions. In
fact, the service might require that clients make use of the
new state in a new version of the service. In these scenarios,
the client is not satisfied with simply maintaining language
compatibility with the server. The client is interested in using
the latest version of a service to take advantage of new
functionality or new language elements. Therefore, even
with a well-defined versioning strategy, there is a need to
address the ease of migration of a service and its clients to
newer versions when that migration is desired.

The remainder of this paper is organized as follows.
Section II defines the terms used throughout the paper and
presents an example that is used to demonstrate the concepts.
Section III describes the problem that occurs when individual
applications are combined to deliver an enhanced solution to
the customer. Sections IV and V present an approach to
solving this problem using common REST technologies.
Section VI offers suggestions for implementing version
evolution in non-RESTful environments. Finally, the paper
concludes with thoughts on the general applicability of the
approach.

II. TERMS

An integration is a point of communication between two
applications for the purpose of sharing resources. For
example, the operations management application can open a
ticket in the help desk application when an alarm is raised.
The business impact analysis application can add additional
relevant information to the help desk ticket to help the
operator triage the problem.

There are two parties to every integration point, a client
and a server. In REST architecture, these are defined as the
two main connector types. “The essential difference between
the two is that a client initiates communication by making a
request, whereas a server listens for connections and
responds to requests in order to supply access to its services.
A component may include both client and server
connectors.” [2]

An endpoint is the implementation of a service interface.
In a RESTful web service, it is defined by a set of related
URLs and the HTTP methods that are valid for those URLs.
The endpoint implementation acts as the server in an
integration. The term service is also used here to mean the
service endpoint.

III. ASYNCHRONOUS MANUAL CONFIGURATION

While loosely coupled integrations allow for the client
and server to evolve independently, upgrading to a new
version can cause integration configuration problems. With
multiple versions of the client and multiple versions of the
server available in the field, it is necessary to configure
which version of the server a client connects to. This is often
a manual process that is performed by administrators and is
error prone. Making the matter worse is that the applications
participating in integrations rarely follow the same upgrade
timeline. When and how should an administrator configure a
new version of an integration (e.g., reconfigure the endpoint

URLs) and what happens if there are multiple application
versions that exist in a customer’s environment?

Consider the example of an IT management solution.
This solution is enabled through integrations between four
related applications as shown in Figure 1. This product suite
solution is now being upgraded to enable additional new
collaboration between the applications. Each application
must implement its part of this new collaboration
functionality. The products have the following schedules for
the release of the version that will support the enhanced
solution:

 Product A: version 5 is already released.
 Product B: version 6 will release in 2 months.
 Product C: version 7 will release in 3 months.
 Product D: version 2 will release in 6 months.

Figure 1. A 4-product solution showing the integration points.

While it is difficult to synchronize the release timelines
of any two products developed independently, it is even
more difficult to synchronize the upgrade of different
applications in a customers’ environment where there may
be sets of constraints by users of those applications on
availability, risk of change or introducing incompatibilities,
etc. The administrator must not only install the new version
of the application, but also reconfigure new versions of all of
the integrations between that application and other
applications. Some applications may or may not be ready for
a new version of an integration, making the upgrade process
error prone. This results in customer frustration and
increased support calls. As a result, customers are sometimes
very slow to upgrade their applications. This can have a
detrimental impact on the ability to bring end-to-end solution
improvements to customers.

The authors propose an approach that enables dynamic
version coordination between client and server. The
approach defines how a client can automatically discover
when a server is upgraded and how the client can reconfigure
itself to use the new version of the server without requiring
either a central registry or manual intervention by an
administrator.

22

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

IV. AUTOMATED EVOLUTION

Through careful orchestration of the messages exchanged
and the incorporation of version information in the messages,
integrated applications can maintain their relationship
automatically, always using the latest version shared by the
client and server. This significantly improves the decoupling
of individual product releases for integrated applications and
makes the deployment of enhanced integrations and
solutions a simpler, more automated process.

The authors’ proposal is composed of two behaviors:
Discovery and Notification. Discovery is used to assure that
when a client starts, it is using the latest version of the
service that it supports. Notification is used to inform the
client of an available new service version when the client has
been running and the service was asynchronously updated.

The Discovery behavior defines how a service advertises
its capabilities, and how a client approaches using the
service. The key elements of Discovery are:

 Each application that provides services to integrating
partners makes available to the client information
about what versions it currently supports and how to
access each version.

 Clients are expected to access this information when
they begin using the service and select the
appropriate version of the service to access the
resources of interest.

The Notification behavior defines a process for
independently updating a client or service without updating,
manually reconfiguring, or restarting other applications. For
example, it allows for installing a new version of a service
(in parallel with an existing version of the service) without
requiring a manual reconfiguration of an application that is a
client of that service. The Notification behavior defines how
a service informs a client that a newer version of the service
is available, and how a client behaves upon receiving such a
notification. The key elements of Notification are:

 When a server receives a message from a client that
is not the latest version, the server includes a
notification that a new version is available as part of
the response to the client (along with the location of
the new version). The location of the version
information document is also included in the
response.

 When a client receives a notification indicating a
newer version, it may follow the link to the latest
version information document and discover the
server versions there or it can follow the link to the
requested resource using the latest version of the
service. If the client does not support a newer
version, it ignores the new version notification.

There are significant benefits to this approach. No
endpoint registry needs to be maintained, no periodic
checking for new application versions needs to occur, and no
manual configuration of the upgraded client or server
application is necessary. The version information document
is always up to date and the binding of the server and client
occurs at the last possible time. Clients can seamlessly

configure themselves to use a new server version as the
client is updated and the server version becomes available.

V. IMPLEMENTING DISCOVERY AND
NOTIFICATION BEHAVIORS

This section will map the proposed dynamic version
coordination approach to an implementation suitable for use
in RESTful services.

A. Discovery

In order to address the Discovery behavior described in
Section IV, the authors propose using the Atom Publishing
Protocol (APP) Service Document to advertise the versions
that a service currently supports. The APP specification [3]
defines a Service Document to be a set of Workspaces, each
containing references to a set of Collections. The APP
specification does not attach any particular meaning to a
Workspace.

The authors define a new element, version, to be a
child of the APP workspace element. The workspace
element already groups collection references into a cohesive
set. The addition of the version element adds the concept
of version to a workspace. Multiple workspaces may have
the same value for the title element, as long as the value
of version is different for the two workspaces. An
example of a Service Document using the new version
element is shown below. The example shows how the
workspace grouping is used to advertise two versions of a
service. Note the difference in the URLs for the collections.

<?xml version="1.0" encoding="utf-8"?>
<service xmlns="http://www.w3.org/2007/app"

xmlns:atom="http://www.w3.org/2005/Atom"
xmlns:v="urn:x-auto-version:version">

<workspace>
<atom:title>Help Desk Svc</atom:title>
<v:version>1</v:version>
<collection

href="http://example.org/incidents">
<atom:title>Incidents</atom:title>
...

</collection>
</workspace>
<workspace>
<atom:title>Help Desk Svc</atom:title>
<v:version>2</v:version>
<collection
href="http://example.org/v2/incidents">
<atom:title>Incidents</atom:title>
...

</collection>
<collection
href="http://example.org/v2/operators">
<atom:title>Operators</atom:title>
...

</collection>
...

</workspace>
...

</service>

23

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The version element allows a service to advertise
multiple versions of its endpoint(s) with links to resource
collections as a cohesive set for a given version. A service
supporting multiple workspaces before adding a second
version can still support multiple versioned workspaces. A
client can easily determine whether the service supports
multiple versions by searching for the version elements
and selecting the workspace(s) to use based on the available
versions and the versions supported by the client.

B. Notification

In order to address the Notification behavior described in
Section IV, the HTTP Link header [7] is used in response
messages. Use of the HTTP Link header allows the
Notification behavior to work with any media type. The Link
header includes a URI reference and an indication of how the
resource indicated by the URI reference is related to the
resource in the response body. Two relation types are used in
the Notification behavior. First, the service relation
defined in the Web Linking specification [7] is used to
identify the location of the Service Document. Second, a new
relation is defined to indicate the location of a resource using
the latest version of the service: urn:x-auto-
version:new-service-version.

A link with the service relation can be included in any
response message from a service. The link must be included
when a newer version of the service is available. The URI
reference in a service link identifies the location of the APP
Service Document used for the Discovery behavior.

A link with the new-service-version relation
indicates that the service provides a newer version than the
client was accessing in the request message. The resource
referenced by the URI is the resource the client requested,
but in a newer version of the service. The version link
parameter is also defined for the new-service-version
relation. This parameter indicates the new version of the
service and must contain the latest version supported by the
service. The client may also access the Service Document for
information on how to access other versions of the service if
appropriate. The response containing the new-service-
version link will use the same version that the client used
in the request. A new-service-version link must not
be included in a response message unless the service
supports a newer version.

An example of how the links are used in a response sent
from a service is shown below. The example shows how the
service link is used to indicate the location of the service
document, and how the new-service-version link indicates
the location of the requested resource using a newer version
of the service.
Link: <http://example.org>; rel="service"
Link: <http://example.org/v2/incidents>;

rel=
"urn:x-auto-version:new-service-version";
version="2"

The new-service-version and service link
relation types allow a service to notify a client that a newer

version of the service is available. A service indicates the
location of both a newer version of the referenced resource
and the service’s Service Document. A client can use the
referenced Service Document to find the available versions
and determine which version is appropriate. The client also
has access to the newest version of the resource it was
accessing. This document does not define any meaning for
the new-service-version and service link relations
in requests sent from the client to the service.

C. Service Actions

When a service deployment is updated to support a new
version, it is important for the service to continue supporting
one or more older versions to allow for clients that cannot be
upgraded at the same time and preserve loose coupling
between a service and its clients. The service provides an
updated Service Document advertising the new version of
the service and one or more supported older versions. In the
case where a service receives a request sent to an older
version, it notifies the client of the availability of the newer
version.

It is not difficult for the service to support a newer
version of the Service Document. All requests, regardless of
version, will return the same Service Document listing all of
the available versions. The Service Document for the service
should always be at the same location. In any case, the
service link relation will always indicate the location of
the Service Document.

Support for the notification to clients when a newer
version is available requires that older versions of a service
are aware that a newer version is available. This awareness
only needs to extend to the ability to add the HTTP Link
header to the response where the request used an older
version.

There are four use cases that occur in a multi-version
environment. The following discussion will use version 1 to
mean an older version of the application (client or service),
and will use version 2 to mean a newer version of the
application. With respect to the client, the version is intended
to indicate which version(s) of the service the client
understands. That is, a version 1 client understands only
version 1 of the service and a version 2 client understands
version 2 of the service and also supports version 1 of the
service.

a) Version 1 service receives version 1 client request
b) Version 1 service receives version 2 client request
c) Version 2 service receives version 1 client request
d) Version 2 service receives version 2 client request

The cases where a service receives a message from a
client matching its version (use cases a and d above) are not
interesting and will not be discussed here. In addition, a well-
behaved client will only send messages to a service that the
service will understand because the client has performed a
discovery of supported versions of the service. Thus, use
case b will not occur in a well-behaved environment.

The main concern is with an ‘evolving state’ where the
client and server are out of sync with respect to their versions
(use case c). When a version 2 service receives a message

24

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

from a version 1 client, it means the service has been
upgraded to a newer version while the client remains at an
older version. In this situation, the service will generate a
response using the same version that the client used, but will
add the HTTP Link header indicating that a newer version is
available and where to find it.

D. Client Actions

A well-behaved client will initially start from the Service
Document for a service in order to find the resources in
which it is interested. A client is given the address of the
Service Document through configuration performed when
the client is first deployed. The client will choose the
appropriate version of the service from the Service
Document.

Version selection is done by reviewing all of the
workspace elements within the Service Document, noting
their respective versions based on the value of the
element. The client will choose to use the endpoints in the
workspace(s) with the highest version that is less than or
equal to the highest version the client understands. Once the
workspace(s) have been selected, the client can proceed with
the discovery of resources.

If the installed client is version 1, the client will choose
the version 1 workspace(s). The client
version notifications from version 2 of the service but will
continue to use version 1 since that is the latest version it
understands. In the case where the installed client is version
2 but the service is version 1, the only workspace available to
the client will be version 1. (Normally, a client will continue
to support several versions of the service for some period of
time in order to handle this use case.) Later, after the service
is upgraded to version 2, the next time the client accesses the
service, it will receive a notification in the response that
indicates a newer version of the service is available.

A client that is using an older version than the highest it
can understand should check every response from the service
to see if it includes the HTTP Link header
version. Just because a new version of the service was
deployed, does not mean that the clients of that server must
be restarted. When a client receives the notification of a
newer version it should either start the discovery process
over, or update its cache for the resource location and
continue on using the newer version for the resource.

As described for services, there are four use cases
will be examined from the client’s point of view.
mentioned previously, the following discussion will use
version 1 to mean an older version of the
will use version 2 to mean a newer version of the
With respect to the client, the version is intended to indicate
which version(s) of the service the client understands. That
is, a version 1 client understands only version 1 of the
service and a version 2 client understands version 2 of the
service and also supports version 1 of the service.

e) Version 1 client receives version 1 s
f) Version 1 client receives version 2 server
g) Version 2 client receives version 1 server
h) Version 2 client receives version 2 server

from a version 1 client, it means the service has been
upgraded to a newer version while the client remains at an
older version. In this situation, the service will generate a
response using the same version that the client used, but will

indicating that a newer version is

behaved client will initially start from the Service
Document for a service in order to find the resources in

ven the address of the
Service Document through configuration performed when
the client is first deployed. The client will choose the
appropriate version of the service from the Service

Version selection is done by reviewing all of the
elements within the Service Document, noting

their respective versions based on the value of the version
element. The client will choose to use the endpoints in the
workspace(s) with the highest version that is less than or

client understands. Once the
workspace(s) have been selected, the client can proceed with

If the installed client is version 1, the client will choose
the version 1 workspace(s). The client may receive newer

of the service but will
continue to use version 1 since that is the latest version it
understands. In the case where the installed client is version

only workspace available to
. (Normally, a client will continue

to support several versions of the service for some period of
time in order to handle this use case.) Later, after the service
is upgraded to version 2, the next time the client accesses the

notification in the response that
indicates a newer version of the service is available.

A client that is using an older version than the highest it
can understand should check every response from the service

HTTP Link header indicating a newer
version. Just because a new version of the service was

, does not mean that the clients of that server must
be restarted. When a client receives the notification of a
newer version it should either start the discovery process

or update its cache for the resource location and
continue on using the newer version for the resource.

As described for services, there are four use cases that
from the client’s point of view. As

mentioned previously, the following discussion will use
version 1 to mean an older version of the application, and
will use version 2 to mean a newer version of the application.
With respect to the client, the version is intended to indicate

on(s) of the service the client understands. That
is, a version 1 client understands only version 1 of the
service and a version 2 client understands version 2 of the
service and also supports version 1 of the service.

ersion 1 client receives version 1 server response
ersion 1 client receives version 2 server response
ersion 2 client receives version 1 server response
ersion 2 client receives version 2 server response

As with services, the case where a client receives a
response from a service with th
a and d above) are not interesting and will not be discussed
here.

When a version 2 service
client, it must add the HTTP Link header
V.B) as the notification to the client that a newer version is
available. In this case the client is not capable of
understanding the newer version and will ignore the
notification. It is possible that the
checking for newer versions if it is already using the highest
version it understands.

If a client receives a response message containing the
HTTP Link header indicating a newer version is available
and it supports a later version
using, it should use the links to begin using the newer
version.

E. Example Scenario

The following scenario demonstrates the Discovery and
Notification behaviors. This scenario occurs when the
is upgraded to a newer version before the
sequence of steps involved
opposite scenario where the
similar and involves the same actions
order.

Figure 2. Steps to evolve client and service

The actions that occur at each step are the following:
Both the service and its client are

continuously execute the normal request/response cycle.
The client is upgraded to version 2 although it still

supports version 1 for ease of migration.
unaware of this upgrade.)

As part of its normal startup, the client requests the
service's Service Document. The client selects version 1 of

, the case where a client receives a
response from a service with the matching version (use cases
a and d above) are not interesting and will not be discussed

service sends a response to a version 1
HTTP Link header (defined in Section

as the notification to the client that a newer version is
available. In this case the client is not capable of
understanding the newer version and will ignore the
notification. It is possible that the client will not even be
checking for newer versions if it is already using the highest

If a client receives a response message containing the
indicating a newer version is available

and it supports a later version of the server than it is currently
, it should use the links to begin using the newer

The following scenario demonstrates the Discovery and
This scenario occurs when the client

is upgraded to a newer version before the service. The
sequence of steps involved is shown in Figure 2. The
opposite scenario where the service is upgraded first is very

the same actions although in a different

client and service to new version

actions that occur at each step are the following:
Both the service and its client are at version 1 and

continuously execute the normal request/response cycle.
The client is upgraded to version 2 although it still

supports version 1 for ease of migration. (The service is

As part of its normal startup, the client requests the
. The client selects version 1 of

25

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

the service. In this scenario, version 1 is the only version
currently supported by the service and therefore is the only
version available in the Service Document.

The client and the service continue to execute the normal
request/response cycle as if both were at version 1.

The service is upgraded to version 2 although it still
supports version 1. (The client is unaware of this upgrade.)

The next time the client sends a request to this service
(still using version 1), the service sends back the normal
response but this time it includes a notification to the client
that there is a later version of the service available.

Upon receiving a response that includes a newer version
notification, the client automatically begins to use version 2
of the service from this point forward.

F. Performance Impact

A demonstration of the described research has been
coded as APP-based client and service, and a pilot project
within HP has been initiated. The impact of the Discovery
behavior on message size and processing time is minimal
since Discovery is used only when a client connects to a
service for the first time or after a service notifies a client of
a new service version. These are infrequent events.

The impact of the Notification behavior on message size
and processing time is more important since it can affect
most messages between the client and service. The
demonstration service uses different URLs for different
versions, always sends the link to the service document, and
conditionally sends the link to the new resource version. The
message size is increased by the size of these two HTTP
headers. The processing time is increased by the time to
write the headers.

The processing time impact for every message is the
check for the presence of the notification. If present the
Discovery behavior is initiated. The demonstration client
checks for notifications only when it is not operating with its
most recent version, otherwise the client can ignore them
thus incurring no extra processing time.

The minimal change in processing time and message size
is deemed a good trade-off for the significantly reduced
manual configuration normally done for version changes of
services and their clients.

VI. EXTENDING THIS APPROACH TO OTHER
TYPES OF SERVICES

The previous section describes an implementation of the
proposed approach to automated service evolution that can
be easily applied to RESTful services and clients. There are
other alternatives that could be used in this same context. For
example, the HTTP Link header is explicitly defined as
semantically equivalent to an HTML LINK element [8] or
atom:link elements in an Atom feed [4]. The advantage
of choosing the HTTP Link header is that it can be used to
provide version notifications independent of the media type
used for the data in the response body.

There are some types of services, for example SOAP-
based services, where it is less obvious how to apply the
proposed approach to enable independent version evolution

of applications. It is still necessary to provide both Discovery
and Notification behaviors.

Using a non-RESTful architecture (such as SOAP),
applications can still perform the Discovery behavior by
using the APP Service Document as described above.
However, other approaches may be more natural for the
environment. For instance, versions of services could be
advertised in a registry. The basic actions that the client goes
through for discovery are similar to the approach described
above, just using a different source for the version
information.

The HTTP Link header will continue to work for the
Notification behavior in a non-RESTful architecture as long
as HTTP is used as a transport. When HTTP is not used as a
transport, it will be necessary to find a way to convey the
availability of a newer version from the service to the client
either as part of the transport or in the body of the message
itself. For instance, XML-based messages could include an
optional element or attribute in the message body to provide
the notification.

VII. CONCLUSION

The original motivation for this solution was the
integration of HP enterprise management products in order
to bring more comprehensive, end-to-end, and synergistic IT
management solutions to our customers. However, the
authors feel that this approach provides value in general
situations where the client and server are under the control of
different organizations as is the case for many web services.
This approach enables a seamless, automated evolution of
web services and their clients.

REFERENCES

[1] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen, “Hypertext
transfer protocol—HTTP/1.0”, IETF RFC 2616, May 1996.

[2] R. T. Fielding, “Architectural styles and the design of network-based
software architectures”, PhD Dissertation. Dept. of Information and
Computer Science, University of California, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm (last
access October 27, 2010).

[3] J. Gregorio and B. de hOra, “Atom Publishing Protocol”, IETF RFC
5023, October 2007.

[4] B. Kalali , P. Alencar , D. Cowan, “A service-oriented monitoring
registry”, Proceedings of the 2003 conference of the Centre for
Advanced Studies on Collaborative research, October, 2003.

[5] P. Kaminski , H. Müller , M. Litoiu, “A design for adaptive web
service evolution”, Proceedings of the 2006 international workshop
on Self-adaptation and self-managing systems, May, 2006.

[6] M. Nottingham and R. Sayre, “Atom Syndication Format”, IETF
RFC 4287, December 2005.

[7] M. Nottingham, “ Web Linking”, IETF Draft, January 2010.

[8] D. Orchard, ed., Extending and Versioning Languages: Compatibility
Strategies, World Wide Web Consortium, September 2008.

[9] D. Raggett, A. Le Hors, I. Jacobs, eds., HTML 4.01 Specification,
W3C Recommendation 24, December 1999.

[10] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges”, ACM Transactions on Autonomous and
Adaptive Systems, May 2009.

26

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

